Skip to main content

Protein-Alkali Reactions: Chemistry, Toxicology, and Nutritional Consequences

  • Chapter
Nutritional and Toxicological Aspects of Food Safety

Abstract

Heat and alkali treatment of proteins catalyzes formation of crosslinked amino-acid side chains such as lysinoalanine, ornithino- alanine and lanthionine, and concurrent racemization of L-isomers of all amino acid residues to D-analogues. Factors that favor these transformations include high pH and temperature, long exposure, and certain inductive or steric properties of the various amino acid side chains. Factors that minimize crosslink formation include the presence of certain additives, such as cysteine or sulfite ions, and acylation of ε-NH2 groups of lysine side chains. Free and protein-bound lysinoalanine and D-serine induce nephrocytomegaly in rat kidney tissues. The presence of lysinoalanine and D-amino acid residues along a protein chain decreases its digestibility and nutritional quality. Understanding the factors that govern the formation of potentially harmful unnatural amino acid residues in food proteins and the toxic and nutritionally antagonistic action of these compounds in animals should lead to better and safer foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alworth, W. L. (1972). “Stereochemistry and Its Application in Biochemisty,” Wiley, Interscience, New York.

    Google Scholar 

  • Asquith, R. S. and Otterburn, M. S. (1977). Cystine-alkali reaction in relation to protein crossi inking. In “Protein Crossi inking: Nutritional and Medical Consequences,” M. Friedman, Ed., Plenum Press, New York, pp. 93–121.

    Google Scholar 

  • Bada, J. L. (1972). Kinetics of racemization of amino acids as a function of pH. J. Amer. Chem. Soc., 94, 1371–1372.

    Article  CAS  Google Scholar 

  • Bada, J. L. and Shou, M. Y. (1980). Kinetics and mechanism of amino acid racemization in aqueous solution and in bones. In “Biologeochemistry of Amino Acids,” P. E. Hare, Ed., John Wiley amp Sons, Inc., p. 235.

    Google Scholar 

  • Berg, C. P. (1959). Utilization of D-amino acids. In “Protein and Amino Acid Nutrition,” A. A. Albanese, Ed., Academic Press, N. Y., pp. 57–96.

    Google Scholar 

  • Bohak, Z. (1964). N-Epsilon-(DL–2-amino–2-carboxyethyl)-L-lysine (lysinoalanine), a new amino acid formed on alkaline treatment of proteins. J. Biol. Chem., 239, 2878–2887.

    PubMed  CAS  Google Scholar 

  • Brunner, J. R. (1977). Milk proteins. In “Food Proteins,” J. R. Whitaker, S. R. Tannenbaum, Eds., Avi, Westport, CT., p. 175.

    Google Scholar 

  • Bunjapamai, S., Mahoney; R. R. and Fagerson, I. S. (1982). Determination of D-amino acids in some processed foods and effect of racemization on in vitro digestibility of casein. J. Food Sci., 47, 1229–1234.

    CAS  Google Scholar 

  • Cavins, J. F. and Friedman, M. (1967). New amino acids derived from reactions of e-amino groups in proteins with a,03b2-unsaturated compounds. Biochemistry, 6, 3766–3770.

    Article  PubMed  CAS  Google Scholar 

  • Charton, M. (1964). Definition of “inductive substituent constants.” J. Org. Chem., 29, 1222.

    Article  CAS  Google Scholar 

  • Cheftel, J. C. (1979). Proteins and amino acids. In “Nutritional and Safety Aspects of Food Processing”, S. R. Tannenbaum, Ed., Marcel Dekker, New York, pp. 154–215.

    Google Scholar 

  • Dakin, H. D. (1912–1913). The racemization of proteins and their derivatives resulting from tautomeric change. J. Biol. Chem., 13, 357–362.

    Google Scholar 

  • Dakin, H. D. and Dudley, H. W. (1913). The action of enzymes on racemized proteins and their fate in the animal body. J. Biol. Chem., 15, 271–276.

    CAS  Google Scholar 

  • Darge, W. and Thiemann, W. (1971). Hydrolysis and racemization of oligopeptides studied by optical rotation measurement and ion exchange chromatography. In “First European Biophysics Congress Proceedings”, E. Broda, AT Locker, and H. Springer-Lederer, Eds., Baden, Vol. 1, 133–137.

    Google Scholar 

  • de Groot, A. P. and Slump, P. (1969). Effects of severe alkali treatmeent of proteins on amino acid composition and nutritive value. J. Nutr., 98, 45–56.

    Google Scholar 

  • de Groot, A. P., Slump, P., Feron, V. J. and Van Beek, L. (1976). Effects of alkali-treated proteins. Feeding studies with free and protein-bound lysinoalanine in rats and other animals. J. Nutr., 106, 1527–1538.

    PubMed  Google Scholar 

  • de Groot, A. P., Slump, P., Van Beek, L. and Feron, V. J. (1976). Severe alkali treatment of proteins, Evaluation of Proteins for Humans, C. Bodwell, Ed., Avi Publishing Co., Westport, CT.

    Google Scholar 

  • de Koning, P. J. and van Rooijen, P. J. (1982). Aspects of the for-mation of lysionalanine in milk and milk products. J. Dairy Res. 49, 725–736.

    Article  Google Scholar 

  • Erbersdobler, H. F., von Wangenheim, B., Hänichen, T. (1978). Adverse effects of Maillard products - especially of fructoselysine in the organism. Paper presented at X I Internat. Congress of Nutrition, Rio de Janeiro, Brazil, and Private Communication.

    Google Scholar 

  • Engelsma, J. W., Muelen, J. D. v. d., Slump, P. and Haagsma, N. (1979). The oxidation of lysinoalanine by L-amino acid oxidase. Identification of Products. Food Sci. & Technol. 203–207.

    Google Scholar 

  • Exner, O. (1978). A critical compilation of substiuent constants. In “Correlation Analysis in Chemistry.” N. B. Chapman and J. Shorter, Eds., Plenum Press, New York, pp. 439–540.

    Chapter  Google Scholar 

  • Feron, V. J., van Beek, L., Slump, P. and Beems, R. B. (1977). Toxicologicai aspects of alkali treatment of food proteins. In “Biological Aspects of New Protein Food”, Pergamon Press, Oxford England, J. Adler Nissen, Ed., pp. 139–147.

    Google Scholar 

  • Finch, L. R. and Hird, F. J. R. (1960). The uptake of amino acids by isolated segments of rat intestine. II. A survey of affinity for uptake from rates of uptake and competition of uptake., Biochim. Biophys. Acta, 43, 278–287.

    Article  PubMed  CAS  Google Scholar 

  • Finley, J. W., Snow, J. T., Johnston, P. H. and Friedman, M. (1978a). Inhibitory effect of mercaptoamino acid on lysinoalanine formation during alkali treatment of proteins. In “Protein Crosslinking: Nutritional and Medical Consequences”, M. Friedman, Ed., Plenum Press, New York, pp. 85–92.

    Google Scholar 

  • Finley, J. W., Snow, J. T., Johnston, P. H., and Friedman, M. (1978b). Inhibition of lysinoalanine formation in food proteins. J.. Food Sci., 43: 619–621.

    Article  CAS  Google Scholar 

  • Finot, P.-A. (1983). Lysinoalanine in food proteins. Nutrition Abstracts and Reviews, Clin. Nutr., 53, 67–80.

    Google Scholar 

  • Finot, P.-A., Bujard, E., and Arnaud, M. (1977). Metabolic transit of lysinoalanine (LAL) bound to protein and of free radioactive [C]-lysinoalanine. In: “Protein Crosslinking — Nutritional and Medical Consequences,” M. Friedman, Ed., Plenum Press, N.Y., pp. 51–71.

    Google Scholar 

  • Freimuth, U., Krause, W. and Doss, A. (1978). On the alkali treat-ment of proteins. II. Enzymatic hydrolysis of al kali-treated ß- casein and acid casein. Nahrung, 22, 557–568. (German).

    Google Scholar 

  • Friedman, M. (1982a). Lysinoalanine formation in soybean proteins: kinetics and mechanisms. In “Food Protein Deterioration Mechanisms and Functionality”, J. P. Cherry (Ed.), ACS Symposium Series, Washington, D. C. 206; 231–273.

    Chapter  Google Scholar 

  • Friedman, M. (1982b). Chemically reactive and unreactive lysine as an index of browning. Diabetes, 31, 5–14.

    CAS  Google Scholar 

  • Friedman, M. (1980). Inhibition of lanthionine formation during alkaline treatment of keratinous fibers. U. S. Patent 4, 212, 800.

    Google Scholar 

  • Friedman, M. (1978a). Wheat gluten-alkali reactions. (1978 a). In “Proceedings of the 10th National Conference on Wheat Utilization Research”, U. S. Department of Agriculture, Science and Education Administration, Western Regional Research Center, Berkeley, Cali-fornia 94710, ARM-W–4, pp. 81–100.

    Google Scholar 

  • Friedman, M. (1978b). Inhibition of lysinoalanine synthesis by protein acylation. in “Nutritional Improvement of Food and Feed Proteins”, M. Friedman, Ed., Plenum Press, New York, pp. 613- 648.

    Google Scholar 

  • Friedman, M. (1977). Crosslinking amino acids-stereochemistry and namenclature. In “Protein Crosslinking: Nutritional and Medical Consequences”, W. Friedman, Ed., Plenum Press, New York, pp. 1–27.

    Google Scholar 

  • Friedman, M. and Gumbmann, M. R. (1982). Bioavailability of D-amino acids in mice. Fed. Proc. 41, 392.

    Google Scholar 

  • Friedman, M. and Gumbmann, M. R. (1981). Bioavailability of some lysine derivatives in mice. J. Nutrition, 111, 1362–1369.

    CAS  Google Scholar 

  • Friedman, M., and Gumbmann, M. R. (1979). Biological availability of epsilon-N-methyl-L-lysine, 1-N-methyl-L-histidine, and 3-N- methyl-L-histidine in mice. Nutrition Reports International, 19, 437–443.

    CAS  Google Scholar 

  • Friedman, M. and Masters, P. M. (1982). Kinetics of racemization of amino acid residues in casein. J. Food Sci., 47, 760–764.

    Article  CAS  Google Scholar 

  • Friedman, M., and Wall, J. S. (1964), Application of a Hammett- Taft relation to kinetics of alkylation of amino J. Amer. Chem. Soc., 86, 37735–3741.

    Google Scholar 

  • Friedman, M., and Wall, J. S. (1966). Additive linear free energy relationships in reaction kinetics of amino groups with a-, 3-unsaturated compounds. J. Org. Chem., 31, 2888–2874.

    Article  CAS  Google Scholar 

  • Friedman, M., Gumbmann, M. R. and Savoie, L. (1982a). The nutri-tional value of lysinoalanine as a source of lysine for mice. Nutrition Reports International, 26, 939–947.

    Google Scholar 

  • Friedman, M., Wehr, C. M., Schade, J. E. and MacGregor, J. T. (1982b). Inactivation of aflatoxin Bi mutagenicity by thiols. Food and Chemical Toxicology, 20: 887–892.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, M., Zahnley, J. C. and Masters, P. M. (1981). Relationship between in vitro digestibility of casein and its content of lysinoalanine and D-ami no acids. J. Food Sci. 46, 127–131 and 134.

    Google Scholar 

  • Friedman, M., Finley, J. W. and Yeh, Lai-Sue. (1977). Reactions of proteins with dehydrolanines. In “Protein Crosslinking: Nutritional and Medical Consequences”, M. Friedman, Ed., Plenum Press, New York, pp. 213–224.

    Google Scholar 

  • Friedman, M. Cavins, J. F., and Wall, J. S. (1965). Relative nucí eophilie reactivities of amino groups and mercaptide ions in addition reactions with a, e-unsaturated compounds. J. Amer. Chem. Soc., 87, 3572–3682.

    Google Scholar 

  • Fritsch, R. J., Hoffman, H. and Klostermeyer, H. (1983). Formation of lysinoalanine during heat treatment of milk. Z. Lemensm. Unters. Forsch. 176, 341–345.

    CAS  Google Scholar 

  • Ganóte, C. E., Peterson, D. R. and Carone, F. A. (1974). The nature of D-serine induced nephrotoxicity. Am. J. Pathol., 77, 269–176.

    PubMed  Google Scholar 

  • Gauthier, S. F., Vachon, C., Jones, J. D. and Savoie, L. (1982). Assessment of protein digestibility by vitro enzymatic hydrolysis with simultaneous dialysis. J. Nutr., 112, 1717–1725.

    Google Scholar 

  • Gee, M., Huxsoll, C. C. and Graham, R. P. (1974). Acidification of dry caustic peeling by lactic acid fermentation. Am. Potato J. 51, 126–131.

    Article  CAS  Google Scholar 

  • Gibson, 0. H. and Wiseman, G. (1951). Selective absorption of stereoisomers of amino acids from loops of the small intestine of the rat. Biochem. J., 48, 426–429.

    Google Scholar 

  • Goldblatt, L. A. (1969). “Aflatoxin: Scientific Background, Control, and Implications”, Academic Press, New York.

    Google Scholar 

  • Gross, E. (1977). a, e-Unsaturated and related amino acids in peptides and proteins. Adv. Exp. Med. Biol., 86A, 131–153.

    Google Scholar 

  • Gould, D. H. and MacGregor, J. T. (1977). Biological effects of alkali-treated protein and lysinoalanine: an overview. In “Protein Crosslinking: Nutritional and Medical Consequences,” M. Friedman, Ed., Part B, Plenum Press, N. Y., pp. 29–48.

    Google Scholar 

  • Hayase, F., Kato, H., and Fujimaki, M. (1975). Racemization of amino acid residues in proteins and poly(L-amino acids) during roasting. J. Agric. Food Chem., 23, 491–494.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, R. (1982). Lysinoalanine as a metal chelator. An implication for toxicity. J. Biol. Chem., 257, 13,896–13, 898.

    Google Scholar 

  • Hayashi, R. and Kameda, I. (1980). Decreased proteolysis of alkali - treated protein: consequences of racemization in food processing. J. Food Sci., 45, 1430–1431.

    Article  CAS  Google Scholar 

  • Hewitt, D., Ford, J. E. and Porter, J. W. G. (1979). Nutritional quality of spun soya-bean protein: comparison of biological and microbiological tests. Qualitas Plantarum, 29, 253–260.

    Article  CAS  Google Scholar 

  • Horn, M. J., Jones, D. B., Ringel, S. J. (1941). Isolation of a new sulfur-containing amino acid (lanthionine) from sodium carbonate treated wool. J. Biol. Chem., 138, 141–149.

    CAS  Google Scholar 

  • Kaltenbach, J. P., Ganote, G. E. and Carone, F. A. (1979). Renal tubular necrosis induced by compounds structurally related to D- serine. Exp, and Mol. Pathol., 30, 209–214.

    Article  CAS  Google Scholar 

  • Karayiannis, N. (1976). Lysinoalanine Formation in Alkali Treated Proteins and their Biological Effects, Ph.D. Thesis. University of California, Berkeley.

    Google Scholar 

  • Karayiannis, N. I., MacGregor, J. T. and Bjeldanes, L. F. (1979a). Lysinoalanine formation in alkali-treated proteins and model compounds. Food Cosmet. Toxicol., 17, 585–590.

    Article  PubMed  CAS  Google Scholar 

  • Karayiannis, N. I., MacGregor, J. T. and Bjeldanes, L. F. (1979b). Biological effects of alkali-treated soy protein and lactalbumin in the rat and mouse. Food and Cosm. Toxicol., 17, 509–604.

    Article  Google Scholar 

  • Karayiannis, N. I., Panopoulos, N. J., Bjeldanes, L. F. and Mac-Gregor, J. T. (1979c). Lysinoalanine utilization by Erwinia Chrysanthemi and Escherichia Coli. Food Cosmet. Toxicol., 17, 319

    Article  PubMed  CAS  Google Scholar 

  • Kies, C, Fox, H. and Aprahamian, S. (1975). Comparative value of L-, DL-, and D-methionine supplementation of an oat-based diet for humans. J. Nutr., 105, 809–814.

    PubMed  CAS  Google Scholar 

  • Kossel, A., and Weiss, F. (1909). Ober Einwirkung von Alkalien auf Proteinstoffe. Z. Physiol. Chem., 59, 492–498.

    Article  Google Scholar 

  • Leegwater, D. C. and Tas, A. C. (1980). Identification of an enzymic oxidation product of lysinoalanine. Lebensm.-Wiss. Technol., 13, 87–91.

    CAS  Google Scholar 

  • Leegwater, D. C. (1978). The nephrotoxicity of lysinoalanine in the rat. Food Cosmet. Toxicol., 16, 405.

    Article  PubMed  CAS  Google Scholar 

  • Levene, P. A. and Bass, L. W. (1927). Studies on racemi zation. V. The action of alkali on gelatin. J. Biol. Chem., 74, 715–725.

    CAS  Google Scholar 

  • Levene, P. A. and Bass, L. W. (1928). Studies on racemization. VII. The action of alkali on casein. J. Biol. Chem., 78, 145–157.

    CAS  Google Scholar 

  • Levene, P. A. and Bass, L. W. (1929). Studies on racemization. VIII. The action of alkali on proteins: racemization and hydrolysis. J. Biol. Chem., 82, 171–190.

    CAS  Google Scholar 

  • Liardon, R. and Hurrell, R. F. (1983). Amino acid racemization in heated and alkali-treated proteins. J. Agric. Food Chem., 31, 432–437.

    Article  CAS  Google Scholar 

  • Masri, M. S. and Friedman, M. (1982). Transformation of dehydro- alanine to S-03b2-(2-pyridylethyl)-L-cysteine side chains. Biochem. Biophys. Res. Commun., 104, 321–325.

    Article  PubMed  CAS  Google Scholar 

  • Masters, P. M. and Friedman, M. (1980). Amino acid racemization in alkali-treated food proteins—chemistry, toxicology, and nutritional consequences. In “Chemical Deterioration of Proteins”, J. R. Whitaker and M. Fujimaki, Eds. ACS Symposium Series, Washington, D. C. 123, 165–194.

    Chapter  Google Scholar 

  • Masters, P. M. and Friedman, M. (1979). Racemization of amino acids in alkali-treated food proteins. J. Agric. Food Chem., 27, 507–511.

    Article  PubMed  CAS  Google Scholar 

  • Meister, A. (1965). “Biochemistry of the Amino Acids,” Vol. I, Academic Press, N.Y., pp. 338–369.

    Google Scholar 

  • Munro, H. N. (1978). Nutritional consequences of excess amino acid intake. In “Nutritional Improvement of Food and Feed Proteins”, M. Friedman, Ed., Plenum Press, New York, pp. 119–129.

    Chapter  Google Scholar 

  • Newberne, P. M. and Young, V. R. (1966). Effects of diets marginal in methionine and choline with and without vitamin B12 on rat liver and kidney. J. Nutr., 89, 69–79.

    PubMed  CAS  Google Scholar 

  • Newberne, P. M., Rogers, A. E. and Wogan, G. N. (1968). Hepatorenal lesions in rats fed a low lipotrope diet and exposed to aflatoxin. J. Nutr., 94, 331–343.

    PubMed  CAS  Google Scholar 

  • Nicolet, B. H. (1931). The mechanism or sulfur lability in cysteine and its derivatives. I. Some thio ethers readily split by alkali. J. Am. Chem. Soc., 53, 3066–3072.

    Article  CAS  Google Scholar 

  • Nicolet, B. H. (1932). The mechanism of sulfur lability in cystein and its derivatives. II. The addition of mereaptan to benzoyl aminocinnamic acid derivatives. J. Biol. Chem., 95, 389–392.

    CAS  Google Scholar 

  • Nicolet, B. H., Shinn, L. A., and Saidel, L. J. (1942). The lability toward alkali of serine and threonine in proteins, and some of its consequences. J. Biol. Chem., 142, 609–613.

    CAS  Google Scholar 

  • O’Donovan, C. J. (1976). Recent studies of lysinoalanine in alkali -treated proteins. Fd. Cosmet. Toxicol., 14, 483–489.

    Article  Google Scholar 

  • Patchornik, A. and Sokolovsky, M. (1964a). Chemical interactions between lysine and dehydroalanine in modified bovine pancreatic ribonuclease. J. Am. Chem. Soc., 86, 1860–1861.

    Article  CAS  Google Scholar 

  • Patchornik, A. and Sokolovsky, M. (1964b). Nonenzymatic cleavages of peptide chains at the cysteine and serine residues through their conversion into dehydroalanine residues. J. Am. Chem. Soc., 86, 1206–1212.

    Article  CAS  Google Scholar 

  • Provansal, M. M. P., Cuq, J. L. A. and Cheftel, J. C. (1975). Chemical and nutritional modifications of sunflower proteins due to alkaline processing. Formation of amino acid crosslinks and isomerization of lysine residues. J. Ag. Food Chem., 23, 938–943.

    Article  CAS  Google Scholar 

  • Reyniers, J. P., (1979). Renal toxicity of lysinoalanine and its potential catabolites in germfree and conventional animals. Diss. Abstr. Int. B. 39 (10), 1820.

    Google Scholar 

  • Reyniers, J. P., Woodard, J. C. and Alvarez, M. R. (1974). Nuclear cytochemical alterations in «-protein induced nephrocytomegalia. Lab. Invest., 30, 582–588.

    PubMed  CAS  Google Scholar 

  • Robbins, K. R. and Ballew, J. E. (1982). Effect of alkaline treat-ment of soy protein on sulfur amino acid bioavailability. J. Food Sci. 47, 2070–2071.

    Article  CAS  Google Scholar 

  • Robbins, K. R., Baker, D. H. and Finley, J. W. (1980). Studies on the utilization of lysinoalanine and lanthionine. J. Nutr., 110, 907–914.

    PubMed  CAS  Google Scholar 

  • Rose, W. C. (1949). Amino acid requirements of man. Fed. Proc. 8, 546–552.

    PubMed  CAS  Google Scholar 

  • Rosenhagen, M. and Segal, S. (1974). Stereospecificity of amino acid uptake by rat and human kidney cortex slices. Am. J. Physiol., 227, 843–847.

    PubMed  CAS  Google Scholar 

  • Sanderson, J., Wall, J. S. Donaldson, G. L. and Cavins, J. F. (1978) Effect of alkaline processing of corn on its amino acids. Cereal Chem., 55, 204–213.

    CAS  Google Scholar 

  • Saunders, R. M., Connor, M. A., Edwards, R. H. and Kohler, G. O. (1975). Preparation of protein concentrates from wheat shorts and wheat millrun by a wet alkaline process. Cereal Chem., 52, 93–101.

    Google Scholar 

  • Smith, G. G., Williams, K. M. and Wonnacot, D. M. (1978). Factors affecting the rate of racemization of amino acids and their sig-nificance of geochronology. J. Org. Chem., 43, 1–5.

    Article  CAS  Google Scholar 

  • Snow, J. T., Finley, J. W. and Friedman, M. (1976). Relative re-activities of sulfhydryl groups with N-acetyl dehydroalanine and N-acetyldehydroalanine methyl ester. Int. J. Petide Protein Res., 7, 461–466.

    Article  Google Scholar 

  • Stegink, L. D. (1977). D-Amino acids. In “Clinical Nutrition Up-date: Amino Acids,” American Medical Association, Chicago, Illinois, p. 198.

    Google Scholar 

  • Steining J. and Montag, A. Studies on the alteration of lysine of food proteins. II. Formation of lysinoalanine. Z. Lebensm. Unter. Forsch. 175, 8–12. (German).

    Google Scholar 

  • Sternberg, M. and Kim, C. Y. (1979). Growth response of mice and Tetrahymena piriformis to lysinoalanine-supplement wheat gluten. J. Agric. Food Chem., 27, 1130.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, M. and Kim, C. Y. (1977). Lysinoalanine formation in protein food ingredients. In “Protein Crosslinking: Nutritional and Medical Consequences”, IT. Friedman, Ed., Plenum Press, New York, pp. 73–84.

    Google Scholar 

  • Sternberg, M., Kim, C. Y., and Schwende, F. J. (1975). Lysinoalanine: presence in foods and food ingredients. Science, 190, 992–994.

    Article  PubMed  CAS  Google Scholar 

  • Struthers, B. J., Brielmaier, J. R., Raymond, M. L., Dahlgren, R. R. and Hopkins, D. T. (1980). Excretion and tissue distribution of radioactive lysinoalanine. J. Nutr., 110, 2065–2077.

    PubMed  CAS  Google Scholar 

  • Struthers, B. J., Dahlgren, R. R., Hopkins, D. T. and Raymond, M. L. (1979). Lysinoalanine: biological effects and significance. In In Soy Protein and Human Nutrition: H. L. Wilcke, D. T. Hopkins, and D. H. Waggle, Eds., Academic Press, New York, pp. 235–260.

    Google Scholar 

  • Taft, R. Jr. (1956). In “Steric Effects in Organic Chemistry,” M. S. Newman, Ed., John Wiley and Sons, Inc. New York, N.Y., Chapter 13.

    Google Scholar 

  • Tannenbaum, S. R., Ahern, M., and Bates, R. P. (1970). Solubilization of fish protein concentrate. 1. An alkaline process. Food Tech., 24, 96–99.

    Google Scholar 

  • Tas, A. C. and Kleipool, R. J. C. (1979). The stereoisomers of lysinoalanine. Lebensm. Wiss. und Technol., 9 360–362.

    Google Scholar 

  • Van Beek, L., Feron, V. J. and de Groot, A. P. (1974). Nutritional effects of alkali-treated soy protein in rats. J. Nutr., 104, 1630–1636.

    PubMed  Google Scholar 

  • Wachstein, M. (1974). Nephrotoxic action of D,L-serine in the rat. Arch. Pathol., 43, 503–514.

    Google Scholar 

  • Whitaker, J. R. and Feeney, R. E. (1977). Behaviour of 0-glycosyl and 0-phosphoryl proteins in alkaline solution. In “Protein Crosslinking: Nutritional and Medical Consequences”, Friedman, Ed., Plenum Press, New York, pp. 155–175.

    Google Scholar 

  • Woodard, J. C. (1969). On the pathogenesis of alpha protein-induced nephrocytomegalia. Lab. Invest., 20, 9–16.

    PubMed  CAS  Google Scholar 

  • Woodard, J. C. and Alvarez, M. R. (1967). Renal lesions in rats fed diets containing alpha protein. Arch. Path., 84, 153–162.

    PubMed  CAS  Google Scholar 

  • Woodard, J. C., and Short, D. D. (1973). Toxicity of alkali- treated soy protein in rats. J. Nutr., 103, 569–574.

    PubMed  CAS  Google Scholar 

  • Woodard, J. C. and Short, D. D. (1977). Renal toxicity of Lysino-alanine in rats. Food Cosmet. Toxicol., 15, 117–119.

    Article  PubMed  CAS  Google Scholar 

  • Woodard, J. C., Short, D. D., Alvarez, M. R. and Reyniers, J. (1975). Biologic effects of N-e-(DL–2-amino–2-carboxyethyl)-L-lysine, lysinoalanine. “Protein Nutritional Quality of Foods and Feeds” M. Friedman, Ed., Marcel Dekker, New York, pp. 595–616.

    Google Scholar 

  • Wretlind, J. A. J. (1952). The effect of D-amino acids on the stereonaturalization of D-methionine. Acta Physiol. Scand., 25, 267–275.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Y. V., Sexson, K. R., Cluskey, J. E. and Inglett, G. E. (1977). Protein isolates from high protein oats preparation. Composition and properties. J. Food Sci., 42, 1383–1386.

    Article  CAS  Google Scholar 

  • Zezulka, A. Y. and Calloway, D. H. (1976). Nitrogen retention in men fed isolated soybean protein supplemented with L-methionine, D-methionine, N-acetyl-L-methionine, or inorganic sulfate. J. Nutr., 106, 1286–1291.

    PubMed  CAS  Google Scholar 

  • Zumberge, J. E. The effect of D-glucose on aspartic acid racemization. Paper presented at the Carnegie Institution of Washington Conference: Advances in the Biogeochemistry of Amino Acids, Warrenton, Virginia, Oct. 29-Nov. 1,. 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Friedman, M., Gumbmann, M.R., Masters, P.M. (1984). Protein-Alkali Reactions: Chemistry, Toxicology, and Nutritional Consequences. In: Friedman, M. (eds) Nutritional and Toxicological Aspects of Food Safety. Advances in Experimental Medicine and Biology, vol 177. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4790-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4790-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4792-7

  • Online ISBN: 978-1-4684-4790-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics