Skip to main content

Part of the book series: Comprehensive Treatise of Electrochemistry ((CTE,volume 2))

Abstract

Chlorine and its coproduct, sodium hydroxide (caustic soda), are significant factors in the world economy. They are indispensable intermediates for the chemical industry, and also possess important uses in a variety of other industries. Chlorine is second to aluminum as a consumer of electricity among the electrolytic processes. Direct current (dc) power for chlorine cells accounts for nearly 2% of all electric power generated in the United States.(1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. R. Beck, in Proceedings of the Workshop on Energy Conservation in Industrial Electrochemical Processes, Argonne National Laboratory Report No. ANL/OEPM-77–1, August 1976, pp. 37–82.

    Google Scholar 

  2. J. J. Leddy, I. C. Jones, Jr., B. S. Lowry, F. W. Spillers, R. E. Wing, and C. D. Binger, Alkali and Chlorine Products, in Encyclopedia of Chemical Technology, 3rd ed., Vol. 1, John Wiley and Sons, New York (1978), pp. 799–865.

    Google Scholar 

  3. Y-C. Yen, Chlorine, Process Economic Program Report No. 61B, Stanford Research Institute, Menlo Park, California, November 1978, p. 3.

    Google Scholar 

  4. J. Renner and K. E. Woodard, Jr., Report of the electrolytic industries, presented at the Electrochemical Society Meeting, Boston, Massachusetts, May 1979, p. 4.

    Google Scholar 

  5. Chemical Origins and Markets, Stanford Research Institute, Menlo Park, California, 1967.

    Google Scholar 

  6. L. R. Belohlav and E. T. McBee, in Chlorine—Its Manufacture, Properties and Uses, A.C.S. Monograph 154, J. S. Sconce, ed., Reinhold, New York (1962), Chap. 1, pp. 1–9.

    Google Scholar 

  7. H. W. Schultze, The chlorine industry—past, present and future, in Chlorine Bicentennial Symposium, Electrochemical Society, Princeton, New Jersey (1974), pp. 1–19.

    Google Scholar 

  8. M. S. Kircher, in Chlorine—Its Manufacture, Properties and Uses, A.C.S. Monograph 154, J. S. Sconce, ed., Reinhold, New York (1962), Chap. 5, pp. 81–126.

    Google Scholar 

  9. W. C. Gardiner, Castner, a pioneer inventor in alkali-chlorine, in Chlorine Bicentennial Symposium, Electrochemical Society, Princeton, New Jersey (1974), pp. 35–43.

    Google Scholar 

  10. K. E. Stuart, U.S. Patent 1,865, 152 (1932).

    Google Scholar 

  11. R. B. MacMullin, in Chlorine—Its Manufacture, Properties and Uses, A.C.S. Monograph 154, J. S. Sconce, ed., Reinhold, New York (1962), Chap. 6, pp. 127–199.

    Google Scholar 

  12. D. W. F. Hardie, Electrolytic Manufacture of Chemicals from Salt, 2nd ed., The Chlorine Institute, New York (1975), pp. 77–78.

    Google Scholar 

  13. G. Faita, P. Longhi, and T. Mussini, Standard potentials of the Cl2/C1- electrode at various temperatures with related thermodynamic functions, J. Electrochem. Soc. 114, 340–343 (1967).

    Article  CAS  Google Scholar 

  14. R. B. MacMullin, Algorithms for the vapor pressure of water over aqueous solutions of salt and caustic soda, J. Electrochem. Soc. 116, 416–419 (1969).

    Article  CAS  Google Scholar 

  15. J. E. Currey and G. G. Pumplin, Chloralkali, in Encyclopedia of Chemical Processing and Design, Vol. 7, Marcel Dekker, New York (1978), pp. 305–450.

    Google Scholar 

  16. R. E. De La Rue and C. W. Tobias, On the conductivity of dispersions, J. Electrochem. Soc. 106, 827–833 (1959).

    Article  Google Scholar 

  17. F. Hine and K. Murakami, Bubble effects on the solution it-drop in a vertical electrolyzer under free and forced convection flow conditions, presented at the Electrochemical Society Meeting, Boston, Massachusetts, May 1978, Abstract No. 281.

    Google Scholar 

  18. D. Dobos, Electrochemical Data, Elsevier, Amsterdam (1975), p. 85.

    Google Scholar 

  19. L. I. Kheifets and A. B. Gol’dberg, The rate of anolyte circulation in diaphragm-type electrolysis cells, Soy. Electrochem. (Engl. Transi.) 10, 1140–1147 (1974).

    Google Scholar 

  20. F. Hine and M. Yasuda, Studies on the deposited asbestos diaphragm with a miniature diaphragm-type chlorine cell, J. Electrochem. Soc. 118, 166–173 (1971).

    Article  CAS  Google Scholar 

  21. F. Hine, M. Yasuda, and T. Tanaka, Mass transfer through the deposited asbestos diaphragm in chlor-alkali cells, Electrochem. Acta 22, 429–437 (1977).

    Article  CAS  Google Scholar 

  22. Z. Nagy, A mechanistic model for the calculation of material balance for a diaphragm type chlorine caustic cell, J. Electrochem. Soc. 124, 91–95 (1977).

    Article  CAS  Google Scholar 

  23. F. Hine and M. Yasuda, Studies on the cathodic reaction in the diaphragm-type chlorine cell, J. Electrochem. Soc. 118, 170–173 (1971).

    Article  CAS  Google Scholar 

  24. I. E. Veselovskaya, E. M. Kuchinskii, and L. V. Morochko, The cathodic reduction of chlorate, J. Appl. Chem. USSR (Engl. Transi.) 37, 85–91 (1964).

    Google Scholar 

  25. J. M. McIntyre, Thermal temperature coefficients of the hydrogen electrode, presented at the Electrochemical Society Meeting, Seattle, Washington, May 1978, Abstract No. 541.

    Google Scholar 

  26. L. I. Krishtalik, G. L. Melikova, and E. G. Kalinina, Investigation of the effect of electrolysis conditions on the stability of graphite anodes in the chlorine cell, J. Appl. Chem. USSR (Engl. Transl.) 34, 1464–1469 (1961).

    Google Scholar 

  27. L. E. Vaaler, Graphite anodes in brine electrolysis, J. Electrochem. Soc. 107, 691–698 (1960).

    Article  CAS  Google Scholar 

  28. L. E. Vaaler, Graphite-electrolytic anodes, Electrochem. Technol. 5, 170–174 (1967).

    CAS  Google Scholar 

  29. F. Hine, M. Yasuda, I. Sugiura, and T. Noda, Effects of the active chlorine and the pH on consumption of graphite anode in chlor-alkali cells, J. Electrochem. Soc. 121, 220–225 (1974).

    Article  CAS  Google Scholar 

  30. Chem. Eng. (N. Y) 86, 45 (December 18, 1978 ).

    Google Scholar 

  31. R. H. Stevens, U.S. Patent 1,077, 894 (1913).

    Google Scholar 

  32. J. B. Cotton, E. C. Williams, and A. H. Barber, U.K. Provisional Patent Spec. 22619 (1957); U.K. Patent 877, 901 (1961).

    Google Scholar 

  33. H. B. Beer, Neth. Patent Appl. 216,199 (1957); U.S. Patent 3,236, 756 (1966).

    Google Scholar 

  34. D. B. Rogers, R. D. Shannon, A. W. Sleight, and J. L. Gillson, Crystal chemistry of metal dioxides with rutile-related structures, Inorg. Chem. 8, 841–849 (1969).

    Article  CAS  Google Scholar 

  35. H. B. Beer, Living from invention, Chem. Ind. (London), 491–496 (July 15, 1978 ).

    Google Scholar 

  36. H. B. Beer, S. African Patent 2667 /66 (1967).

    Google Scholar 

  37. H. B. Beer, U.S. Patents 3,711,385 (1973), 3,632, 498 (1972).

    Google Scholar 

  38. K. J. O’Leary, U.S. Patent 3,776,834 (1973).

    Google Scholar 

  39. V. deNora, Ion selective electrodes, presented at the Electrochemical Society Meeting, Seattle, Washington, May 1978, Abstract No. 458.

    Google Scholar 

  40. S. Pizzini and G. Bianchi, Oxides with metallic conductivity, in The Science of Materials Used in Advanced Technology, John Wiley and Sons, New York (1973), Chap. 10, pp. 229–241.

    Google Scholar 

  41. D. C. Cronemeyer, Electrical and optical properties of rutile single crystals, Phys. Rev. 87, 876–886 (1952).

    Article  CAS  Google Scholar 

  42. H. P. R. Frederikse, Recent studies on rutile (TiO2), J. Appl. Phys. Suppl. 32 (10), 2211–2215 (1961).

    Article  CAS  Google Scholar 

  43. J. Riga, C. Tenret-Noël, J. J. Pireaux, R. Caudano, and J. J. Verbist, Electronic structure of rutile oxides TiO2, RuO2 and IrO2 studied by x-ray photoelectron spectroscopy, Phys. Scr. 16, 351–354 (1977).

    Article  CAS  Google Scholar 

  44. G. Lodi, E. Sivieri, A. DeBattisti, and S. Trasatti, Ruthenium dioxide-based film electrodes, J. Appl. Electrochem. 8, 135–143 (1978).

    Article  CAS  Google Scholar 

  45. F. Hine, M. Yasuda, and T. Yoshida, Studies on the oxide-coated metal anodes for chlor-alkali cells, J. Electrochem. Soc. 124, 500–505 (1977).

    Article  CAS  Google Scholar 

  46. L. J. J. Janssen, L. M. C. Starmans, J. G. Visser, and E. Barendrecht, Mechanism of the chlorine evolution on a ruthenium oxide/titanium oxide electrode and on a ruthenium electrode, Electrochem. Acta 22, 1093–1100 (1977).

    Article  CAS  Google Scholar 

  47. G. Faita and G. Fiori, Anodic discharge of chloride ions on oxide electrodes, J. Appl. Electrochem. 2, 31–35 (1972).

    Article  CAS  Google Scholar 

  48. A. T. Kuhn and P. M. Wright, in Industrial Electrochemical Processes, A. T. Kuhn, ed., Elsevier, Amsterdam (1971), p. 533.

    Google Scholar 

  49. T. Matsumura, R. Itai, M. Shibuya, and G. Ishi, Electrolytic manufacture of sodium chlorate with magnetite anodes, Electrochem. Technol. 6, 402–404 (1968).

    CAS  Google Scholar 

  50. P. P. Anthony, U.S. Patent 3,711, 382 (1973).

    Google Scholar 

  51. A. Martinsons, U.S. Patent 3,711, 397 (1973).

    Google Scholar 

  52. G. N. Kokhanov, R. A. Agapova, F. I. Mulina, V. V. Avksent’ev, V. L. Kubasov, Yu. V. Dobrov, N. G. Baranova, S. A. Avdeeva, R. I. Kuznetsova, F. V. Kupovich, and Yu. M. Filimonov, USSR Patent 492, 301 (1975).

    Google Scholar 

  53. M. B. Konovalov, V. I. Bystrov, and V. L. Kubasov, A probe method for the study of the electrochemical characteristics of cobalt oxide anodes, Soy. Electrochem. (Engl. Transl.) 11, 218–220 (1975).

    Google Scholar 

  54. M. B. Konovalov, V. I. Bystrov, and V. L. Kubasov, Titanium-base cobalt oxide electrodes, Soy. Electrochem. (Engl. Transi.) 12, 1160–1162 (1976).

    Google Scholar 

  55. R. A. Agapova and G. N. Kokhanov, Electrochemical properties of cobalt oxide anodes, Soy. Electrochem. (Engl. Transi.) 12, 1505–1508 (1976).

    Google Scholar 

  56. D. L. Caldwell and R. J. Fuchs, U.S. Patent 3,977, 958 (1976).

    Google Scholar 

  57. D. L. Caldwell and M. J. Hazelrigg, U.S. Patent 4,142, 005 (1979).

    Google Scholar 

  58. M. J. Hazelrigg and D. L. Caldwell, Cobalt oxide based chlorine cell anodes, presented at the Electrochemical Society Meeting, Seattle, Washington, May 1978, Abstract No. 457.

    Google Scholar 

  59. M. J. Hazelrigg and D. L. Caldwell, U.S. Patent 4,061, 549 (1977).

    Google Scholar 

  60. M. D. Zholudev and V. V. Stender, Overvoltage in the evolution of hydrogen from alkaline solutions, J. Appl. Chem. USSR (Engl. Transi.) 31, 711–715 (1958).

    Google Scholar 

  61. N. P. Fedom’ev, N. V. Berezina, and E. G. Kruglova, Cathodes with positive potential of hydrogen formation, Zh. Prikl. Khim. 21, 317–328 (1948).

    Google Scholar 

  62. K. Sasaki and R. Matsui, Japan. Patent 31–6611 (1956).

    Google Scholar 

  63. Hooker Chemicals and Plastics Corp., Neth. Patent Appl. 75–07550 (1976).

    Google Scholar 

  64. J. R. Brannan and I. Malkin, U.S. Patent 4,024, 044 (1977).

    Google Scholar 

  65. R. B. MacMullin, German Patent Appl. 2, 704, 213 (1977).

    Google Scholar 

  66. J. R. Brannan, I. Malkin, and C. M. Brown, U.S. Patent 4,104, 133 (1978).

    Google Scholar 

  67. J. R. Hall and J. T. Van Gemert, U.S. Patent 3,291, 714 (1966).

    Google Scholar 

  68. S. D. Gokhale, U.S. Patent 3,974, 058 (1976).

    Google Scholar 

  69. H. H. Hoekje, H. B. Johnson, and R. D. Chamberlin, U.S. Patent 3,990, 957 (1976).

    Google Scholar 

  70. W. W. Carlin, U.S. Patent 4,010, 085 (1977).

    Google Scholar 

  71. H. C. Kuo, R. L. Dotson, and K. E. Woodard, U.S. Patent 4,033, 837 (1977).

    Google Scholar 

  72. A. Martinsons and H. B. Johnson, U.S. Patent 4,105, 516 (1978).

    Google Scholar 

  73. D. W. Carnell and C. R. S. Needes, Energy-saving catalytically active cathodes for caustic-chlorine production, presented at the Electrochemical Society Meeting, Boston, Massachusetts, May 1979, Abstract No. 260.

    Google Scholar 

  74. W. W. Carlin and W. B. Darlington, Activated cathodes for reduced power consumption in electrolytic cells, presented at the Electrochemical Society Meeting, Boston, Massachusetts, May 1979, Abstract No. 261.

    Google Scholar 

  75. I. Malkin and J. R. Brannan, Reduction of hydrogen overpotential in a chlorine cell, presented at the Electrochemical Society Meeting, Boston, Massachusetts, May 1979, Abstract No. 262.

    Google Scholar 

  76. G. Gritzner, U.S. Patents 4,035,254 and 4,035, 255 (1977).

    Google Scholar 

  77. Internat. Electrochem. Progr. 7(73), 9 (January 1978).

    Google Scholar 

  78. R. L. Dotson, Modern electrochemical technology, Chem. Eng. (N. Y.) 85, 106–118 (July 17, 1978 ).

    CAS  Google Scholar 

  79. J. S. Newman, Electrochemical Systems, Prentice-Hall, Englewood Cliffs, New Jersey (1973), p. 9.

    Google Scholar 

  80. T. Mukaibo, Technical analysis of diaphragm cells for the electrolysis of NaC1 solution, Denki Kagaku 20, 482–489 (1952).

    CAS  Google Scholar 

  81. V. V. Stender, O. S. Ksenzhek, and V. N. Lazarev, Alkali transfer and current efficiency in electrolysis of solutions of chlorides in diaphragm cells, J. Appl. Chem. USSR (Engl. Transi.) 40, 1245–1249 (1967).

    Google Scholar 

  82. O. S. Ksenzhek and V. M. Serebrit-skii, Theory of current efficiency in the electrolytic preparation of chlorine and alkali by the diaphragm method, Soy. Electrochem. (Engl. Transi.) 4, 1294–1300 (1968).

    Google Scholar 

  83. V. M. Serebrit-skii and O. S. Ksenzhek, Measurement of transport numbers of hydroxyl ions in mixed highly concentrated solutions of alkali and sodium chloride, J. Appl. Chem. USSR (Engl. Trans].) 43, 69–71 (1970).

    Google Scholar 

  84. V. M. Serebrit-skii and O. S. Ksenzhek, Theory of current yield during the electrolytic production of chlorine and alkali by the diaphragm method. II, Soy. Electrochem. (Engl. Transi.) 7, 1592–1596 (1971).

    Google Scholar 

  85. I. S. Stepanyan, Checking the theory of the unsteady condition for electrolysis of a sodium chloride solution in industrial cells with vertical filtering diaphragms, Soy. Electrochem. (Engl. Transi.) 9, 810–812 (1973).

    Google Scholar 

  86. V. L. Kubasov, Estimation of the thickness of the filtering diaphragm of electrolysis vessels for the preparation of chlorine and alkali, Sou. Electrochem. (Engl. Transi.) 12, 72–75 (1976).

    Google Scholar 

  87. L. I. Kheifets and A. B. Gol’dberg, Macrokinetics and chlorine cells with filter-action diaphragms. I. The effect of secondary processes on the current yield, Soy. Electrochem. (Engl. Transi.) 12, 1525–1528 (1976).

    Google Scholar 

  88. A. B. Gol’dberg and L. I. Kheifets, Macrokinetics chlorine cells with filter action diaphragm. II. Temperature dependence on the current yield, and the limits of the effect of anolyte resaturation, Soy. Electrochem. (Engl. Trans].) 12, 1555–1558 (1976).

    Google Scholar 

  89. H. Kaden and A. Pohl, Concerning porosity and pore structure of asbestos diaphragms, Chem. Tech. (Leipzig) 30, 25–28 (1978).

    CAS  Google Scholar 

  90. J.-A. Leduc, U.S. Patent 3,694, 281 (1972).

    Google Scholar 

  91. W. B. Darlington and R. T. Foster, U.S. Patent 3,853, 721 (1974).

    Google Scholar 

  92. R. N. Beaver and C. W. Becker, U.S. Patent 4,093, 533 (1978).

    Google Scholar 

  93. R. Goldsmith, U.S. Patent 3,281, 511 (1966).

    Google Scholar 

  94. W. G. Grot, U.S. Patent 3,702, 267 (1972).

    Google Scholar 

  95. C. Valiance, U.S. Patent 3,930, 979 (1976).

    Google Scholar 

  96. H. Shibata, Y. Kokubu, and I. Okazaki, The Nobel diaphragm cell: a flexible design for high currents and its performance characteristics at 330 kA, in Diaphragm Cells for Chlorine Production, Society of Chemical Industry, London (1977), pp. 53–65.

    Google Scholar 

  97. J. E. Currey and J. W. Ahern, Hooker’s membrane cell at Reed Paper Ltd.’s Dryden, Ontario plant, presented at the 19th Chlorine Institute Chlorine Plant Manager’s Seminar, Montreal, Quebec, February 1976.

    Google Scholar 

  98. K. J. O’Leary, Membrane chlorine cell design and operation, in Diaphragm Cells for Chlorine Production, Society of Chemical Industry, London (1977), pp. 103–115.

    Google Scholar 

  99. Symposium on Fluorocarbon Ion Exchange Membranes, Electrochemical Society Meeting, Atlanta, Georgia, October 1977, Abstract Nos. 436–443.

    Google Scholar 

  100. E. H. Price and D. E. Maloney, Nafion perfluorosulfonic acid membranes for the production of chlorine and caustic soda, presented at the 21st Chlorine Institute Chlorine Plant Manager’s Seminar, Houston, Texas, February 1978.

    Google Scholar 

  101. D. R. Pulver, The Commercial use of membrane cells in chlorine-caustic plants, presented at the 21st Chlorine Institute Chlorine Plant Manager’s Seminar, Houston, Texas, February 1978.

    Google Scholar 

  102. Y. Oda, M. Suhura, and E. Endo, U.S. Patent 4,065, 366 (1977).

    Google Scholar 

  103. H. Ukihashi and T. Asawa, Ion exchange membrane for chlor-alkali process, presented at the Electrochemical Society Meeting, Philadelphia, Pennsylvania, May 1977, Abstract No. 247.

    Google Scholar 

  104. M. Seko, The ion-exchange membrane chlor-alkali process, Ind. Eng. Chem. Prod. Res. Dey. 15, 286–292 (1976).

    Article  CAS  Google Scholar 

  105. M. P. Grotheer and C. J. Harke, The development of Hooker’s H-2A and H-4 cells, in Chlorine Bicentennial Symposium, Electrochemical Society, Princeton, New Jersey (1974), pp. 209–217.

    Google Scholar 

  106. J. E. Currey, Recent advances in Hooker chlor-alkali cell technology, in Diaphragm Cells for Chlorine Production, Society of Chemical Industry, London (1977), pp. 79–91.

    Google Scholar 

  107. R. E. Loftfield and H. W. Laub, U.S. Patent 3,591, 483 (1971).

    Google Scholar 

  108. E. I. Fogelman U.S. Patent 3, 674, 676 (1972).

    Google Scholar 

  109. T. A. Liederbach, Technical advances in diaphragm chlorine cells, in Diaphragm Cells for Chlorine Production, Society of Chemical Industry, London (1977), pp. 41–52.

    Google Scholar 

  110. R. M. Hunter, L. B. Otis, and R. D. Blue, U.S. Patent 2,282, 058 (1942).

    Google Scholar 

  111. V. deNora, Chlorine production using Glanor cells, Chem. Ing. Tech. 47, 141 (1975).

    Article  Google Scholar 

  112. Internat. Electrochem. Progr. 7 (82), 7. October 1978.

    Google Scholar 

  113. S. A. Dahl, Chlor-alkali cell features new ion-exchange membrane, Chem. Eng. (N.Y) 82, 60–61 (August 18, 1975 ).

    Google Scholar 

  114. R. E. Hulme, U.S. Patent 2,765, 873 (1956).

    Google Scholar 

  115. T. Hooker and R. H. Miller, U.S. Patent 2,750, 002 (1956).

    Google Scholar 

  116. D. L. Caldwell and R. J. Fuchs, U.S. Patent 4,073, 873 (1978).

    Google Scholar 

  117. T. G. Coker, SPE brine electrolyzers, presented at the Oronzio deNora Symposium on Chlorine Technology, Venice Lido, Italy, May 1979.

    Google Scholar 

  118. S. Ogawa, Asahi Chemical membrane chlor-alkali process, presented at the Seminar on Developments in Chlor-Alkali Industry, Indian Institute of Chemical Engineers, New Delhi, India, March 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Caldwell, D.L. (1981). Production of Chlorine. In: Bockris, J.O., Conway, B.E., Yeager, E., White, R.E. (eds) Comprehensive Treatise of Electrochemistry. Comprehensive Treatise of Electrochemistry, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3785-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3785-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3787-4

  • Online ISBN: 978-1-4684-3785-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics