Skip to main content

Sex Differences in Endogenous Retinoid Release in the Post-Embryonic Spinal Cord of the Western Mosquitofish, Gambusia affinis affinis

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 6

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 414))

Abstract

Retinoic acid, a potent transcriptional activator, is believed to be an important factor in the regulation of vertebrate development (for review see Eichele, 1989; Gudas, 1994; Tabin, 1991; Boncinelli, et al., 1991; Kessel and Gruss, 1991a; 1991b; Kessel, 1992; Gudas, 1994). Retinaldehyde dehydrogenases catalyze the last step of retinoic acid synthesis and these enzymes are known to belong to a larger aldehyde dehydrogenases family (for review see Petersen and Lindahl, 1997). The distribution of endogenous retinaldehyde dehydrogenases in the developing animal sets up patterns of endogenous gradients of retinoic acid which modulate gene transcription and has been suggested to aid in establishing the developmental framework which organizes both the segmented body plan and the structure of individual organs (for review see Kessel and Gruss, 1991a; 1991b; Marsh-Armstrong, et al., 1995; 1994; Hyatt, et al., 1992; Watterson, et al., 1954; McCaffery, et al., 1991; 1992; McCaffery and Dräger, 1993; 1994; 1995; Dräger and McCaffery, 1995). This is clearly seen during the anteroposterior patterning of the trunk (Marsh-Armstrong, et al., 1994) in the Zebrafish, Danio rerio, in which an endogenous gradient of retinaldehyde dehydrogenase creates a matching gradient of retinoic acid along the anterior-to-posterior axis of the trunk, such as the pectoral, pelvic and anal fin. This occurs during the critical periods in embryogenesis when axial and appendicular structures are forming. Transcriptional regulation of the family of homeobox (Hox) genes, which are normally expressed in sequence along the length of the trunk (for review see Krumlauf, 1994; Krumlauf, et al., 1993; Kenyon, 1994; McGinnis and Krumlauf, 1992; Kessel and Gruss, 1991; Kessel, 1992), has been shown to be activated during development by retinoic acid in a sequential order, with 3′ end genes being activated more rapidly after exposure to retinoic acid, and 5′ end genes responding at progressively later times following retinoic acid exposure (for reviews see Krumlauf, 1994; Krumlauf, et al., 1993; Kenyon, 1994; McGinnis and Krumlauf, 1992; Kessel and Gruss, 1991; Kessel, 1992). Normal patterns of developmental gene expression, such as in the case of Hox genes, are altered in conditions of exogenous retinoic acid excess and deficiency (for review see Eichele, 1989; Gudas, 1994; Tabin, 1991; Boncinelli, et al., 1991; Kessel and Gruss, 1991a; 1991b; Kessel andGruss, 1991; Kessel, 1992; Langston and Gudas, 1994), resulting in “homeotic” transformations, which change the normal order of vertebrae (changing the phenotype of anterior vertebra to that of posterior vertebrae), or the neurons in the hindbrain (Manns and Fritzsch, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baird, S. F., Girard G.: Descriptions of new species of fishes collected by Mr. J. H. Clark on the U. S. and Mexican boundary survey under Lt. Col. J. D. Graham. Proc Acad Nat Sci Phila 6 (1854) 390.

    Google Scholar 

  • Boncinelli, E., Simeone, A., Acampora, D., and Mavillo, F.: Hox gene activation by retinoic acid. Trends in Genetics 7 (1991) 329–3341.

    PubMed  CAS  Google Scholar 

  • Dräger, U. C. and McCaffery, P.: Retinoic acid synthesis in the developing spinal cord. In Weiner, H., Holmes, R. and Wermuth, B. (eds), Enzymology and Molecular Biology of Carbonyl Metabolism. Plenum Press, N. Y., 1995, pp. 185–192.

    Chapter  Google Scholar 

  • Dinkergus, G. and Uhler, L. D.: Enzyme clearing of alcian blue stained whole small vertebrates for the demonstration of cartilage. Stain Techol 52 (1977) 229–232.

    Google Scholar 

  • Eichele, G.: Retinoids and vertebrate limb pattern formation. Trends in Genetics 5 (1989) 246–251.

    Article  PubMed  CAS  Google Scholar 

  • Goodrich E. S.: Studies on the structure and development of vertebrates. Chicago, University of Chicago Press, 1930, pp. 113–158.

    Google Scholar 

  • Gudas, L. J.: Retinoids and vertebrate development. J Biol Chem 269 (1994) 15399–14402.

    PubMed  CAS  Google Scholar 

  • Hyatt, G., Schmitt, E. A., Marsh-Armstrong, N. R., and Dowling, J. E.: Retinoic acid-induced duplication and the zebrafish retina. Proc Natl Acad Sci 89 (1992) 8293–8297.

    Article  PubMed  CAS  Google Scholar 

  • Jegalian B. G., De Robertis E. M.: Homeotic transformation in the mouse induced by overexpression of a human Hox 3.3 transgene. Cell 71 (1992) 901–910.

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C.: If birds can fly, why can’t we? Homeotic genes and evolution. Cell 78 (1994) 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Kessel M., Gruss P.: Homeotic transformations of murine vertebrae and concomitant alteration of Hox-codes induced by retinoic acid. Cell 67 (1991a) 89–104.

    Article  PubMed  CAS  Google Scholar 

  • Kessel, M.: Respecification of vertebral identities by retinoic acid. Development 115 (1992) 487–501.

    PubMed  CAS  Google Scholar 

  • Kessel, M. and Gruss, P: Homeotic transformation of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67 (1991b) 89–104.

    Article  PubMed  CAS  Google Scholar 

  • Krumlauf R.: Hox genes in vertebrate development. Cell 78 (1994) 191–201.

    Article  PubMed  CAS  Google Scholar 

  • Krumlauf R., Marshall H., Studer M., Nonchev S, Sham MH, Lumsden, A: Hox homeobox genes and regionalization of the nervous system. J Neurobiol 24 (1993) 1328–1340.

    Article  PubMed  CAS  Google Scholar 

  • Krumlauf R.: Evolution of the vertebrate Hox homeobox genes. Bioessays 14 (1992) 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Langston, A. W. and L. J. Gudas: Retinoic acid and homeobox gene regulation. Curr Opin Genetics and Dev 4 (1994) 550–555.

    Article  CAS  Google Scholar 

  • Manns, M. and B. Fritzsch: Retinoic acid affects the organization of reticulospinal neurons in developing Xenopus. Neurosci Letters 139 (1992) 253–256.

    Article  CAS  Google Scholar 

  • Marshall H, Nonchev S, Sham MH, Muchamore I, Lumsden A, Krumlauf R: Retinoic acid alters the hindbrain Hox code and induces the transformation of rhombomeres 2/3 into a rhombomere 4/5 identity. Nature 360 (1992) 737–741.

    Article  PubMed  CAS  Google Scholar 

  • Marsh-Armstrong, N., McCaffery, P., Hyatt, G., Alonso, L. Dowling, J. E., Gilbert, W., and Dräger. U. C.: Retinoic acid in the anteroposterior patterning of the zebrafish trunk. Roux’s Arch Dev Biol 205 (1995) 103–113.

    Article  CAS  Google Scholar 

  • Marsh-Armstrong, N., McCaffery, P., Gilbert, W., Dowling, J. E. and Dräger, U. C.: Retinoic acid is necessary for the development of the ventral retina in zebrafish. Proc Natl Acad Sci 91 (1994) 7286–7290.

    Article  PubMed  CAS  Google Scholar 

  • McCaffery, P. and Dräger, U. C.: Retinoic acid synthesizing enzymes in the embryonic and adult vertebrate. In Weiner, H., Crabb, D.W., and Flynn, T.G. (eds), Enzymology and Molecular Biology of Carbonyl Metabolism. Plenum Press, N. Y., 1995, pp. 173–183.

    Chapter  Google Scholar 

  • McCaffery, P. and Dräger, U. C.: Retinoic acid synthesis in the developing retina. In Weiner, H., Crabb, D.W., and Flynn, T.G. (eds), Enzymology and Molecular Biology of Carbonyl Metabolism. Plenum Press, N.Y., 1993, pp. 181–190.

    Chapter  Google Scholar 

  • McCaffery, P. and Dräger, U. C.: Hot spots of retinoic acid synthesis in the developing spinal cord. Proc Natl Acad Sci 91 (1994) 7194–7197.

    Article  PubMed  CAS  Google Scholar 

  • McCaffery, P., Lee, M., Wagner, M. A., Sladek, N. E., and Dräger, U. C.: Asymmetrical retinoic acid synthesis in the dorsoventral axis of the retina. Development 115 (1992) 371–382.

    PubMed  CAS  Google Scholar 

  • McCaffery, P., Tempst, P., Lara, G., and Dräger, U. C.: Aldehyde dehydrogenase is a positional marker in the retina. Development 112 (1991) 693–702.

    PubMed  CAS  Google Scholar 

  • McGinnis, W. and Krumlauf, R.: Homeobox genes and axial patterning. Cell 68 (1992) 283–302.

    Article  PubMed  CAS  Google Scholar 

  • Parenti, L. R.: Relationship of atherinomorph fishes (Teleostei). Bull Mar Sci 52 (1993) 170–196.

    Google Scholar 

  • Parenti, L. R.: Aphylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha). Bull Am Mus Nat Hist 168 (1981) 335–557.

    Google Scholar 

  • Pereira, F. A., Rosenmann, E., Nylen. E. G., and Wrogemann, K.: Human cytosolic aldehyde dehydrogenase in androgen insensitivity syndrome. In Weiner, H., Crabb, D.W., and Flynn, T.G. (eds), Enzymology and Molecular Biology of Carbonyl Metabolism. Plenum Press, N.Y., 1993, pp. 45–50.

    Chapter  Google Scholar 

  • Petersen, D. and Lindahl, R.: Aldehyde dehydrogenase. In F. P. Guengerich (ed), Comprehensive Toxicology, Vol. 3 Biotransformation, Elisever Science, Oxford, 1997.

    Google Scholar 

  • Pollock, R. A., Jay, G., and Biebrich C. J.: Altering the boundaries of Hox 3.1 expression: Evidence for antipodal gene regulation. Cell 71 (1992) 911–923.

    Article  PubMed  CAS  Google Scholar 

  • Rosa-Molinar E., Hendricks, S. E., Rodriguez-Sierra, J. F., and Fritzsch, B: Development of the Anal Fin Appendicular Support in the Western Mosquitofish, Gambusia affinis affinis (Baird and Girard, 1854): A Reinvestigation and Reinterpretation. Acta Anat 151 (1994) 20–35.

    Article  PubMed  CAS  Google Scholar 

  • Slack J.M.W., Tannahill D.: Mechanism of anteroposterior axis specification in vertebrates. Development 114 (1992) 285–302.

    PubMed  CAS  Google Scholar 

  • Tabin, C. J.: Retinoids, homeoboxes, and growth factors, Towards molecular models for limb development. Cell 66 (1991) 199–217.

    Article  PubMed  CAS  Google Scholar 

  • Turner C. L.: Morphogenesis of the gonopodium in Gambusia afflnis affinis. J Morphol 69 (1941) 161–185.

    Article  Google Scholar 

  • Turner C. L.: Morphogenesis of the gonopodial Suspensorium in Gambusia affinis affinis and the induction of male suspensorial characters in the female by androgenic hormones. J Exp Zool 91 (1942) 167–193.

    Article  CAS  Google Scholar 

  • Turner C. L.: The effects of steroid hormones on the development of some secondary sexual characters in cyprinodont fishes. Trans Am Microsc Soc 79 (1960) 320–333.

    Article  Google Scholar 

  • Wagner, M., Han, B. and Jessell, T. M.: Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development 116 (1992) 55–66.

    PubMed  CAS  Google Scholar 

  • Watterson, R. L., Fowler, I. and Fowler, B. J.: The role of the neural tube and the notochord in development of the axial skeleton of the chick. Am J Anat 95 (1954) 337–399.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosa-Molinar, E., McCaffery, P.J., Fritzsch, B. (1996). Sex Differences in Endogenous Retinoid Release in the Post-Embryonic Spinal Cord of the Western Mosquitofish, Gambusia affinis affinis . In: Weiner, H., Lindahl, R., Crabb, D.W., Flynn, T.G. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 6. Advances in Experimental Medicine and Biology, vol 414. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5871-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5871-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7692-7

  • Online ISBN: 978-1-4615-5871-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics