Skip to main content

Fuzzy Multi-Mode Resource-Constrained Project Scheduling with multiple Objectives

  • Chapter
Project Scheduling

Abstract

Classical models of resource-constrained project scheduling (RCPS) problems are very often not adequate to real world problems. For this reason, the classical RCPS models have been extended to deal with multiple-category resources (Węglarz, 1980), multiple performing modes of activities (Patterson et al., 1990) and multiple project performance measures (Słowiński, 1981, 1989). Another realistic aspect of project scheduling is uncertainty of activity time parameters. Many stochastic approaches to solving RCPS problems under uncertainty have been proposed (e.g. Loostma, 1966, 1989; Elmaghraby, 1967; Gaul, 1981). However, the use of new techniques and methodologies in many projects decreases the relevance of past experience. It is obvious that the lack of historical data does not allow for stochastic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Buckley J.J. 1989. Fuzzy Pert, in: Applications of Fuzzy Set Methodologies in Industrial Engineering, G.W. Evans, W. Karwowski, M.R. Wilhelm (eds.), Elsevier, Amsterdam.

    Google Scholar 

  • Chanas S. 1987. Fuzzy optimization in networks, in: J. Kacprzyk, S.A. Orlovsky (eds.), Optimization models using fuzzy sets and possibility theory, Reidel Publishing Company, Dordrecht, 303–327.

    Google Scholar 

  • Chanas S., J. Kamburowski. 1981. The use of fuzzy variables in PERT, Fuzzy Sets and Systems 5, 11–19.

    Article  Google Scholar 

  • Czyżak P., A. Jaszkiewicz. 1996. Metaheuristic technique for solving multiobjective investment planning problem, Control and Cybernetics 25, 177–187.

    Google Scholar 

  • Czyżak P., A. Jaszkiewicz. 1998. Pareto simulated annealing — a metaheuristic technique for multiple-objective combinatorial optimization, Journal of Multi-Criteria Decision Analysis 7, 34–47.

    Article  Google Scholar 

  • Dempster A.P. 1967. Upper and lower probabilities induced by a multiple-valued mapping, Annals of Mathematical Statistics 38, 325–339.

    Article  Google Scholar 

  • Dubois D., H. Prade. 1987. The mean value of a fuzzy number, Fuzzy Sets and Systems 24, 279–300.

    Article  Google Scholar 

  • Dubois D., H. Prade. 1980. Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York.

    Google Scholar 

  • Elmaghraby S.E. 1967. On the expected duration of PERT type networks, Management Science 5, 299–306.

    Article  Google Scholar 

  • Fortemps P. 1997. Fuzzy Sets for Modelling and Handling Imprecision and Flexibility, PhD Dissertation, Faculte Politechnique de Mons.

    Google Scholar 

  • Fortemps P. 1998. Jobshop scheduling with imprecise durations: a fuzzy approach, Technical Report, IEEE Trans, on Fuzzy Systems (to appear).

    Google Scholar 

  • Fortemps P. 1996. M. Roubens, Ranking and denazification methods based on area compensation, Fuzzy Sets and Systems 82, 319–330.

    Article  Google Scholar 

  • Gaul W. 1981. Bounds for the expected duration of the stochastic project planning model, Journal of Information and Optimization Sciences 2, 45–63.

    Google Scholar 

  • Hapke M. 1995. Two-stage fuzzy optimization for project scheduling, In Proceedings of the Operational Research of Italy Annual Conference, AIRO’95, Ancona, 20-22 September 1995, 295–298.

    Google Scholar 

  • Hapke M., A. Jaszkiewicz, R. SłowiŃski. 1994. Fuzzy project scheduling system for software development, Fuzzy Sets and Systems 21, 101–117.

    Article  Google Scholar 

  • Hapke M, A. Jaszkiewicz, R. SłowiŃski. 1997. Interactive analysis of multiplecriteria project scheduling problem, Europ. J. Opl. Res. (to appear).

    Google Scholar 

  • Hapke M., A. Jaszkiewicz, R. SłowiŃski. 1997. Fuzzy project scheduling with multiple criteria, Proceedings of Sixth IEEE International Conference on Fuzzy Systems, FUZZ-IEEE’97, Barcelona, Spain, 1277–1282.

    Google Scholar 

  • Hapke M., R. SłowiŃski. 1996. Fuzzy priority heuristics for project scheduling, Fuzzy Sets and Systems 83, 291–299.

    Article  Google Scholar 

  • Jaszkiewicz A., R. SłowiŃski. 1997. The LBS-Discrete interactive procedure for multiple-criteria analysis of decision problems, in: J. Climaco (ed.) Multicriteria Analysis, Springer-Verlag, Berlin, 320–330.

    Chapter  Google Scholar 

  • Kerr R.M., R.N. Walker. 1989. A job shop scheduling system based on fuzzy arithmetics, in Proceedings 3rd International Conference on Expert Systems and the Leading Edge in Production and Operation Management, Hilton Head, S.C., 433–450.

    Google Scholar 

  • Kołodziejczyk W. 1986. Orlovsky’s concept of decision-making with fuzzy preference relation-further results, Fuzzy Sets and Systems, 19, 11–20.

    Article  Google Scholar 

  • Loostma F.A. 1966. Network planning with stochastic activity durations, an evaluation of PERT, Statistica Neerlandica 20,43–69.

    Article  Google Scholar 

  • Loostma F.A. 1989. Stochastic and fuzzy PERT, Europ. J. Opl. Res 43, 174–183.

    Article  Google Scholar 

  • McCahon C.S., E.S. Lee. 1992. Fuzzy job sequencing for a flow shop, Europ. J. Opl. Res. 62,294–301.

    Article  Google Scholar 

  • Patterson J. H., R. SlowiŃski, F.B. Talbot, J. Węglarz. 1990. Computational experience with a backtracking algorithm for solving a general class of precedence and resource constrained project scheduling problems, Europ. J. Opl. Res, 49, 68–79.

    Article  Google Scholar 

  • Prade H. 1979. Using fuzzy set theory in a scheduling problem, Fuzzy Sets and Systems 4, 153–165.

    Article  Google Scholar 

  • Rommelfanger H. 1990. FULPAL: An interactive method for solving (multiobjective) fuzzy linear programming problems, section 5 in: Slowinski R., Teghem J. Eds., Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, Kluwer Academic Publishers, Dordrecht, 279–299.

    Chapter  Google Scholar 

  • Rommelfanger H. 1994. Network analysis and information flow in fuzzy environment, Fuzzy Sets and Systems 67, 119–128.

    Article  Google Scholar 

  • Ross TJ. 1995. Fuzzy Logic with Engineering Applications, McGraw-Hill Inc.

    Google Scholar 

  • Roubens M. 1990. Inequality constraints between fuzzy numbers and their use in mathematical programming, section 7 in: R. Slowinski, J. Teghem Eds., Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, Kluwer Academic Publishers, Dordrecht, 321–330.

    Chapter  Google Scholar 

  • Serafini P. 1994. Simulated annealing for multiple objective optimization problems. In: G.H. Tzeng, H.F. Wang, V.P. Wen, P.L. Yu (eds), Multiple Criteria Decision Making. Expand and Enrich the Domains of Thinking and Application, Springer Verlag, 283–292.

    Google Scholar 

  • SłOWIńSKI R. 1981. Multiobjective network scheduling with efficient use of renewable and non renewable resources, Europ. J. Opl. Res. 7, 265–273.

    Article  Google Scholar 

  • SłOWIńSKI R. 1989. Multiobjective project scheduling under multiple-category resource constraints, section 1.7 in R. Slowinski, J. Waglarz.(eds.): Advances in Project Scheduling, Elsevier, Amsterdam, 151–167.

    Google Scholar 

  • SłOWIńSKI R., B. SONIEWICKI, J. WĘGLARZ. 1994. A DSS for multiobjective project scheduling, Europ. J. Opl. Res. 79, 220–229.

    Article  Google Scholar 

  • Ulungu E.L. 1993. Optimisation Combinatoire Multicrit re: Détermination de I’ensemble des solutions efficaces et méthodes interactives, PhD thesis, Universite de Mons-Hainaut.

    Google Scholar 

  • WęGLARZ J. 1980. On certain models of resource allocation problems, Kybernetes 9, 61–66.

    Article  Google Scholar 

  • Zadeh L. A. 1978. Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1, 3–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hapke, M., Jaszkiewicz, A., Słowiński, R. (1999). Fuzzy Multi-Mode Resource-Constrained Project Scheduling with multiple Objectives. In: Węglarz, J. (eds) Project Scheduling. International Series in Operations Research & Management Science, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5533-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5533-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7529-6

  • Online ISBN: 978-1-4615-5533-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics