Skip to main content

Novel Frequency Control in a Population of Bursting Neurons with Excitatory Synaptic Coupling

  • Chapter
Computational Neuroscience

Abstract

Excitatory synaptic coupling is commonly described as a form of input that depolarizes a neuron, often leading to an increase in neuronal spike frequency. In this study we show that the effect of excitatory coupling on the oscillation frequency of coupled bursting neurons is context-dependent. In a model system consisting of a population of bursting neurons, we show that increasing extrinsic excitatory input increases the frequency of the bursting oscillation, while increasing the strength of the excitatory coupling among the bursting neurons decreases the frequency of the bursting oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. C. Smith, H. H. Ellenberger, K. Ballanyi, D. W. Richter, and J. L. Feldman. Pre-Bötzinger Complex: A brainstem region that may generate respiratory rhythm in mammals. Science, 254: 726–729, 1991.

    Article  PubMed  CAS  Google Scholar 

  2. J. C. Smith. Integration of cellular and network mechanisms in mammalian oscillatory motor circuits: Insights from the respiratory oscillator. In P. Stein, S. Grillner, A. I. Selverston, and D. G. Stuart, editors, Neurons, Networks, and Motor Behavior, pages 97–104. MIT Press, Cambridge, MA, 1997.

    Google Scholar 

  3. S. M. Johnson, J. C. Smith, G. D. Punk, and J. L. Feldman. Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. J. NeurophysioL, 72: 2598–2608, 1994.

    PubMed  CAS  Google Scholar 

  4. G.D. Punk, J. C. Smith, and J. L. Feldman. Generation and transmission of respiratory oscillations in medullary slices: Role of excitatory amino acids. J. NeurophysioL, 70: 1497–1515, 1993.

    Google Scholar 

  5. C. R. French, P. Sah, K. Buckett, and P. W. Gage. A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J. Gen. Physiol., 95: 1139–1157, 1990.

    Article  PubMed  CAS  Google Scholar 

  6. I. A. Fleidervish, A. Friedman, and M. J. Gutnick. Slow inactivation of Na+ current and slow cumulative spike adaption in mouse and guinea-pig neocortical neurones in slices. J. Physiol. (London), 493: 83–97, 1996.

    CAS  Google Scholar 

  7. I. A. Fleidervish and M. J. Gutnick. Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. J. Neurophysiol., 76: 2125–2129, 1996.

    PubMed  CAS  Google Scholar 

  8. R. J. Butera, J. Rinzel, and J. C. Smith. Models of the neuronal kernel for respiratory rhythm generation in the pre-Bötzinger complex of mammals. I. Bursting pacemaker neurons. In Preparation.

    Google Scholar 

  9. R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman. Topological and phenomenological classification of bursting oscillations. Bull. Math. BioL, 57: 413–439, 1995.

    PubMed  CAS  Google Scholar 

  10. J. Rinzel. A formal classification of bursting mechanisms in excitable systems. In E. Teramoto and M. Yamaguti, editors, Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences, volume 71 of Lecture Notes in Biomathematics, pages 267–281. Springer-Verlag, Berlin, 1987.

    Chapter  Google Scholar 

  11. J. C. Smith, K. Ballanyi, and D. W. Richter. Whole-cell patch-clamp recordings from respiratory neurons in neonatal rat brainstem in vitro. Neurosci. Let, 134: 153–156, 1992.

    Article  CAS  Google Scholar 

  12. K. L. Magleby and C. F. Stevens. A quantitative description of end-plate currents. J. Physiol. (London), 223: 173–197, 1972.

    CAS  Google Scholar 

  13. X.-J. Wang and J. Rinzel. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comp., 4: 84–97, 1992.

    Article  Google Scholar 

  14. D. Somers and N. Kopell. Rapid synchronization through fast threshold modulation. BioL Cybern., 68: 393–407, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. P. Smolen, J. Rinzel, and A. Sherman. Why pancreatic islets burst but single β cells do not: The heterogeneity hypothesis. Biophys. J., 64: 1668–1680, 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Butera, R.J., Rinzel, J., Smith, J.C. (1998). Novel Frequency Control in a Population of Bursting Neurons with Excitatory Synaptic Coupling. In: Bower, J.M. (eds) Computational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4831-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4831-7_55

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7190-8

  • Online ISBN: 978-1-4615-4831-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics