Skip to main content

Expansion of the Cumulus-Oocyte Complex During the Preovulatory Period: Possible Roles in Oocyte Maturation, Ovulation, and Fertilization

  • Chapter
Ultrastructure of the Ovary

Part of the book series: Electron Microscopy in Biology and Medicine ((EMBM,volume 9))

Abstract

In most mammalian species, a few thousand tightly packed and rather diminutive cells closely invest the oocyte within the antral chamber of mature ovarian follicles. Individual cells within this investing cumulus oophorus are interconnected by a vast network of gap junctions and intermediate junctions. The innermost layer of cumulus cells extend processes that penetrate the zona pellucida to make gap and intermediate junctions with the oocyte membrane, while peripheral cells at one pole of the cumulus mass are connected by gap and intermediate junctions to the innermost layer of the membrana granulosa. The cumulus oophorus, therefore, spatially intervenes between the predominant subpopulation of follicle cells (i.e., the membrana granulosa) and the maturing oocyte. All cells within the basement membrane of the follicle, including the oocyte, are thus interconnected through a gap junction network and, indeed, the unusually large number and large size of these intercellular membrane junctions probably accounts for their initial recognition and very early historical description [1]. In addition to the subpopulations of gap junctions between follicle cells, and between follicle cells and the surface of the oocyte, cumulus processes that penetrate the zona pellucida further interact with each other through extremely diminutive but numerous gap junction plaques within the substance of the zona pellucida itself, thus even more completely integrating the cellular inhabitants of the ovarian follicle [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bjorkman N. A study of the ultrastructure of the granulosa cells of the rat ovary. Acta Anat 51:125–147, 1962.

    Article  PubMed  CAS  Google Scholar 

  2. Larsen WJ, Wert SE, Brunner GD: Differential modulation of follicle cell gap junction populations at ovulation. Dev Biol 122:61–71, 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Larsen WJ, Wert SE: Role of cell junctions in game-togenesis and in early embryonic development. Tissue Cell 20:809–848, 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Larsen WJ, Mechanisms of gap junction modulation. In: Sperelakis N, Cole WC (eds), Cell interactions and gap junctions, Vol. I. Boca Raton, Fl: CRC Press, pp. 3–27, 1989.

    Google Scholar 

  5. Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci USA 58:560–567, 1967.

    Article  PubMed  CAS  Google Scholar 

  6. Colonna R, Mangia F. Mechanisms of amino acid uptake in cumulus-enclosed mouse oocytes. Biol Reprod 28:797–803, 1983.

    Article  PubMed  CAS  Google Scholar 

  7. Juetten J, Bavister BD. The effects of amino acids, cumulus cells, and bovine serum albumin on “in vitro” fertilization and first cleavage of hamster eggs. J Exp Zool 227:487–490, 1983.

    Article  PubMed  CAS  Google Scholar 

  8. Brower PT, Schultz RM. Intercellular communication between granulosa cells and mouse oocytes: Existence and possible nutritional role during oocyte growth. Dev Biol 90:144–153, 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Cho WK, Stern S, Biggers JD. Inhibitory effect of dibuty-ryl cAMP on mouse maturation in vitro. J Exp Zool 187:383–386, 1974.

    Article  PubMed  CAS  Google Scholar 

  10. Schultz RM, Wassarman PM: Biochemical studies of mammalian oogenesis: Protein synthesis during oocyte growth and meiotic maturation in the mouse. J Cell Sci 24:167–194, 1977.

    PubMed  CAS  Google Scholar 

  11. Dekel N, Beers WH: Development of rat oocytes “in vitro”: Inhibition and induction of maturation in the presence or absence of cumulus-oophorus. Dev Biol 75:247–254, 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Salustri A, Siracusa G: Metabolic coupling, cumulus expansion and meiotic resumption in mouse cumuli oophori cultured in vitro in the presence of FSH or dbcAMP, or stimulated in vivo by hCG. J Reprod Fertil 68:335–341, 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Fréter RR, Schultz RM: Regulation of murine oocyte meiosis: Evidence for a gonadotropin-induced cAMP-dependent reduction in a maturation inhibitor. J Cell Biol 98:1119–1128, 1984.

    Article  PubMed  Google Scholar 

  14. Pincus G, Enzmann EV: The comparative behaviour of mammalian eggs in vivo and in vitro. I. The activation of ovarian eggs. J Exp Med 62:665–675, 1935.

    Article  PubMed  CAS  Google Scholar 

  15. Larsen WJ, Wert SE, Brunner GD: A dramatic loss of cumulus cell gap junctions is correlated with germinal vesicle breakdown in rat oocytes. Dev Biol 113:517–521, 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Wert SE, Larsen WJ: Meiotic resumption and gap junction modulation in the cultured rat cumulus-oocyte complex. Gamete Res 22:143–162, 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Racowsky C, Baldwin KV, Larabell CA, DeMarais AA, Kazilek CJ: Down-regulation of membrana granulosa cell gap junctions is correlated with irreversible commitment to resume meiosis in golden Syrian hamster oocytes. Eur J Cell Biol 49:244–251, 1989.

    PubMed  CAS  Google Scholar 

  18. Revel J-P, Karnovsky MJ: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33: C7, 1967.

    Article  PubMed  CAS  Google Scholar 

  19. Albertini DF, Anderson E: The appearance and structure of intercellular connections during the ontogeny of the rabbit ovarian follicle with particular reference to gap junctions. J Cell Biol 63:234–250, 1974.

    Article  PubMed  CAS  Google Scholar 

  20. Chalcroft JP, Bullivant S: An interpertation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the structure. J Cell Biol 47:49–60, 1970.

    Article  PubMed  CAS  Google Scholar 

  21. Larsen WJ: Structural diversity of gap junctions: A review. Tissue Cell 9:373–394, 1977.

    Article  PubMed  CAS  Google Scholar 

  22. Amsterdam A, Josephs R, Lieberman ME, Lindner HR: Organization of intermembranous particles in freeze-cleaved gap junctions of rat Graafian follicles: Optical diffraction analysis. J Cell Sci 21:93–105, 1976.

    PubMed  CAS  Google Scholar 

  23. Anderson E, Albertini DF: Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol 71:680–686, 1976.

    Article  PubMed  CAS  Google Scholar 

  24. Gilula NB, Epstein ML, Beers WH: Cell-to-cell communication and ovulation: A study of the cumulus-oocyte complex. J Cell Biol 78:58–75, 1978.

    Article  PubMed  CAS  Google Scholar 

  25. Ayalon D, Tsafriri A, Lindner HR, Cordova T, Harrel A: Serum gonadotropin levels in pro-estrous rats in relation to the resumption of meiosis by the oocytes. J Reprod Fertil 31:51–58, 1972.

    Article  PubMed  CAS  Google Scholar 

  26. Parr EL: Histological examination of the rat ovarian follicle wall prior to ovulation. Biol Reprod 11:483–503, 1974.

    Article  PubMed  CAS  Google Scholar 

  27. Zamboni I: Fine morphology of the follicle wall and follicle cell-oocyte association. Biol Reprod 10:125–149, 1974.

    Article  PubMed  CAS  Google Scholar 

  28. Heller DT, Schultz RM: Ribonucleoside metabolism by mouse oocytes: Metabolic cooperativity between the fully-grown oocyte and cumulus cells. J Exp Zool 214:355–364, 1980.

    Article  PubMed  CAS  Google Scholar 

  29. Moor RM, Smith MW, Dawson CMC: Measurement of intercellular coupling between oocytes and cumulus cells using intracellular markers. Exp Cell Res 126:15–29, 1984.

    Article  Google Scholar 

  30. Dekel N, Lawrence TS, Gilula NB, Beers WH: Modulation of cell-to-cell communication in the cumulus-oocyte complex and the regulation of oocyte maturation by LH. Dev Biol 86:356–362, 1981.

    Article  PubMed  CAS  Google Scholar 

  31. Moor RM, Osborn JC, Cran DG, Walters DF: Selective effect of gonadotropins in cell coupling, nuclear maturation and protein synthesis in mammalian oocytes. J Embryol Exp Morphol 61:347–365, 1981.

    PubMed  CAS  Google Scholar 

  32. Eppig JJ: The relationship between cumulus cell-oocyte coupling oocyte meiotic maturation, and cumulus expansion. Dev Biol 89:268–272, 1982.

    Article  PubMed  CAS  Google Scholar 

  33. Eppig JJ, Ward-Bailey PF: The mechanism of cumulus cell-oocyte uncoupling: Evidence for the participation of both cumulus cells and oocytes. Gamete Res 6:145–154, 1982.

    Article  CAS  Google Scholar 

  34. Bornslaeger EA, Mattei P, Schultz RM: Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation. Dev Biol 114:453–462, 1986.

    Article  PubMed  CAS  Google Scholar 

  35. Bjersing L, Cajander S: Ovulation and the mechanism of follicle rupture IV. Ultrastructure of membrana granulosa of rabbit Graafian follicles prior to induced ovulation. Cell Tissue Res 153:1–14, 1974.

    Article  PubMed  CAS  Google Scholar 

  36. Albertini DF, Fawcett DW, Olds PJ: Morphological variations in gap junctions of ovarian granulosa cells. Tissue Cell 7:389–405, 1975.

    Article  PubMed  CAS  Google Scholar 

  37. Larsen WJ, Tung HN: Origin and fate of cytoplasmic gap junction vesicles in rabbit granulosa cells. Tissue Cell 10:585–598, 1978.

    PubMed  CAS  Google Scholar 

  38. Larsen WJ, Tung HN, Murray SA, Swenson CA: Evidence for the participation of actin microfilaments and bristle coats in the internalization of gap junction membrane. J Cell Biol 83:576–587, 1979.

    Article  PubMed  CAS  Google Scholar 

  39. Murray SA, Larsen WJ, Trout J, Donta ST: Gap junction assembly and endocytosis correlated with patterns of growth in a cultured adrenocortical tumor cell (SW-13). Cancer Res 41:4063–4074, 1984.

    Google Scholar 

  40. Risinger MA, Larsen WJ: Interaction of filipin with junctional membrane at different stages of the junctions life history. Tissue Cell 15:1–15, 1983.

    Article  PubMed  CAS  Google Scholar 

  41. Larsen WJ, Risinger MA: The dynamic life histories of intercellular membrane junctions. In: Satir BH (ed), Modern Cell Biology. New York: Alan R. Liss, pp. 151–216, 1985.

    Google Scholar 

  42. Larsen WJ, Tung HN, Polking C: Response of granulosa cell gap junctions to human chorionic gonadotropin (HCG) at ovulation. Biol Reprod 25:1119–1134, 1981.

    Article  PubMed  CAS  Google Scholar 

  43. Schultz RM, Montgomery RR, Belanoff JR: Regulation of mouse oocyte meiotic maturation: Implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis. Dev Biol 97:264–273, 1983.

    Article  PubMed  CAS  Google Scholar 

  44. Wert SE, Larsen WJ: Morphological changes in cumulus cell gap junctions prior to meiotic resumption in the rat cumulus-oocyte complexes. J Cell Biol 105: 336a, 1987.

    Google Scholar 

  45. Gilula NB: Gap junctions and cell communication. In: Brinkley BR, Porter KR (eds), International Cell Biology. New York: Rockerfeller University Press, pp. 61–69, 1977.

    Google Scholar 

  46. Chen L, Wert SE, Hendrix EM, Russell PT, Cannon M, Larsen WJ: Gap junction endocytosis and hyaluronic acid synthesis are necessary for normal expansion of the cumulus mass. Submitted, 1989.

    Google Scholar 

  47. Wert SE, Larsen WJ, Brunner GD: Correlations between cumulus expansion and gap junction modulation in the isolated cumulus-oocyte complex. J Cell Biol 99: 401a, 1984.

    Google Scholar 

  48. Larsen WJ, Wert SE, Chen L, Hendrix M, Cannon M, Russell P: The modulation of cumulus cell gap junctions and hyaluronic acid synthesis following an ovulatory stimulus, In: Dekel N, Tsafriri A, (eds), Follicular Development and the Ovulatory Response (Ares-Serono Symposium). 1989.

    Google Scholar 

  49. Chen L, Wert SE, Russell P, Cannon M, Hendrix M, Larsen WJ: The addition of substrates of hyaluronic acid synthesis to the maturation medium increases the degree of expansion of mouse and sheep cumulus-oocyte complexes and significantly improves fertilization rates of mouse oocytes matured “in vitro.” Biol Reprod 40 (Suppl 1): 54A, 1989.

    Article  Google Scholar 

  50. Dekel N, Kraicer P: Induction “in vitro” of mucification of rat cumulus oophorus by gonadotropins and adenosine 3’ 5’-monophosphate. Endocrinology 102:1797–1802, 1978.

    Article  PubMed  CAS  Google Scholar 

  51. Eppig JJ: FSH stimulates hyaluronic acid synthesis by oocyte-cumulus cell complexes from mouse preovulatory follicles. Nature 281:483–484, 1979.

    Article  PubMed  CAS  Google Scholar 

  52. Hillensjo T, Channing CP: Gonadotropin stimulation of steroidogenesis and cellular dispersion in cultured porcine cumuli oophori. Gamete Res 3:233–240, 1980.

    Article  Google Scholar 

  53. Ball GD, Ax RL, First NL: Mucopolysaccharide synthesis accompanies expansion of bovine cumulus-oocyte complexes “in vitro.” In: Mahesh VB, Muldoon TG, Saxenor BB, Sadler WA (eds). Functional Correlates of Hormone Receptors in Reproduction. New York: Elsevier/North Holland pp. 561–563, 1980.

    Google Scholar 

  54. Lenz RW, Ball GD, Liebfried ML, Ax RL, First NL: “in vitro” maturation and fertilization of bovine oocytes are temperature-dependent processes. Biol Reprod 29:173–179, 1983.

    Article  PubMed  CAS  Google Scholar 

  55. Dekel N, Hillensjo T, Kraicer P: Maturational effects of gonadotropins on the cumulus-oocyte complex of the rat. Biol Reprod 20:191–197, 1979.

    Article  PubMed  CAS  Google Scholar 

  56. Liebfried L, First NL: Characterization of bovine follicular oocytes and their ability to mature “in vitro.” J Animal Sci 48:76–86, 1979.

    Google Scholar 

  57. Fukui Y, Sakuma Y: Maturation of bovine oocytes cultured “in vitro”: Relation to ovarian activity, follicular size, and the presence or absence of cumulus cells. Biol Reprod 22:669–673, 1980.

    PubMed  CAS  Google Scholar 

  58. Racowsky C: Effect of forskolin on maintenance of meiotic arrest and stimulation of cumulus expansion, progesterone and cyclic AMP production by pig oocyte-cumulus complexes. J Reprod Fert 74:9–21, 1985.

    Article  CAS  Google Scholar 

  59. Racowsky C, Satterlie RA: Metabolic, fluorescent dye and electrical coupling between hamster oocytes and cumulus cells during meiotic maturation in vivo and in vitro. Dev Biol 108:191–202, 1985.

    Article  PubMed  CAS  Google Scholar 

  60. Suss U, Wuthrich K, Stranzinger G: Chromosome configurations and time sequence of the first meiotic division in bovine oocytes matured “in vitro.” Biol Reprod 38:871–880, 1988.

    Article  PubMed  CAS  Google Scholar 

  61. Vanderhyden BC, Armstrong DT: Role of cumulus cells and serum on the “in vitro” maturation, fertilization, and subsequent development of rat oocytes. Biol Reprod 40:720–728, 1989.

    Article  PubMed  CAS  Google Scholar 

  62. Lenz RW, Ax RL, Grimek HS, First NL: Proteoglycan from bovine follicular fluid stimulates an acrosome reaction in bovine spermatozoa. Biochem Biophys Res Comm 106:1092–1098, 1982.

    Article  PubMed  CAS  Google Scholar 

  63. Handrow RR, Lenz RW, Ax RL: Structural comparisons among glycosaminoglycans to promote an acrosome reaction in bovine spermatozoa. Biochem Biophys Res Comm 107:1326–1332, 1982.

    Article  PubMed  CAS  Google Scholar 

  64. Parrish RF, Wincek TJ, Polakoski KL: Glycosaminogly-can stimulation of the “in vitro” conversion of boar proacrosin into acrosin. J Androl 1:89–95, 1980.

    CAS  Google Scholar 

  65. Ball GD, Liebfried LL, Lenz RW, Ax RL, Bavister BD, First NL: Factors affecting successful “in vitro” fertilization of bovine follicular oocytes. Biol Reprod 28:717–725, 1983.

    Article  PubMed  CAS  Google Scholar 

  66. Schroeder AC, Eppig JJ: The developmental capacity of mouse oocytes that matured spontaneously “in vitro” is normal. Dev Biol 102:493–497, 1984.

    Article  PubMed  CAS  Google Scholar 

  67. Ball GD, Liebfried ML, Ax RL, First NL: Symposium: Embryo development and manipulation. Maturation and fertilization of bovine oocytes “in vitro”. J Dairy Sci 67:2775–2785, 1984.

    Article  PubMed  CAS  Google Scholar 

  68. Sirard MA, Lambert RD: “In vitro” fertilization of bovine follicular oocytes obtained by laparoscopy. Biol Reprod 33:487–494, 1985.

    Article  PubMed  CAS  Google Scholar 

  69. Downs SM, Schroeder AC, Eppig JJ: Serum maintains the fertilizability of mouse oocytes matured “in vitro” by preventing hardening of the zona pellucida. Gamete Res 15:115–122, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Larsen, W.J., Wert, S.E., Chen, L., Russell, P., Hendrix, E.M. (1991). Expansion of the Cumulus-Oocyte Complex During the Preovulatory Period: Possible Roles in Oocyte Maturation, Ovulation, and Fertilization. In: Familiari, G., Makabe, S., Motta, P.M. (eds) Ultrastructure of the Ovary. Electron Microscopy in Biology and Medicine, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3944-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3944-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6760-4

  • Online ISBN: 978-1-4615-3944-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics