Skip to main content

Glucose signalling to Transcription factors of the Insulin gene

  • Chapter
  • First Online:
Molecular Basis of Pancreas Development and Function

Part of the book series: Endocrine Updates ((ENDO,volume 11))

  • 187 Accesses

Abstract

In the adult, insulin is expressed exclusively in the pancreatic β-cells. This hormone is essential to the control of mammalian glucose homeostasis and it is influenced by nutrients and hormonal factors. Although considerable progress has been made in understanding the molecular mechanisms that confer tissue-specificity and metabolic responsiveness on insulin gene expression, we are only beginning to comprehend the complexities involved. In β-cells, glucose is the primary physiological regulator of insulin secretion and biosynthesis. This chapter will focus on the transcriptional control of the insulin gene by glucose, and on the transcription factors mediating this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stein R. Regulation of insulin gene transcription. Trends Endocrinol & Metab 1993;4:96–101.

    Article  CAS  Google Scholar 

  2. Dumonteil E, Philippe J. Insulin gene: organization, expression and regulation. Diabetes Metab 1996; 22:164–173.

    PubMed  CAS  Google Scholar 

  3. Docherty K, Clark AR. Nutrient regulation of insulin gene expression. Faseb J 1994;8:20–27.

    PubMed  CAS  Google Scholar 

  4. Steiner DF, Chan SJ, Welsh JM, Kwok SC. Structure and evolution of the insulin gene. Annu Rev Genet 1985;19:463–484.

    Article  PubMed  CAS  Google Scholar 

  5. Sander M, German MS. The beta cell transcription factors and development of the pancreas. J Mol Med 1997;75:327–340.

    Article  PubMed  CAS  Google Scholar 

  6. German M, Ashcroft S, Docherty K, et al. The insulin gene promoter. A simplified nomenclature. Diabetes 1995; 44:1002–1004.

    PubMed  CAS  Google Scholar 

  7. Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 1989; 56:777–783.

    Article  PubMed  CAS  Google Scholar 

  8. Walker MD, Park CW, Rosen A, Aronheim A. A cDNA from a mouse pancreatic beta cell encoding a putative transcription factor of the insulin gene. Nucleic Acids Res 1990;18:1159–1166.

    Article  PubMed  CAS  Google Scholar 

  9. Shibasaki Y, Sakura H, Takaku F, Kasuga M. XXX Insulin enhancer binding protein has helix-loop-helix structure Biochem Biophys Res Commun 1990;170:314–321.

    CAS  Google Scholar 

  10. Cordle SR, Henderson E, Masuoka H, Weil PA, Stein R. Pancreatic beta-cell-type-specific transcription of the insulin gene is mediated by basic helix-loop-helix DNA-binding proteins. Mol Cell Biol 1991;11:1734–1738.

    PubMed  CAS  Google Scholar 

  11. German MS, Blanar MA, Nelson C, Moss LG, Rutter WJ. Two related helix-loop-helix proteins participate in separate cell-specific complexes that bind the insulin enhancer. Mol Endocrinol 1991;5:292–299.

    Article  PubMed  CAS  Google Scholar 

  12. Peyton M, Moss LG, Tsai MJ. Two distinct class A helix-loop-helix transcription factors, E2A and BETA1, form separate DNA binding complexes on the insulin gene E box. J Biol Chem 1994;269:25936–25941.

    CAS  Google Scholar 

  13. Naya FJ, Stellrecht CM, Tsai MJ. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 1995;9:1009–1019.

    Article  PubMed  CAS  Google Scholar 

  14. Itkin-Ansari P, Bain G, Beattie G M, Mune C, Hayek A, Levine F. E2A gene products are not required for insulin gene expression. Endocrinology 1996;8:3540–3543.

    Article  Google Scholar 

  15. Sharma A, Henderson E, Gamer L, Zhuang Y, Stein R. Analysis of the role of E2A-encoded proteins in insulin gene transcription. Mol Endocrinol 1997;11:1608–1617.

    Article  PubMed  CAS  Google Scholar 

  16. Naya FJ, Huang HP, Qiu Y, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev 1997;11:2323–2334.

    Article  PubMed  CAS  Google Scholar 

  17. Read ML, Clark AR, Docherty K. The helix-loop-helix transcription factor USF (upstream stimulating factor) binds to a regulatory sequence of the human insulin gene enhancer. Biochem J 1993;295:233–237.

    PubMed  CAS  Google Scholar 

  18. Wright CV, Schnegelsberg P, De Robertis EM. X1Hbox 8: a novel Xenopus homeo protein restricted to a narrow band of endoderm. Development 1989;105:787–794.

    PubMed  CAS  Google Scholar 

  19. Ohlsson H, Karlsson K, Edlund T. IPF1, a homeodomain-containing transactivator of the insulin gene. Embo J 1993;12:4251–4259.

    PubMed  CAS  Google Scholar 

  20. Leonard J, Peers B, Johnson T, Fermi K, Lee S, Montminy MR. Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol Endocrinol 1993;7:1275–1283.

    Article  PubMed  CAS  Google Scholar 

  21. Miller CP, McGehee RE, Jr., Habener JF. IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. Embo J 1994;13:1145–1156.

    PubMed  CAS  Google Scholar 

  22. Melloul D, Ben-Neriah Y, Cerasi E. Glucose modulates the binding of an islet-specific factor to a conserved sequence within the rat I and the human insulin promoters. Proc Natl Acad Sci USA 1993;90:3865–3869.

    Article  PubMed  CAS  Google Scholar 

  23. Marshak S, Totary H, Cerasi E, Melloul D. Purification of the beta-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proc Natl Acad Sci USA 1996;93:15057–15062.

    Article  PubMed  CAS  Google Scholar 

  24. MacFarlane WM, Read ML, Gilligan M, Bujalska I, Docherty K. Glucose modulates the binding activity of the beta-cell transcription factor IUF1 in a phosphorylation-dependent manner. Biochem J 1994;303:625–631.

    PubMed  CAS  Google Scholar 

  25. Waeber G, Thompson N, Nicod P, Bonny C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol 1996;10:1327–1334.

    Article  PubMed  CAS  Google Scholar 

  26. Watada H, Kajimoto Y, Umayahara Y, et al. The human glucokinase gene beta-cell-type promoter: an essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells. Diabetes 1996;45:1478–1488.

    Article  PubMed  CAS  Google Scholar 

  27. Petersen HV, Serup P, Leonard J, Michelsen BK, Madsen OD. Transcriptional regulation of the human insulin gene is dependent on the homeodomain protein STFI/IPF1 acting through the CT boxes. Proc Natl Acad Sci USA 1994;91:10465–10469.

    Article  PubMed  CAS  Google Scholar 

  28. Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994;371:606–609.

    Article  PubMed  CAS  Google Scholar 

  29. Slack JM. Developmental biology of the pancreas. Development 1995;121:1569–15680.

    PubMed  CAS  Google Scholar 

  30. Jonsson J, Ahlgren U, Edlund T, Edlund H. IPFI, a homeodomain protein with a dual function in pancreas development. Int J Dev Biol 1995;39:789–798.

    PubMed  CAS  Google Scholar 

  31. Guz Y, Montminy MR, Stein R, et al. Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 1995;121:11–18.

    PubMed  CAS  Google Scholar 

  32. Serup P, Petersen HV, Pedersen EE, et al. The homeodomain protein IPF-1/STF-1 is expressed in a subset of islet cells and promotes rat insulin 1 gene expression dependent on an intact El helix-loophelix factor binding site. Biochem J 1995;310:997–1003.

    PubMed  CAS  Google Scholar 

  33. Ahlgren U, Jonsson J, Edlund H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 1996;122:140–916.

    Google Scholar 

  34. Offield MF, Jetton TL, Labosky PA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996;122:983–995.

    PubMed  CAS  Google Scholar 

  35. Madsen OD, Jensen J, Blume N, et al. Pancreatic development and maturation of the islet B cell. Studies of pluripotent islet cultures. Eur J Biochem 1996;242:435–445.

    Article  PubMed  CAS  Google Scholar 

  36. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. Beta-cell-specific inactivation of the mouse Ipfl/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 1998;12:1763–1768.

    Article  PubMed  CAS  Google Scholar 

  37. Karlsson O, Thor S, Norberg T, Ohlsson H, Edlund T. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo-and a Cys-His domain. Nature 1990;344:879–882.

    Article  PubMed  CAS  Google Scholar 

  38. German MS, Wang J, Chadwick RB, Rutter WJ. Synergistic activation of the insulin gene by a LIM-homeo domain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex. Genes Dev 1992;6:2165–2176.

    Article  PubMed  CAS  Google Scholar 

  39. Emens LA, Landers DW, Moss LG. Hepatocyte nuclear factor 1 alpha is expressed in a hamster insulinoma line and transactivates the rat insulin I gene. Proc Natl Acad Sci U S A 1992;89:7300–7304.

    Article  PubMed  CAS  Google Scholar 

  40. Peers B, Leonard J, Sharma S, Teitelman G, Montminy MR. Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF-I. Mol Endocrinol 1994;8:1798–1806.

    Article  PubMed  CAS  Google Scholar 

  41. Peshavaria M, Henderson E, Sharma A, Wright CV, Stein R. Functional characterization of the transactivation properties of the PDX-1 homeodomain protein. Mol Cell Biol 1997;17:3987–3996.

    PubMed  CAS  Google Scholar 

  42. Brunstedt J, Chan SJ. Direct effect of glucose on the preproinsulin mRNA level in isolated pancreatic islets. Biochem Biophys Res Commun 1982;106:1383–1389.

    Article  PubMed  CAS  Google Scholar 

  43. Nielsen DA, Welsh M, Casadaban MJ, Steiner DF. Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. I. Effects of glucose and cyclic AMP on the transcription of insulin mRNA. J Biol Chem 1985;260:13585–13589.

    PubMed  CAS  Google Scholar 

  44. Welsh M, Nielsen DA, MacKrell AJ, Steiner DF. Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. II. Regulation of insulin mRNA stability. J Biol Chem 1985;260:13590–13594.

    PubMed  CAS  Google Scholar 

  45. Hammonds P, Schofield PN, Ashcroft SJ, Sutton R, Gray DW. Regulation and specificity of glucose-stimulated insulin gene expression in human islets of Langerhans. FEBS Lett 1987;223:131–137.

    Article  PubMed  CAS  Google Scholar 

  46. Hammonds P, Schofield PN, Ashcroft SJ. Glucose regulates preproinsulin messenger RNA levels in a clonal cell line of simian virus 40-transformedßcells. FEBS Lett 1987;213:149–154.

    Article  PubMed  CAS  Google Scholar 

  47. Nagamatsu S, Grodsky GM. Glucose-regulated proinsulin processing in isolated islets from rat pancreas. Diabetes 1988;37:1426–1431.

    Article  PubMed  CAS  Google Scholar 

  48. German MS, Moss LG, Rutter WJ. Regulation of insulin gene expression by glucose and calcium in transfected primary islet cultures. J Biol Chem 1990;265:22063–22066.

    PubMed  CAS  Google Scholar 

  49. Redmon JB, Towle HC, Robertson RP. Regulation of human insulin gene transcription by glucose, epinephrine, and somatostatin. Diabetes 1994;43:546–551.

    Article  PubMed  CAS  Google Scholar 

  50. Wang J, Shen L, Najafi H, et al. Regulation of insulin preRNA splicing by glucose. Proc Natl Acad Sci USA 1997;94:4360–4365.

    Article  PubMed  CAS  Google Scholar 

  51. Efrat S, Surana M, Fleischer N. Glucose induces insulin gene transcription in a murine pancreatic beta-cell line. J Biol Chem 1991;266:11141–11143.

    PubMed  CAS  Google Scholar 

  52. Leibiger B, Moede T, Schwarz T, et al. Short-term regulation of insulin gene transcription by glucose. Proc Natl Acad Sci USA 1998;95:9307–9312.

    Article  PubMed  CAS  Google Scholar 

  53. Goodison S, Kenna S, Ashcroft SJ. Control of insulin gene expression by glucose. Biochem J 1992;285:563–568.

    PubMed  CAS  Google Scholar 

  54. German MS, Wang J. The insulin gene contains multiple transcriptional elements that respond to glucose. Mol Cell Biol 1994;14:4067–4075.

    PubMed  CAS  Google Scholar 

  55. Sharma A, Stein R. Glucose-induced transcription of the insulin gene is mediated by factors required for beta-cell-type-specific expression. Mol Cell Biol 1994;14:871–879.

    PubMed  CAS  Google Scholar 

  56. Sander M, Griffen SC, Huang J, German MS. A novel glucose-responsive element in the human insulin gene functions uniquely in primary cultured islets. Proc Natl Acad Sci USA 1998;95:115–727.

    Article  Google Scholar 

  57. Sharma A, Fusco-DeMane D, Henderson E, Efrat S, Stein R. The role of the insulin control element and RIPE3b1 -activator in glucose-stimulated transcription of the insulin gene. Mol Endocrinol 1995;9:1468–1476.

    Article  PubMed  CAS  Google Scholar 

  58. Read ML, Masson MR, Docherty K. A RIPE3b1-like factor binds to a novel site in the human insulin promoter in a redox-dependent manner. FEBS Lett 1997;418:68–72.

    Article  PubMed  CAS  Google Scholar 

  59. Sadowski I, Ptashne M. A vector for expressing GAL4(1–147) fusions in mammalian cells. NucleicAcids Res 1989;17:7539.

    Article  CAS  Google Scholar 

  60. Lu M, Miller C, Habener JF. Functional regions of the homeodomain protein IDX-1 required for transactivation of the rat somatostatin gene. Endocrinology 1996;137:2959–2967.

    Article  PubMed  CAS  Google Scholar 

  61. Petersen HV, Peshavaria M, Pedersen AA, et al. Glucose stimulates the activation domain potential of the PDX-1 homeodomain transcription factor. FEBS Lett 1998;431:362–366.

    Article  PubMed  CAS  Google Scholar 

  62. Olson LK, Sharma A, Peshavaria M, et al. Reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to a supraphysiologic glucose concentration is associated with loss of STF1 transcription factor expression [published erratum appears in Proc Natl Acad Sci USA 1995 Nov 21;92(24):11322]. Proc Nail Acad Sci USA 1995;92:9127–9131.

    Article  CAS  Google Scholar 

  63. Sharma A, Olson LK, Robertson RP, Stein R. The reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to high glucose concentration is associated with the loss of RIPE3b1 and STF-1 transcription factor expression. Mol Endocrinol 1995;9:1127–1134.

    Article  PubMed  CAS  Google Scholar 

  64. Moran A, Zhang HJ, Olson LK, Harmon IS, Poitout V, Robertson RP. Differentiation of glucose toxicity from beta cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15. J Clin Invest 1997;99:534–539.

    Article  PubMed  CAS  Google Scholar 

  65. Poitout V, Olson LK, Robertson RP. Chronic exposure of betaTC-6 cells to supraphysiologic concentrations of glucose decreases binding of the RIPE3b1 insulin gene transcription activator. J Clin Invest 1996;97:1041–1046.

    Article  PubMed  CAS  Google Scholar 

  66. Lu M, Seufert J, Habener JF. Pancreatic beta-cell-specific repression of insulin gene transcription by CCAAT/enhancer-binding protein beta. Inhibitory interactions with basic helix-loop-helix transcription factor E47. J Biol Chem 1997;272:28349–28359.

    Article  PubMed  CAS  Google Scholar 

  67. Seufert J, Weir GC, Habener JF. Differential expression of the insulin gene transcriptional repressor CCAAT/enhancer-binding protein beta and transactivator islet duodenum homeobox-1 in rat pancreatic beta cells during the development of diabetes mellitus. J Clin Invest 1998;101:2528–2539.

    Article  PubMed  CAS  Google Scholar 

  68. Matsuoka T, Kajimoto Y, Watada H, et al. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest 1997;99:144–150.

    Article  PubMed  CAS  Google Scholar 

  69. Thorens B, Sarkar HK, Kaback HR, Lodish HF. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 1988;55:281–290.

    Article  PubMed  CAS  Google Scholar 

  70. Matschinsky FM. Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 1990;39:647–652.

    Article  PubMed  CAS  Google Scholar 

  71. Ferrer J, Gomis R, Fernandez Alvarez J, Casamitjana R, Vilardell E. Signals derived from glucose metabolism are required for glucose regulation of pancreatic islet GLUT2 mRNA and protein. Diabetes 1993;42:1273–1280.

    Article  PubMed  CAS  Google Scholar 

  72. Gasa R, Gomis R, Casamitjana R, Novials A. Signals related to glucose metabolism regulate islet amyloid polypeptide (IAPP) gene expression in human pancreatic islets. Regul Pept 1997;68:99–104.

    Article  PubMed  CAS  Google Scholar 

  73. Leibiger IB, Leibiger B, Moede T, Berggren PO. Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Mol Cell 1998;1:933–938.

    Article  PubMed  CAS  Google Scholar 

  74. Philippe J, Missotten M. Functional characterization of a cAMP-responsive element of the rat insulin I gene. J Biol Chem 1990;265:1465–1469.

    PubMed  CAS  Google Scholar 

  75. Oetjen E, Diedrich T, Eggers A, Eckert B, Knepel W. Distinct properties of the cAMP-responsive element of the rat insulin I gene. J Biol Chem 1994;269:27036–27044.

    PubMed  CAS  Google Scholar 

  76. Eggers A, Siemann G, Blume R, Knepel W. Gene-specific transcriptional activity of the insulin cAMP-responsive element is conferred by NF-Y in combination with cAMP response element-binding protein. J Biol Chem 1998;273:18499–18508.

    Article  PubMed  CAS  Google Scholar 

  77. Hill CS, Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 1995;80:199–211.

    Article  PubMed  CAS  Google Scholar 

  78. Karin M, Hunter T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 1995;5:747–757.

    Article  PubMed  CAS  Google Scholar 

  79. Jones PM, Persaud SJ. Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic beta-cells. Endocr Rev 1998;19:429–461.

    Article  PubMed  CAS  Google Scholar 

  80. Macfarlane WM, Smith SB, James RF, et al. The p38/reactivating kinase mitogen-activated protein kinase cascade mediates the activation of the transcription factor insulin upstream factor 1 and insulin gene transcription by high glucose in pancreatic beta-cells. J Biol Chem 1997;272:20936–20944.

    Article  PubMed  CAS  Google Scholar 

  81. Macfarlane WM, McKinnon CM, Felton-Edkins ZA, Cragg H, James RF, Docherty K. Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem 1999;274:1011–1016.

    Article  PubMed  CAS  Google Scholar 

  82. Rafiq I, Kennedy HJ, Rutter GA. Glucose-dependent translocation of insulin promoter factor-1 (IPF-1) between the nuclear periphery and the nucleoplasm of single MIN6 beta-cells. J Biol Chem 1998;273:23241–23247.

    Article  PubMed  CAS  Google Scholar 

  83. Herskowitz I. MAP kinase pathways in yeast: for mating and more. Cell 1995;80:187–197.

    Article  PubMed  CAS  Google Scholar 

  84. Cavigelli M, Dolfi F, Claret FX, Karin M. Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. Embo J 1995;14:5957–5964.

    PubMed  CAS  Google Scholar 

  85. Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ. Integration of MAP kinase signal transduction pathways at the serum response element. Science 1995;269:403–7.

    Article  PubMed  CAS  Google Scholar 

  86. Persaud SJ, Wheeler-Jones CP, Jones PM. The mitogen-activated protein kinase pathway in rat islets of Langerhans: studies on the regulation of insulin secretion. Biochem J 1996;313:119–124.

    PubMed  CAS  Google Scholar 

  87. Burns CJ, Howell SL, Jones PM, Persaud SJ. Glucose-stimulated insulin secretion from rat islets of Langerhans is independent of mitogen-activated protein kinase activation. Biochem Biophys Res Commun 1997;239:447–450.

    Article  PubMed  CAS  Google Scholar 

  88. Frodin M, Sekine N, Roche E, et al. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem 1995;270:7882–7889.

    Article  PubMed  CAS  Google Scholar 

  89. Khoo S, Cobb MH. Activation of mitogen-activating protein kinase by glucose is not required for insulin secretion. Proc Nall Acad Sci USA 1997;94:5599–604.

    Article  CAS  Google Scholar 

  90. Ben Shushan E, Cerasi E, Melloul D. Regulation of the insulin gene by glucose: Stimulation of transactivation potency of the human PDX-1 N-terminal domain. DNA Cell Biol 1999;18:471–479.

    Article  CAS  Google Scholar 

  91. Marshak S, Leibowitz G, Bertuzzi F, Socci C, Kaiser N, Gross J, Cerasi E, Melloul D. Impaired 13- Cell functions induced by chronic exposure of cultured human pancreatic islets to high glucose. Diabetes 1999;48(6).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Melloul, D. (2001). Glucose signalling to Transcription factors of the Insulin gene. In: Habener, J.F., Hussain, M.A. (eds) Molecular Basis of Pancreas Development and Function. Endocrine Updates, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1669-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1669-9_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5669-1

  • Online ISBN: 978-1-4615-1669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics