Skip to main content

Role of Mesenchymal-Epithelial Interactions in Pancreas Development

  • Chapter
  • First Online:
Molecular Basis of Pancreas Development and Function

Abstract

Mesenchyme is traditionally defined as a network of loosely organized mesodermal cells derived from the embryonic primitive streak with the potential to differentiate and give rise to structures such as connective tissue, blood and blood vessels, lymphatics, cartilage, muscle, bone, and stromal tissues of all glands. More recently, the mesenchyme has been found to play an increasingly sophisticated role in organogenesis through its interactions with other germ layers, specifically the endoderm. Mesenchymal-epithelial interactions have been shown to be important in the development of many organs including kidney, intestine, mammary, chick feathers, and salivary gland (1-5). The prepancreatic endoderm, originating in the duodenal anlage, requires its surrounding mesenchyme in order to differentiate into mature pancreas with acinar, ductal, and endocrine components (6-10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wallner EI, Yang Q, Peterson DR, Wada J, Kanwar YS. Relevance of extracellular matrix, its receptors, and cell adhesion molecules in mammalian nephrogenesis. Am J Physiol 1998;275:F467–477.

    PubMed  CAS  Google Scholar 

  2. Kedinger M, Duluc I, Fritsch C, Lorentz O, Plateroti M, Freund JN. Intestinal epithelialmesenchymal cell interactions. Ann NY Acad Sci 1998;859:1–17.

    Article  PubMed  CAS  Google Scholar 

  3. Cunha GR, Battle E, Young P, et al. Role of epithelial-mesenchymal interactions in the differentiation and spatial organization of visceral smooth muscle. Epithelial Cell Biol 1992;1:76–83.

    PubMed  CAS  Google Scholar 

  4. Mizuno T, Yasugi S. Susceptibility of epithelia to directive influences of mesenchymes during organogenesis: uncoupling of morphogenesis and cytodifferentiation. Cell Differ Dev 1990;31:151–159.

    Article  PubMed  CAS  Google Scholar 

  5. Cutler LS, Gremski W. Epithelial-mesenchymal interactions in the development of salivary glands. Crit Rev Oral Biol Med 1991;2:1–12.

    PubMed  CAS  Google Scholar 

  6. Golosow N, Grobstein C. Epitheliomesenchymal Interaction in Pancreatic Morphogenesis. Dev Biol 1962;4:242–255.

    Article  PubMed  CAS  Google Scholar 

  7. Rutter WJ, Wessells NK, Grobstein C. Control of specific synthesis 1964;13:51–65.

    CAS  Google Scholar 

  8. Fell PE, Grobstein C. The influence of extra-epithelial factors on the growth of embryonic mouse pancreatic epithelium. Exp Cell Res 1968;53:301–304.

    Article  PubMed  CAS  Google Scholar 

  9. Kallman F, Grobstein C. Fine structure of differentiating mouse pancreatic exocrine cells in transfilter culture. J Cell B 1964;20:399–413.

    Article  CAS  Google Scholar 

  10. Wessells N, Cohen J. Early Pancreatic Organogenesis: Morphogenesis, Tissue Interactions, and Mass Effects. Dev Biol 1966;15:237–270.

    Article  Google Scholar 

  11. Spooner BS, Cohen HI, Faubion J. Development of the embryonic mammalian pancreas: the relationship between morphogenesis and cytodifferentiation. Dev Biol 1977;61:119–130.

    Article  PubMed  CAS  Google Scholar 

  12. Ronzio RA, Rutter WJ. Effects of a partially purified factor from chick embryos on macromolecular synthesis of embryonic pancreatic epithelia. Dev Biol 1973;30:307–320.

    Article  PubMed  CAS  Google Scholar 

  13. Rutter WJ, Pictet RL, Harding JD, Chirgwin JM, MacDonald RJ, Przybyla AE. An analysis of pancreatic development: role of mesenchymal factor and other extracellular factors. Symp Soc Dev Biol 1978;35:205–227.

    PubMed  Google Scholar 

  14. Grobstein C, Cohen J. Collagenase: effect on the morphogenesis of embryonic salivary epithelium in vitro. Science 1965;150:626–628.

    Article  PubMed  CAS  Google Scholar 

  15. Levine S, Pictet R, Rutter WJ. Control of cell proliferation and cytodifferentiation by a factor reacting with the cell surface. Nature New Biology 1973;246:49–52.

    PubMed  CAS  Google Scholar 

  16. Pictet R, Rall L, de Gasparo M, Rutter WJ. Regulation of Differentiation of Endocrine Cells during Pancreatic Development In Vitro. In: Camerini-Davalos RA, Cole HS, eds. Early Diabetes in Early Life. New York: Academic Press, 1975:25–39.

    Google Scholar 

  17. Miralles F, Czernichow P, Scharfmann R. Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 1998;125:1017–1024.

    PubMed  CAS  Google Scholar 

  18. Gittes GK, Galante PE, Hanahan D, Rutter WJ, Debase HT. Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development 1996;122:439–447.

    PubMed  CAS  Google Scholar 

  19. Rose M, Crisera C, Colen K, Longaker M, Gittes G. Epithelio-mesenchymal interactions in the developing pancreas: morphogenesis of the adult architecture. Journal of Pediatric Surgery 1999:(in press).

    Google Scholar 

  20. Edlund H. Transcribing pancreas. Diabetes 1998;47:1817–1823.

    Article  PubMed  CAS  Google Scholar 

  21. Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 1997;385:257–260.

    Article  PubMed  CAS  Google Scholar 

  22. Ahlgren U, Jonsson J, Edlund H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX 1-deficient mice. Development 1996;122:1409–1416.

    PubMed  CAS  Google Scholar 

  23. Offield MF, Jetton TL, Labosky PA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 1996;122:983–995.

    PubMed  CAS  Google Scholar 

  24. Krapp A, Knofler M, Frutiger S, Hughes GJ, Hagenbuchle O, Wellauer PK. The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein. Embo J 1996;15:4317–4329.

    PubMed  CAS  Google Scholar 

  25. Krapp A, Knofler M, Ledermann B, et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 1998;12:3752–3763.

    Article  PubMed  CAS  Google Scholar 

  26. Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 1995;172:126–138.

    Article  PubMed  CAS  Google Scholar 

  27. Apelqvist A, Ahlgren U, Edlund H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas [published erratum appears in Curr Biol 1997 Dec 1;7(12):R809]. Curr Biol 1997; 7:801–804.

    CAS  Google Scholar 

  28. Kim SK, Hebrok M, Melton DA. Notochord to endoderm signaling is required for pancreas development. Development 1997;124:4243–4252.

    PubMed  CAS  Google Scholar 

  29. Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev 1998;12:1705–1713.

    Article  PubMed  CAS  Google Scholar 

  30. Ritvos O, Tuuri T, Eramaa M, et al. Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev 1995;50:229–245.

    Article  PubMed  CAS  Google Scholar 

  31. Yamaoka T, Idehara C, Yano M, et al. Hypoplasia of pancreatic islets in transgenic mice expressing activin receptor mutants. J Clin Invest 1998;102:294–301.

    Article  PubMed  CAS  Google Scholar 

  32. Furukawa M, Eto Y, Kojima I. Expression of immunoreactive activin A in fetal rat pancreas. Endocr J 1995;42:63–68.

    Article  PubMed  CAS  Google Scholar 

  33. Schneyer AL, Rzucidlo DA, Sluss PM, Crowley WF, Jr. Characterization of unique binding kinetics of follistatin and activin or inhibin in serum. Endocrinology 1994;135:667–674.

    Article  PubMed  CAS  Google Scholar 

  34. Matzuk MM, Lu N, Hannes V, Sellheryer K, Roop DR, Bradley A. Multiple defects and perinatal death in mice deficient in follistatin. Nature 1995;374:360–363.

    Article  PubMed  CAS  Google Scholar 

  35. Furukawa M, Nobusawa R, Shibata H, Eto Y, Kojima I. Initiation of insulin secretion in glucose-free medium by activin A. Mol Cel Endocrinol 1995;113:83–87.

    Article  CAS  Google Scholar 

  36. Ogawa K, Abe K, Kurosawa N, et al. Expression of alpha, beta A and beta B subunits of inhibin or activin and follistatin in rat pancreatic islets. FEBS Lett 1993;319:217–220.

    Article  PubMed  CAS  Google Scholar 

  37. Stoker M, Gherardi E, Perryman M, Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 1987;327:239–242.

    Article  PubMed  CAS  Google Scholar 

  38. Nakamura T, Teramoto H, Ichihara A. Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci USA 1986;83:6489–6493.

    Article  PubMed  CAS  Google Scholar 

  39. Tsarfaty I, Resau JH, Rulong S, Keydar I, Faletto DL, Vande Woude GF. The met proto-oncogene receptor and lumen formation. Science 1992;257:1258–1261.

    Article  PubMed  CAS  Google Scholar 

  40. Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 1991;67:901–908.

    Article  PubMed  CAS  Google Scholar 

  41. Kermorgant S, Walker F, Honni K, Dessiner V, Lewin MJ, Lehy T. Developmental expression and functionality of hepatocyte growth factor and c-Met in human fetal digestive tissues. Gastroenterology 1997;112:1635–1647.

    Article  PubMed  CAS  Google Scholar 

  42. Sonnenberg E, Meyer D, Weidner KM, Birchmeier C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 1993;123:223–235.

    Article  PubMed  CAS  Google Scholar 

  43. Rubin JS, Chan AM, Bottaro DP, et al. A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor. Proc Natl Acad Sci USA 1991;88:415–419.

    Article  PubMed  CAS  Google Scholar 

  44. Noji S, Tashiro K, Koyama E, et al. Expression of hepatocyte growth factor gene in endothelial and Kupffer cells of damaged rat livers, as revealed by in situ hybridization. Biochem Biophys Res Commun 1990;173:42–47.

    Article  PubMed  CAS  Google Scholar 

  45. Schirmacher P, Geerts A, Pietrangelo A, Dienes HP, Rogler CE. Hepatocyte growth factor/hepatopoietin A is expressed in fat-storing cells from rat liver but not myofibroblast-like cells derived from fat-storing cells. Hepatology 1992;15:5–11.

    Article  PubMed  CAS  Google Scholar 

  46. Zarnegar R, Muga S, Rahija R, Michalopoulos G. Tissue distribution of hepatopoietin-A: a heparin-binding polypeptide growth factor for hepatocytes. Proc Natl Acad Sci USA 1990;87:1252–1256.

    Article  PubMed  CAS  Google Scholar 

  47. Wang Y, Selden C, Famaud S, Calnan D, Hodgson HJ. Hepatocyte growth factor (HGF/SF) is expressed in human epithelial cells during embryonic development; studies by in situ hybridisation and northern blot analysis. J Anat 1994;185:543–551.

    PubMed  CAS  Google Scholar 

  48. Wolf HK, Zarnegar R, Michalopoulos GK. Localization of hepatocyte growth factor in human and rat tissues: an immunohistochemical study. Hepatology 1991;14:488–494.

    Article  PubMed  CAS  Google Scholar 

  49. Defrances MC, Wolf HK, Michalopoulos GK, Zarnegar R. The presence of hepatocyte growth factor in the developing rat. Development 1992;116:387–395.

    PubMed  CAS  Google Scholar 

  50. Tsuda H, Iwase T, Matsumoto K, et al. Immunohistochemical localization of hepatocyte growth factor protein in pancreas islet A-cells of man and rats. Jpn J Cancer Res 1992;83:1262–1266.

    Article  PubMed  CAS  Google Scholar 

  51. Otonkoski T, Beattie GM, Rubin JS, Lopez AD, Baird A, Hayek A. Hepatocyte growth factor/scatter factor has insulinotropic activity in human fetal pancreatic cells. Diabetes 1994;43:947–953.

    Article  PubMed  CAS  Google Scholar 

  52. Otonkoski T, Cirulli V, Beattie M, et al. A role for hepatocyte growth factor/scatter factor in fetal mesenchyme-induced pancreatic beta-cell growth. Endocrinology 1996;137:3131–3139.

    Article  PubMed  CAS  Google Scholar 

  53. Mashima H, Shibata H, Mine T, Kojima I. Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology 1996;137:3969–3976.

    Article  PubMed  CAS  Google Scholar 

  54. Jeffers M, Rao MS, Rulong S, et al. Hepatocyte growth factor/scatter factor-Met signaling induces proliferation, migration, and morphogenesis of pancreatic oval cells. Cell Growth Differ 1996;7:1805–1813.

    PubMed  CAS  Google Scholar 

  55. Vila MR, Nakamura T, Real FX. Hepatocyte growth factor is a potent mitogen for normal pancreas cells in vivo. Lab Invest 1995;73:409–418.

    PubMed  CAS  Google Scholar 

  56. Di Renzo MF, Poulsom R, Olivero M, Comoglio PM, Lemoine NR. Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 1995; 55:1129–1138.

    PubMed  Google Scholar 

  57. Calvo EL, Boucher C, Pelletier G, Morisset J. Ontogeny of hepatocyte growth factor and c-met/hgf receptor in rat pancreas. Biochem Biophys Res Commun 1996;229:257–263.

    Article  PubMed  CAS  Google Scholar 

  58. Parsa I, Marsh WH, Fitzgerald PJ. Pancreas acinar cell differentiation. II. Comparative DNA and protein synthesis of the embryonic rat pancreas and the pancreatic anlage grown in organ culture. Am J Pathol 1969;57:489–521.

    PubMed  CAS  Google Scholar 

  59. Parsa I, Marsh WH, Fitzgerald Pi. Pancreas acinar cell differentiation. I. Morphologic and enzymatic comparisons of embryonic rat pancreas anlage grown in organ culture. Am J Pathol 1969;57:457–487.

    PubMed  CAS  Google Scholar 

  60. Kleinman HK, McGarvey ML, Hassell JR, et al. Basement membrane complexes with biological activity. Biochemistry 1986;25:312–318.

    Article  PubMed  CAS  Google Scholar 

  61. Aumailley M, Smyth N. The role of laminins in basement membrane function. J Anat 1998;193(Pí. 1):1–21.

    Article  PubMed  CAS  Google Scholar 

  62. Klein G. Role of laminin A chain in the development of epithelial cell polarity. Cell 1988;55:331–341.

    Article  PubMed  CAS  Google Scholar 

  63. Schuger L, O’Shea S, Rheinheimer J, Varani J. Laminin in lung development: effects of anti-laminin antibody in murine lung morphogenesis. Dev Biol 1990;137:26–32.

    Article  PubMed  CAS  Google Scholar 

  64. Kadoya Y. Antibodies against domain E3 of laminin-1 and integrin alpha 6 subunit perturb branching epithelial morphogenesis of submandibular gland, but by different modes. J Cell Biol 1995;129(2):521–534.

    Article  PubMed  CAS  Google Scholar 

  65. Kleinman HK, Cannon FB, Laurie GW, et al. Biological activities of laminin. J Cell Biochem 1985;27:317–325.

    Article  PubMed  CAS  Google Scholar 

  66. Durbeej M, Ekblom P. Dystroglycan and laminins: glycoconjugates involved in branching epithelial morphogenesis. Exp Lung Res 1997;23:109–118.

    Article  PubMed  CAS  Google Scholar 

  67. Ekblom M, Falk M, Salmivirta K, Durbeej M, Ekblom P. Laminin isoforms and epithelial development. Ann N Y Acad Sci 1998;857:194–211.

    Article  PubMed  CAS  Google Scholar 

  68. Aumailley M, Timpl R, Sonnenberg A. Antibody to integrin alpha 6 subunit specifically inhibits cell-binding to laminin fragment 8. Exp Cell Res 1990;188:55–60.

    Article  PubMed  CAS  Google Scholar 

  69. Henry M, Campbell K. A role for dystroglycan in basement membrane assembly. Cell 1988;95:859–870.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maldonado, T.S., Crisera, C.A., Kadison, A.S., Longaker, M.T., Gittes, G.K. (2001). Role of Mesenchymal-Epithelial Interactions in Pancreas Development. In: Habener, J.F., Hussain, M.A. (eds) Molecular Basis of Pancreas Development and Function. Endocrine Updates, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1669-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1669-9_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5669-1

  • Online ISBN: 978-1-4615-1669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics