Skip to main content

Assembly and Secretion of the Lipid Globules of Milk

  • Chapter
Bioactive Components of Human Milk

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 501))

Abstract

While the structure, biosynthesis, processing, and nutritional characteristics of milk lipids have been studied extensively, remarkably little is known about the intracellular formation of triacylglycerol-rich droplets destined to be secreted as milk lipid globules. That lipid droplets are secreted from cells by progressive envelopment in plasma membrane has been recognized since the pioneering electron microscope study of Bargmann and Knoop (1959); but what molecules and forces are involved in this secretory process remains a matter of speculation. That there has been little study of the lipid globule secretion mechanism is surprising for a number of reasons: This secretion mechanism involves large losses of differentiated regions of plasma membrane from the cell; this membrane can be obtained readily for study; the cells must have an efficient mechanism for replenishment of the secreted plasma membrane. This lipid secretory mechanism may be unique to mammary epithelial cells, as this pathway has not been described for any other cell type. There are striking parallels between lipid droplet secretion and the release of enveloped viruses from cells(reviews, Patton & Keenan 1975; Mather & Keenan 1983; Keenan et al. 1988). Of the several reasons that can explain this lack of study, two emerge as primary. One is that many of the agencies providing support for studies of milk have had ultimate commercial utilization as their overriding interest. Fundamental biological questions regarding the origin of milk lipid globules have not been within this sphere of interest. Second.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aggeler J, Ward J, Blackie LM, Barcellos-Hoff MH, Streuli CH, Bissell MJ. Cytodifferentiation of mouse mammary epithelial cells cultured on a reconstituted basement membrane reveals striking similarities to development in vivo. J Cell Sci 1992;99:407–417.

    Google Scholar 

  • Almahbobi G, Hall PF. The role of intermediate filaments in adrenal steroidogenesis. J Cell Sci 1990;97: 679–687.

    PubMed  Google Scholar 

  • Amato PA, Loizzi RF. The effects of cytochalasin B on glucose transport and lactose synthesis in lactating mammary gland slices. Eur J Cell Biol 1979;20:150–155.

    PubMed  CAS  Google Scholar 

  • Amato PA, Loizzi RE The identification and localization of actin and actin-like filaments in lactating guinea pig mammary gland alveolar cells. Cell Motility 1981;1:329–347.

    Article  PubMed  CAS  Google Scholar 

  • Amaya Y, Yamazaki K, Sato M, Noda K, Nishino T. Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the 02-dependent type. J Biol Chem 1990;265;14170–14175.

    PubMed  CAS  Google Scholar 

  • Asch HL, Mayhew E, Lazo RO, Asch BB. Lipids noncovalently associated with keratins and other cytoskeletal proteins of mouse mammary epithelial cells in primary culture. Biochim Biophys Acta 1990;1034:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Bargmann W, Knoop A. öber die morphologie der milchsekretion. Licht-and electronenmikroskopische studien an der milchdruse der ratte. Z Zellforsch 1959;49:344–388.

    Article  PubMed  CAS  Google Scholar 

  • Berglund L, Rasmussen JT, Andersen MD, Rasmussen MS, Petersen TE. Purification of the bovine oxidoreductase from milk fat globule membranes and cloning of complementary deoxyribonucleic acid. J Dairy Sci 1996;79:198–204.

    Article  PubMed  CAS  Google Scholar 

  • Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 1994;79:679–694.

    Article  PubMed  CAS  Google Scholar 

  • Cooper SM, Grigor MR. Fatty acid specificities of microsomal acyltransferases esterifying positions 1&2 of acylglycerols in mammary glands from lactating rats. Biochem J 1980;187:289–295.

    PubMed  CAS  Google Scholar 

  • Daudet F, Augeron C, Ollivier-Bousquet M. Early action of colchicine, ammonium chloride and prolactin on secretion of milk lipids in the lactating mammary gland. Eur J Cell Biol 1981;24:197–202.

    PubMed  CAS  Google Scholar 

  • Deeney JT, Valivullah HM, Dapper CH, Dylewski DP, Keenan TW. Microlipid droplets in milk secreting mammary epithelial cells: evidence that they originate from endoplasmic reticulum and are precursors of milk lipid globules. Eur J Cell Biol 1985;38:16–26.

    PubMed  CAS  Google Scholar 

  • Dylewski DP, Dapper CH, Valivullah HM, Deeney JT, Keenan TW. Morphological and biochemical characterization of possible intracellular precursors of milk lipid globules. Eur J Cell Biol 1984a;35: 99–111.

    CAS  Google Scholar 

  • Dylewski DP, Haralick RM, Keenan TW. Three dimensional ultrastructure of the Golgi apparatus in bovine mammary epithelial cells during lactation. J Ultrastruct Res 1984b;87:75–85.

    Article  CAS  Google Scholar 

  • Franke WW, LAder MR, Kartenbeck J, Zerban H, Keenan TW. Involvement of vesicle coat material in casein secretion and surface regeneration. J Cell Biol 1976;69:173–195.

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Schmidt E, Freudenstein C, Appelhans B, Osborn M, Weber K, Keenan TW. Intermediate sized filaments of the prekeratin type in myoepithelial cells. J Cell Biol 1980;84:633–654.

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Heid HW, Grund C, Winter S, Freudenstein C, Schmid E, Jarasch E-D, Keenan TW. Antibodies to the major insoluble milk fat globule membrane associated protein: Specific location in apical regions of lactating epithelial cells. J Cell Biol 1981;89:485–494.

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Hergt M, Grund C. Rearrangement of the vimentin cytoskeleton during adipose conversion: Formation of an intermediate filament cage around lipid globules. Cell 1987;49:131–141.

    CAS  Google Scholar 

  • Freudenstein C, Keenan TW, Eigel WN, Sasaki M, Stadler J, Franke WW. Preparation and characteriza-tion of the inner coat material associated with fat globule membranes from bovine and human milk. Exp Cell Res 1979;118:277–294.

    Article  PubMed  CAS  Google Scholar 

  • Ghosal D, Ankrapp D, Keenan TW. Low molecular mass GTP-binding proteins are secreted from mammary epithelial cells in association with lipid globules. Biochim Biophys Acta 1993;1168:299306.

    Google Scholar 

  • Ghosal D, Shappell NW, Keenan TW. Endoplasmic reticulum lumenal proteins of rat mammary gland. Potential involvement in lipid droplet assembly during lactation. Biochim Biophys Acta 1994; 1200:175–181.

    Article  PubMed  CAS  Google Scholar 

  • Guerin MA, Loizzi RF. Tubulin content and assembly states during pregnancy and lactation. Proc Soc Exp Biol Med 1980;165:50–54.

    PubMed  CAS  Google Scholar 

  • Heid HW, Schnolzer M, Keenan TW. Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem J 1996;320:1025–1030.

    PubMed  CAS  Google Scholar 

  • Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 1998;294:309–321.

    Article  PubMed  CAS  Google Scholar 

  • Henderson AJ, Peaker M. The effects of colchicine on milk secretion, mammary metabolism and blood flow in the goat. Quart J Exp Physiol 1980;65:367–378.

    PubMed  CAS  Google Scholar 

  • Huston GE, Patton S. Factors related to the formation of cytoplasmic crescents on milk fat globules. J Dairy Sci 1990;73:2061–2066.

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Aoki N, Noda A, Adachi T, Nakamura R, Matsuda T. Carboxy-terminal cytoplasmic domain of mouse butyrophilin specifically associates with a 150-kDa protein of mammary epithelial cells and milk fat globule membrane. Biochim Biophys Acta 1995;1245:285–292.

    Article  PubMed  Google Scholar 

  • Jack LWJ, Mather IH. Cloning and analysis of cDNA encoding bovine butyrophilin, an apical glycoprotein expressed in mammary tissue and secreted in association with the milk fat globule membrane during lactation. J Biol Chem 1990;265:14482–14486.

    Google Scholar 

  • Janssen MMT, Walstra P. Cytoplasmic remnants in milk of certain species. Neth Milk Dairy J 1982; 36:365–368.

    Google Scholar 

  • Jarasch E-D, Grund C, Bruder G, Heid HW, Keenan, TW, Franke WW. Localization of xanthine oxidase in mammary gland epithelium and capillary endothelium. Cell 1981;25:67–82.

    Article  PubMed  CAS  Google Scholar 

  • Jiang H-P, Serrero G. Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein. Proc Natl Acad Sci USA 1992;89:7856–7860.

    Article  PubMed  CAS  Google Scholar 

  • Keenan TW. Composition and synthesis of gangliosides in mammary gland and milk of the bovine. Biochim Biophys Acta 1974;337:255–270.

    Article  PubMed  CAS  Google Scholar 

  • Keenan TW, Dylewski DP. Intracellular origin of milk lipid globules and the nature and structure of the milk lipid globule membrane. In: Fox PF, editor. Advanced Dairy Chemistry. Volume 2, Lipids. London: Chapman & Hall; 1994. p 89–130.

    Google Scholar 

  • Keenan TW, Franke WW, Mather IH, Morré DJ. Endomembrane composition and function in milk formation. In: Larson BL, editor. The Mammary Gland/Human Lactation/Milk Synthesis. New York: Academic Press; 1978. p 405–436.

    Google Scholar 

  • Keenan TW, Mather IH, Dylewski DP. Physical equilibria: lipid phase. In: Wong NP, Jenness R, Keeney M, Marth EH, editors. Fundamentals of Dairy Chemistry. 3rded. New York: Van Nostrand Reinhold; 1988. p 511–582.

    Chapter  Google Scholar 

  • Keenan TW, Dylewski DP, Ghosal D, Keon BH. Milk lipid globule precursor release from endoplasmic reticulum reconstituted in a cell-free system. Eur J Cell Biol 1992;57:21–29.

    PubMed  CAS  Google Scholar 

  • Keon BH, Ankrapp DP, Keenan TW. Cytosolic lipoprotein particles from milk secreting cells contain fatty acid synthase and interact with endoplasmic reticulum. Biochim Biophys Acta 1994;1215:327–336.

    Google Scholar 

  • Knudson CM, Stemberger BH, Patton S. Effects of colchicine on ultrastructure of the lactating mammary cell: membrane involvement and stress on the Golgi apparatus. Cell Tissue Res 1978;195:169–181.

    Google Scholar 

  • Mather IH, Keenan TW. Function of endomembranes and the cell surface in the secretion of organic milk constituents. In: Mepham TB, editor. Biochemistry of Lactation. Amsterdam: Elsevier; 1983. p 231–283.

    Google Scholar 

  • Nickerson SC, Keenan TW. Distribution and orientation of microtubules in milk secreting epithelial cells of rat mammary gland. Cell Tissue Res 1979;202:303–312.

    Article  PubMed  CAS  Google Scholar 

  • Nickerson SC, Smith JJ, Keenan TW. Ultrastructural and biochemical response of rat mammary epithelial cells to vinblastine sulfate. Eur J Cell Biol 1980;23:115–121.

    PubMed  CAS  Google Scholar 

  • Niera LM, Mather IH. Biochemical and immunological comparison of bovine butyrophilin with a butyrophilin-like glycoprotein in guinea pig milk fat globule membrane. Evidence that the guinea pig protein is developmentally regulated and specifically expressed in lactating mammary tissue. Protoplasma 1990;159:168–178.

    Article  Google Scholar 

  • Nowack DD, Morré DM, Paulik M, Keenan TW, Morré DJ. Intracellular membrane flow: reconstitution of transition vesicle formation and function in a cell-free system. Proc Natl Acad Sci USA 1987;84: 6098–6102.

    Article  PubMed  CAS  Google Scholar 

  • Patton S. Origin of the milk fat globule. J Am Oil Chem Soc 1973; 50:178–185.

    Article  PubMed  CAS  Google Scholar 

  • Patton S. Reversible suppression of lactation by colchicine. FEBS Lett 1974;48:85–87.

    Article  PubMed  CAS  Google Scholar 

  • Patton S, Huston GE. Incidence and characteristics of cell pieces on human milk fat globules. Biochim Biophys Acta 1988;965:146–153.

    Article  PubMed  CAS  Google Scholar 

  • Patton S, Keenan TW. The milk fat globule membrane. Biochim Biophys Acta 1975;415:273–309.

    Article  PubMed  CAS  Google Scholar 

  • Patton S, Stemberger BH, Knudson CM. The suppression of milk fat globule secretion by colchicine: an effect coupled to inhibition of exocytosis. Biochim Biophys Acta 1977;499:404–410.

    Article  PubMed  CAS  Google Scholar 

  • Peixoto de Menezes A, Pinto da Silva P. Fat droplet formation in lactating rat mammary gland and rat carcinomas viewed by freeze-fracture. Lab Invest 1979;40:545–553.

    PubMed  CAS  Google Scholar 

  • Rohlfs EM, Louie DS, Zeisel SH. Lipid synthesis and secretion by primary cultures of rat mammary epithelial cells. J Cell Physiol 1993;157:469–480.

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE, Wieland, FT. Protein sorting by transport vesicles. Science 1996;272:227–234. Schekman R, Orci L. Coat proteins and vesicle budding. Science 1996;271:1526–1533.

    Article  Google Scholar 

  • Scow RO, Blanchette-Mackie EJ, Smith LC. Transport of lipid across capillary endothelium. Fed Proc 1980;39:2610–2617.

    PubMed  CAS  Google Scholar 

  • Smith JJ, Nickerson SC, Keenan TW. Metabolic energy and cytoskeletal requirements for synthesis and secretion from rat mammary gland. Int J Biochem 1982;14:87–109.

    Article  PubMed  CAS  Google Scholar 

  • Spitsberg VL, Gorewit RC. In vitro phosphorylated bovine milk fat globule membrane proteins. J Nutr Biochem 1997;8:181–189.

    Article  CAS  Google Scholar 

  • Stein O, Stein Y. Lipid synthesis, intracellular transport and secretion. II. Electron microscopic autoradi-ographic study of the mouse lactating mammary gland. J Cell Biol 1967;34:251–263.

    Article  PubMed  CAS  Google Scholar 

  • Stemberger BH, Patton S. Relationship of size, intracellular location, and time required for secretion of milk fat droplets. J Dairy Sci 1981;64:422–426.

    Article  Google Scholar 

  • Taylor MR, Peterson JA, Ceriani RL, Couto JR. Cloning and sequence analysis of human butyrophilin reveals a potential receptor function. Biochim Biophys Acta 1996;1306:1–4.

    Article  PubMed  Google Scholar 

  • Valivullah HM, Dylewski DP, Keenan TW. Distribution of terminal transferases of acylglycerol synthesis in cell fractions from lactating mammary gland. Int J Biochem 1986;18:799–806.

    Article  PubMed  CAS  Google Scholar 

  • Valivullah HM, Bevan DR, Peat A, Keenan TW. Milk lipid globules: Control of their size distribution. Proc Natl Acad Sci USA 1988; 85:8775–8779.

    Article  PubMed  CAS  Google Scholar 

  • Wetterau JR, Combs KA, McLean LR, Spinner SN, Aggerbeck LP. Protein disulfide isomerase appears necessary to maintain the catalytically active structure of microsomal triglyceride transfer protein. Biochemistry 1991;30:9728–9735.

    Article  PubMed  CAS  Google Scholar 

  • Wetterau JR, Aggerbeck LP, Bouma ME, Eisenberg C, Munck A, Hermier M, Schmitz J, Gay G, Rader DJ, Gregg RE. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 1992;258:999–1001.

    Article  PubMed  CAS  Google Scholar 

  • Wooding FBP. The mechanism of secretion of the milk fat globule. J Cell Sci 1971;9:805–821.

    PubMed  CAS  Google Scholar 

  • Wooding FBP. Comparative mammary fine structure. In: Peaker M, editor. Comparative Aspects of Lactation. New York: Academic Press; 1977. p 1–41.

    Google Scholar 

  • Wooding FBP, Peaker M, Linzell JL. Theories of milk secretion: evidence from the electron microscopic examination of milk. Nature 1970;226:762–764.

    Article  PubMed  CAS  Google Scholar 

  • Zaczek M, Keenan TW. Morphological evidence for an endoplasmic reticulum origin of milk lipid globules obtained using lipid-selective staining procedures. Protoplasma 1990;159:179–182.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keenan, T.W. (2001). Assembly and Secretion of the Lipid Globules of Milk. In: Newburg, D.S. (eds) Bioactive Components of Human Milk. Advances in Experimental Medicine and Biology, vol 501. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1371-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1371-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5521-2

  • Online ISBN: 978-1-4615-1371-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics