Skip to main content

Suprachiasmatic Nucleus

  • Chapter
Circadian Clocks

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

Abstract

The suprachiasmatic nucleus (SCN) is a prominent feature of the anterior hypothalamus. In virtually all mammals, the SCN is a compact group of small neurons dorsal to the optic chiasm along most of its length and just lateral to the periventricular nucleus and third ventricle (Figure 1). The SCN was recognized in early cytoarchitectonic studies (Brockhaus, 1942; Gurdjian, 1927), but its function remained obscure until the early 1970s. Perhaps the first hint was a report by Pate (1937), who observed what must be considered transneuronal atrophy of the SCN after eye removal in the cat. The issue of retinohypothalamic projections in mammals was contentious in that era and the great neuroanatomist W. J. H. Nauta concluded in the late 1960s that there were no compelling data to support such a projection. This conclusion, however, was contrary to the situation in lower vertebrates, where a projection from the retina to the suprachiasmatic area was well established (Ebbeson, 1970). As often happens, new technical advances provided the basis for new understanding. The discovery of anterograde transport by Weiss and colleagues (Weiss, 1972) was dependent upon the fact that tritiated amino acids are incorporated into proteins in neuronal perikarya and then transported through axons to sites of terminal arbors. This phenomenon formed the basis for an axoplasmic tracing method to analyze connections in brain (Cowan, Gottlieb, Hendrickson, Price, & Woolsey, 1972) and this was applied to the study of retinal projections, providing new evidence for a retinohypothalamic tract in mammals (Hendrickson, Wagoner, & Cowan, 1972; Moore, 1973; Moore & Lenn, 1972). In these studies, silver grains were found distributed over the ventral SCN, strongly suggesting that terminals of retinal axons were present in that location. This was confirmed by the electron microscopic finding of degenerating axon terminals synapsing on SCN neuron dendrites after eye removal (Moore & Lenn, 1972). These data, then, provided definitive evidence for a retinohypothalamic tract terminating in the SCN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abe, H., & Rusak, B. (1994). Physiological mechanisms regulating photic induction of Fos-like protein in hamster suprachiasmatic nucleus. Neuroscience and Biobehavioral Reviews, 18, 531–536.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J., & Bayer, S. A. (1978). Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. Journal of Comparative Neurology, 182, 945–971.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J., & Bayer, S. A. (1986). The development of the rat hypothalamus. Advances in Anatomy, Embryology, and Cell Biology, 100, 1–178.

    Article  CAS  Google Scholar 

  • Arendash, G. W., & Gallo, R. V. (1979). Effect of lesions in the suprachiasmatic nucleus—retrochiasmatic area on the inhibition of pulsatile LH release induced by electrical stimulation of the midbrain dorsal raphe nucleus. Neuroendocrinology, 28, 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Arendt, J. (1998). Complex effects of melatonin. Therapie, 53, 479–488.

    PubMed  CAS  Google Scholar 

  • Berk, M. L., & Finkelstein, J. A. (1981). An autoradiographic determination of the efferent projections of the suprachiasmatic nucleus of the hypothalamus. Brain Research, 226(1–2), 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Brockhaus, H. (1942). Beitrag zur normalen anatomie des hypothalamus and der zona incerta beim menschen. Journal für Psychologie und Neurologie, 51, 96–196.

    Google Scholar 

  • Brown-Grant, K, & Raisman, G. (1977). Abnormalities in reproductive function associated with the destruction of the suprachiasmatic nuclei in female rats. Proceedings of the Royal Society of London Series B. Biological Sciences, 198, 279–296.

    PubMed  CAS  Google Scholar 

  • Buijs, R. M., Markman, M., Nunes-Cardoso, B., Hou, Y. X., & Shinn, S. (1993). Projections of the suprachiasmatic nucleus to stress-related areas in the rat hypothalamus: A light and electron microscopic study. Journal of Comparative Neurology, 335, 42–54.

    Article  PubMed  CAS  Google Scholar 

  • Buijs, R. M., Hou, Y. X., Shinn, S., & Renaud, L. P. (1994). Ultrastructural evidence for intra-and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus. Journal of Comparative Neurology, 340, 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Buijs, R. M., Wortel, J., & Hou, Y. X. (1995). Colocalization of gamma-aminobutyric acid with vasopressin, vasoactive intestinal peptide, and somatostatin in the rat suprachiasmatic nucleus. Journal of Comparative Neurology, 358, 343–352.

    Article  PubMed  CAS  Google Scholar 

  • Buijs, R. M., Wortel, J., Van Heerikhuize, J. J., & Kalsbeek, A. (1997). Novel environment induced inhibition of corticosterone secretion: Physiological evidence for a suprachiasmatic nucleus mediated neuronal hypothalamo-adrenal cortex pathway. Brain Research, 758, 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Buijs, R. M., Wortel, J., Van Heerikhuize, J. J., Feenstra, M. G., Ter Horst, G. J., Romijn, H. J., & Kalsbeek, A. (1999). Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. European Journal of Neuroscience, 11, 1535–1544.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, R. L., Collins, W. E., & Fugo, N. W. (1974). Plasma concentration of LH, FSH, prolactin, progesterone and estradio1–17beta throughout the 4-day estrous cycle of the rat. Endocrinology, 94, 1704–1708.

    Article  PubMed  CAS  Google Scholar 

  • Cagnacci, A. (1997). Influences of melatonin on human circadian rhythms. Chronobiology International, 14(2), 205–220.

    Article  PubMed  CAS  Google Scholar 

  • Cagnacci, A., Krauchi, K, Wirz-Justice, A., & Volpe, A. (1997). Homeostatic versus circadian effects of melatonin on core body temperature in humans. Journal of Biological Rhythms, 12, 509–517.

    Article  PubMed  CAS  Google Scholar 

  • Caligaris, L., Astrada, J. J., & Taleisnik, S. (1971). Biphasic effect of progesterone on the release of gonadotropin in rats. Endocrinology, 89, 331–337.

    Article  PubMed  CAS  Google Scholar 

  • Card, J. P., & Moore, R. Y. (1982). Ventral lateral geniculate nucleus efferents to the rat suprachiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity. Journal of Comparative Neurology, 206, 390–396.

    Article  PubMed  CAS  Google Scholar 

  • Card, J. P., & Moore, R. Y. (1984). The suprachiasmatic nucleus of the golden hamster: Immunohistochemical analysis of cell and fiber distribution. Neuroscience, 13, 415–431.

    Article  PubMed  CAS  Google Scholar 

  • Card, J. P., & Moore, R. Y. (1989). Organization of lateral geniculate—hypothalamic connections in the rat. Journal of Comparative Neurology, 284, 135–147.

    Article  PubMed  CAS  Google Scholar 

  • Card, J. P., Brecha, N., Karten, H.J., & Moore, R. Y. (1981). Immunocytochemical localization of vasoactive intestinal polypeptide-containing cells and processes in the suprachiasmatic nucleus of the rat: Light and electron microscopic analysis. Journal of Neuroscience, 1, 1289–1303.

    PubMed  CAS  Google Scholar 

  • Card, J. P., Fitzpatrick-McElligott, S., Gozes, I., Sc Baldino, E, Jr. (1988). Localization of vasopressin-, vasoactive intestinal polypeptide-, peptide histidine isoleucine-somatostatin-mRNA in rat suprachiasmatic nucleus. Cell Tissue Research, 252, 307–315.

    PubMed  CAS  Google Scholar 

  • Cassone, V. M., Speh, J. C., Card, J. P., & Moore, R. Y. (1988). Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus. Journal of Biological Rhythms, 3, 71–91.

    Article  PubMed  CAS  Google Scholar 

  • Castel, M., Feinstein, N., Cohen, S., & Harari, N. (1990). Vasopressinergic innervation of the mouse suprachiasmatic nucleus: An immuno-electron microscopic analysis. Journal of Comparative Neurology, 298, 172–187.

    Article  PubMed  CAS  Google Scholar 

  • Coen, C. W., & MacKinnon, P. C. (1980). Lesions of the suprachiasmatic nuclei and the serotonindependent phasic release of luteinizing hormone in the rat: Effects on drinking rhythmicity and on the consequences of preoptic area stimulation. Journal of Endocrinology, 84, 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., & Woolsey, T. A. (1972). The auto-radiographic demonstration of axonal connections in the central nervous system. Brain Research, 37(1), 21–51.

    Article  PubMed  CAS  Google Scholar 

  • Dai, J., Swaab, D. F., & Buijs, R. M. (1997). Distribution of vasopressin and vasoactive intestinal polypeptide (VIP) fibers in the human hypothalamus with special emphasis on suprachiasmatic nucleus efferent projections. Journal of Comparative Neurology, 383, 397–414.

    Article  PubMed  CAS  Google Scholar 

  • Dai, J., Swaab, D. F., Van der Vliet, J., & Buijs, R. M. (1998a). Postmortem tracing reveals the organization of hypothalamic projections of the suprachiasmatic nucleus in the human brain. Journal of Comparative Neurology, 400, 87–102.

    Article  CAS  Google Scholar 

  • Dai, J., Van der Vliet, J., Swaab, D. F., & Buijs, R. M. (1998b). Postmortem anterograde tracing of intrahypothalamic projections of the human dorsomedial nucleus of the hypothalamus. Journal of Comparative Neurology, 401, 16–33.

    Article  CAS  Google Scholar 

  • Daikoku, S., Hisano, S., & Kagotani, Y. (1992). Neuronal associations in the rat suprachiasmatic nucleus demonstrated by immunoelectron microscopy. Journal of Comparative Neurology, 325, 559–571.

    Article  PubMed  CAS  Google Scholar 

  • Daliman, M. E, Akana, S. F., Cascio, C. S., Darlington, D. N., Jacobson, L., & Levin, N. (1987). Regulation of ACTH secretion: Variations on a theme of B. Recent Progress in Hormone Research, 43, 113–173.

    Google Scholar 

  • Davis, F. C., & Mannion, J. (1988). Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. American Journal of Physiology, 255, R439—R448.

    PubMed  Google Scholar 

  • Dawson, D., Rogers, N. L., van den Heuvel, C. J., Kennaway, D. J., & Lushington, K. (1998). Effect of sustained nocturnal transbuccal melatonin administration on sleep and temperature in elderly insomniacs. Journal of Biological Rhythms, 13, 532–538.

    Article  PubMed  CAS  Google Scholar 

  • de la Iglesia, H. O., Blaustein, J. D., & Bittman, E. L. (1995). The suprachiasmatic area in the female hamster projects to neurons containing estrogen receptors and GnRH. Neuroreport, 6), 1715–1722.

    Article  PubMed  Google Scholar 

  • Dierckx, K, & Vandesande, E (1979). Immunocytochemical localization of somatostatin-containing neurons in the rat hypothalamus. Cell Tissue Research, 201, 349–359.

    Google Scholar 

  • Drucker-Colin, R., Aguilar-Roblero, R., Garcia-Hernandez, E, Fernandez-Cancino, E, & Bermudez Rattoni, F. (1984). Fetal suprachiasmatic nucleus transplants: Diurnal rhythm recovery of lesioned rats. Brain Research, 311, 353–357.

    Article  PubMed  CAS  Google Scholar 

  • Eastman, C. I., Mistlberger, R. E., & Rechtschaffen, A. (1984). Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat. Physiology and Behavior, 32, 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Ebbeson, S. V. E. (1970). On the organization of the central visual pathways in vertebrates. Brain, Behavior and Evolution, 3, 178–194.

    Article  Google Scholar 

  • Enright, J. T. (1980). Temporal precision in circadian systems: A reliable neuronal clock from unreliable components? Science, 209, 1542–1545.

    Article  PubMed  CAS  Google Scholar 

  • Everett, J. W. (1989). Neurobiology of reproduction in the female rat. A fifty-year perspective. Monographs on Endocrinology, 32, 1–133.

    Article  PubMed  CAS  Google Scholar 

  • Everett, J. W., & Sawyer, C. H. (1950). A 24 hour periodicity in the LH release apparatus of female rats, disclosed by barbiturate sedation. Endocrinology, 47, 198–218.

    Article  PubMed  CAS  Google Scholar 

  • Everett, J. W., Sawyer, C. H., & Markee, J. E. (1949). A neurogenic timing factor in control of the ovulatory discharge of luteinizing hormone in the cyclic rat. Endocrinology, 44, 218–233.

    Article  PubMed  Google Scholar 

  • Folkard, S., Wever, R. A., & Wildgruber, C. M. (1983). Multi-oscillatory control of circadian rhythms in human performance. Nature, 305, 223–226.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, M. S., Lucas, R. J., Soni, B., von Schantz, M., Munoz, M., David-Gray, Z., & Foster, R. (1999). Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science, 284, 502–504.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, M. E. (1994). The neuroendocrine control of the ovarian cycle of the rat. In E. Knobil & J. D. Neill (Eds.), The physiology of reproduction (2nd ed.). New York: Raven Press.

    Google Scholar 

  • Gao, B., & Moore, R. Y. (1996). Glutamic acid decarboxylase message isoforms in human suprachiasmatic nucleus. Journal of Biological Rhythms, 11, 172–179.

    Article  PubMed  CAS  Google Scholar 

  • Gillette, M. U. (1991). SCNelectrophysiology in vitro: Rhythmic activity and endogenous clock properties. New York: Oxford University Press.

    Google Scholar 

  • Gomez, F., Chapleur, M., Fernette, B., Burlet, C., Nicolas, J. P., & Burlet, A. (1997). Arginine vasopressin (AVP) depletion in neurons of the suprachiasmatic nuclei affects the AVP content of the para-ventricular neurons and stimulates adrenocorticotrophic hormone release. Journal of Neuroscience Research, 50, 565–574.

    Article  PubMed  CAS  Google Scholar 

  • Gray, G. D., Soderstein, P., Tallentire, D., & Davidson, J. M. (1978). Effects of lesions in various structures of the suprachiasmatic-preoptic region on LH regulation and sexual behavior in female rats. Neuroendocrinology, 25, 174–191.

    Article  PubMed  CAS  Google Scholar 

  • Green, D. J., & Gillette, R. (1982). Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Research, 245, 198–200.

    Article  PubMed  CAS  Google Scholar 

  • Groos, G., & Hendriks, J. (1982). Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neuroscience Letters, 34, 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Gu, G. B., & Simerly, R. B. (1997). Projections of the sexually dimorphic anteroventral periventricular nucleus in the female rat. Journal of Comparative Neurology, 384, 142–164.

    Article  PubMed  CAS  Google Scholar 

  • Guldner, F. H. (1978a). Synapses of optic nerve afferents in the rat suprachiasmatic nucleus. I. Identification, qualitative description, development and distribution. Cell Tissue Research, 194, 17–35.

    Article  CAS  Google Scholar 

  • Guldner, E H. (1978b). Synapses of optic nerve afferents in the rat suprachiasmatic nucleus. II. Structural variability as revealed by morphometric examination. Cell Tissue Research, 194, 37–54.

    Article  CAS  Google Scholar 

  • Guldner, E H., & Wolff, J. R. (1974). Dendro-dendritic synapses in the suprachiasmatic nucleus of the rat hypothalamus. Journal of Neurocytology, 3, 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Gurdjian, F. S. (1927). The diencephalon of the albino rat. Journal of Comparative Neurology, 43, 1–114.

    Article  Google Scholar 

  • Hakim, H., DeBernardo, A. P., & Silver, R. (1991). Circadian locomotor rhythms, but not photoperiodic responses, survive surgical isolation of the SCN in hamsters. Journal of Biological Rhythms, 6, 97–113.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, M. E., Nance, D. M., & Rusak, B. (1985). Neuropeptide Y immunoreactivity in the hamster geniculo-suprachiasmatic tract. Brain Research Bulletin, 15, 465–472.

    Article  PubMed  Google Scholar 

  • Hastings, M. H., Duffield, G. E., Ebling, E J., Kidd, A., Maywood, E. S., & Schurov, I. (1997). Nonphotic signalling in the suprachiasmatic nucleus. Biology of the Cell, 89, 495–503.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, M. H., Duffield, G. E., Smith, E. J., Maywood, E. S., & Ebling, F. J. (1998). Entrainment of the circadian system of mammals by nonphotic cues. Chronobiology International, 15, 425–445.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, A. E., Wagoner, N., & Cowan, W. M. (1972). An autoradiographic and electron microscopic study of retino-hypothalamic connections. Zeitschrift für Zellforschung and Mikroskopische Anatomie, 135(1), 1–26.

    Article  CAS  Google Scholar 

  • Herbison, A. E., & Theodosis, D. T. (1992). Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neuroscience, 50, 283–298.

    Article  PubMed  CAS  Google Scholar 

  • Hermes, M. L., & Renaud, L. P. (1993). Differential responses of identified rat hypothalamic para-ventricular neurons to suprachiasmatic nucleus stimulation. Neuroscience, 56, 823–832.

    Article  PubMed  CAS  Google Scholar 

  • Hermes, M. L., Buijs, R. M., & Renaud, L. P. (1996). Electrophysiology of suprachiasmatic nucleus projections to hypothalamic paraventricular nucleus neurons. Progress in Brain Research, 111, 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Hickey, T. L., & Spear, P. D. (1976). Retinogeniculate projections in hooded and albino rats: An auto-radiographic study. Experimental Brain Research, 24, 523–529.

    Article  CAS  Google Scholar 

  • Hoorneman, E. M., & Buijs, R. M. (1982). Vasopressin fiber pathways in the rat brain following suprachiasmatic nucleus lesioning. Brain Research, 243, 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Horvath, T. L. (1997). Suprachiasmatic efferents avoid phenestrated capillaries but innervate neuroendocrine cells, including those producing dopamine. Endocrinology, 138, 1312–1320.

    Article  PubMed  CAS  Google Scholar 

  • Horvath, T. L. (1998). An alternate pathway for visual signal integration into the hypothalamo-pituitary axis: Retinorecipient intergeniculate neurons project to various regions of the hypothalamus and innervate neuroendocrine cells including those producing dopamine. Journal of Neuroscience, 18, 1546–1558.

    PubMed  CAS  Google Scholar 

  • Ibata, Y., Tanaka, M., Ichitani, Y., Takahashi, Y., & Okamura, H. (1993). Neuronal interaction between VIP and vasopressin neurones in the rat suprachiasmatic nucleus. Neuroreport, 4, 128–130.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, S. T., & Kawamura, H. (1979). Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proceedings of the National Academy of Sciences of the USA, 76, 5962–5966.

    Article  PubMed  CAS  Google Scholar 

  • Jacobowitz, D. M., & Winsky, L. (1991). Immunocytochemical localization of calretinin in the forebrain of the rat. Journal of Comparative Neurology, 304, 198–218.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, B.J., Tyssen, C. M., Duindam, H., & Rietveld, W. J. (1994). Suprachiasmatic lesions eliminate 24-h blood pressure variability in rats. Physiology and Behavior, 55, 307–311.

    Article  PubMed  CAS  Google Scholar 

  • Jasper, M. S., & Engeland, W. C. (1994). Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats. Neuroendocrinology, 59, 97–109.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. F., Morin, L. P., & Moore, R. Y. (1988). Retinohypothalamic projections in the hamster and rat demonstrated using cholera toxin. Brain Research, 462, 301–312.

    Article  PubMed  CAS  Google Scholar 

  • Kalra, S. P. (1993). Mandatory neuropeptide-steroid signaling for the preovulatory luteinizing hormone-releasing hormone discharge. Endocrine Reviews, 14, 507–538.

    PubMed  CAS  Google Scholar 

  • Kalsbeek, A., & Buijs, R. M. (1992). Peptidergic transmitters of the suprachiasmatic nuclei and the control of circadian rhythmicity. Progress in Brain Research, 92, 321–333.

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeek, A., Buijs, R. M., van Heerikhuize, J. J., Arts, M., & van der Woude, T. P. (1992). Vasopressincontaining neurons of the suprachiasmatic nuclei inhibit corticosterone release. Brain Research, 580, 62–67.

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeek, A., Teclemariam-Mesbah, R., & Pevet, P. (1993). Efferent projections of the suprachiasmatic nucleus in the golden hamster (Mesocricetus auratus). Journal of Comparative Neurology, 332, 293–314.

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeek, A., Buijs, R. M., Engelmann, M., Wotjak, C. T., & Landgraf, R. (1995). In vivo measurement of a diurnal variation in vasopressin release in the rat suprachiasmatic nucleus. Brain Research, 682, 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeek, A., van der Vliet, J., & Buijs, R. M. (1996a). Decrease of endogenous vasopressin release necessary for expression of the circadian rise in plasma corticosterone: A reverse microdialysis study. Journal of Neuroendocrinology, 8, 299–307.

    Article  CAS  Google Scholar 

  • Kalsbeek, A., van Heerikhuize, J. J., Wortel, J., & Buijs, R. M. (1996b). A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin VI antagonist. Journal of Neuroscience, 16, 5555–5565.

    CAS  Google Scholar 

  • Kaneko, M., Hiroshige, T., Shinsako, J., & Dallman, M. E (1980). Diurnal changes in amplification of hormone rhythms in the adrenocortical system. American Journal of Physiology, 239, R309–R316.

    PubMed  CAS  Google Scholar 

  • Kawakami, M., Arita, J., & Yoshioka, E. (1980). Loss of estrogen-induced daily surges of prolactin and gonadotropins by suprachiasmatic nucleus lesions in ovariectomized rats. Endocrinology, 106, 1087–1092.

    Article  PubMed  CAS  Google Scholar 

  • Keim, S. R., & Shekhar, A. (1996). The effects of GABAA receptor blockade in the dorsomedial hypo-thalamic nucleus on corticotrophin (ACTH) and corticosterone secretion in male rats. Brain Research, 739, 46–51.

    Article  PubMed  CAS  Google Scholar 

  • Keller-Wood, M. E., & Dallman, M. F. (1984). Corticosteroid inhibition of ACTH secretion. Endocrine Reviews, 5, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Klein, D. C., & Moore, R. Y. (1979). Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: Control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Research, 174, 245–262.

    Article  PubMed  CAS  Google Scholar 

  • Krieger, M. S., Morrell, J. I., & Pfaff, D. W. (1976). Autoradiographic localization of estradiol-concentrating cells in the female hamster brain. Neuroendocrinology, 22, 193–205.

    Article  PubMed  CAS  Google Scholar 

  • Krieger, D. T., Hauser, H., & Krey, L. C. (1977). Suprachiasmatic nuclear lesions do not abolish food-shifted circadian adrenal and temperature rhythmicity. Science, 197, 398–399.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, A., Inouye, S. T., & Kawamura, H. (1981). Reversal of multiunit activity within and outside the suprachiasmatic nucleus in the rat. Neuroscience Letters, 27, 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Kuhlenbeck, H. (1981). Uber die Grundbestandteile des Zwischenhirnbauplans bei Reptilien. MorphologischesJahrbuch, 66, 244–317.

    Google Scholar 

  • Kuhlenbeck, H. (1954). The human diencephalon: A summary of development, structure, function and pathology. Confin. Neurol. (Suppl.), 14, 1–230.

    CAS  Google Scholar 

  • Leak, R. K, & Moore, R. Y. (1997). Identification of retinal ganglion cells projecting to the lateral hypothalamic area of the rat. Brain Research, 770, 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Leak, R. K, Card, J. P., & Moore, R. Y. (1999). Suprachiasmatic pacemaker organization analyzed by viral transynaptic transport. Brain Research, 819, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Legan, S. J., & Karsch, E J. (1975). A daily signal for the LH surge in the rat. Endocrinology, 96, 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Legan, S. J., Coon, G. A., and Karsch, E J. (1975). Role of estrogen as initiator of daily LH surges in the ovariectomized rat. Endocrinology, 96, 50–56.

    Article  PubMed  CAS  Google Scholar 

  • LeSauter, J., and Silver, R. (1998). Output signals of the SCN. Chronobiology International, 15, 535–550.

    Article  PubMed  CAS  Google Scholar 

  • Levin, M. C., Sawchenko, P. E., Howe, P. R., Bloom, S. R., Sc Polak, J. M. (1987). Organization of galanin-immunoreactive inputs to the paraventricular nucleus with special reference to their relationship to catecholaminergic afferents. Journal of Comparative Neurology, 261, 562–582.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J. E., & Ramirez, V. D. (1980). In vivo release of luteinizing hormone-releasing hormone estimated with push-pull cannulae from the mediobasal hypothalami of ovariectomized, steroid-primed rats. Endocrinology, 107, 1782–1790.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J. D., Weiss, M. L., Rosenwasser, A. M., & Miselis, R. R. (1991). Retinohypothalamic tract in the female albino rat: A study using horseradish peroxidase conjugated to cholera toxin. Journal of Comparative Neurology, 306, 344–360.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, F. J., Merchenthaler, I. J., Moretto, M., & Negro-Vilar, A. (1998). Modulating mechanisms of neuroendocrine cell activity: The LHRH pulse generator. Cellular and Molecular Neurobiology, 18, 125–146.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y. J., Kelly, M. J., & Ronnekleiv, O. K (1990). Pro-gonadotropin-releasing hormone (ProGnRH) and GnRH content in the preoptic area and the basal hypothalamus of anterior medial preoptic nucleus/suprachiasmatic nucleus-lesioned persistent estrous rats. Endocrinology, 127, 2654–2664.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Bernstein, E. L., Jetton, A. E., Matsumoto, S. I., Markuns, J. F., Lehman, M. N., & Bittman, E. L. (1999). Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology, 140, 207–218.

    Article  PubMed  CAS  Google Scholar 

  • Michel, S., Geusz, M. E., Zaritsky, J. K., & Block, G. D. (1993). Circadian rhythm in membrane conductance expressed in isolated neurons. Science, 259, 239–241.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, J. D., & Larsen, P. J. (1993). Substance P in the suprachiasmatic nucleus of the rat: An immunohistochemical and in situ hybridization study. Histochemistry, 100(1), 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, J. D., & Vrang, N. (1994). A direct pretectosuprachiasmatic projection in the rat. Neuroscience, 62, 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, J. D., Larsen, P. J., O’Hare, M. M., & Wiegand, S. J. (1991). Gastrin releasing peptide in the rat suprachiasmatic nucleus: An immunohistochemical, chromatographic and radioimmunological study. Neuroscience, 40, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Moga, M. M., & Moore, R. Y. (1997). Organization of neural inputs to the suprachiasmatic nucleus in the rat. Journal of Comparative Neurology, 389, 508–534.

    Article  PubMed  CAS  Google Scholar 

  • Moga, M. M., Weis, R. P., & Moore, R. Y. (1995). Efferent projections of the paraventricular thalamic nucleus in the rat. Journal of Comparative Neurology, 359, 221–238.

    Article  PubMed  CAS  Google Scholar 

  • Monk, T. H., Fookson, J. E., Moline, M. L., & Pollak, C. P. (1985). Diurnal variation in mood and performance in a time-isolated environment. Chronobiology International, 2, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y. (1973). Retinohypothalamic projection in mammals: A comparative study. Brain Research, 49, 403–409.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y. (1996). Neural control of the pineal gland. Behavioral Brain Research, 73, 125–130.

    Article  CAS  Google Scholar 

  • Moore, R. Y., & Bernstein, M. E. (1989). Synaptogenesis in the rat suprachiasmatic nucleus demonstrated by electron microscopy and synapsin I immunoreactivity. Journal of Neuroscience, 9, 2151–2162.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., & Card, J. P. (1994). Intergeniculate leaflet: An anatomically and functionally distinct subdivision of the lateral geniculate complex. Journal of Comparative Neurology, 344, 403–430.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., & Eichler, V. B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Research, 42, 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., & Lenn, N. J. (1972). A retinohypothalamic projection in the rat. Journal of Comparative Neurology, 146, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., & Speh, J. C. (1993). GABA is the principal neurotransmitter of the circadian system. Neuroscience Letters, 150, 112–116.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., Gustafson, E. L., & Card, J. P. (1984). Identical immunoreactivity of afferents to the rat suprachiasmatic nucleus with antisera against avian pancreatic polypeptide, molluscan cardioexcitatory peptide and neuropeptide Y. Cell Tissue Research, 236, 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., Speh, J. C., & Card, J. P. (1995). The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. Journal of Comparative Neurology, 352, 351–366.

    Article  PubMed  CAS  Google Scholar 

  • Morin, L. P., Goodless-Sanchez, N., Smale, L., & Moore, R. Y. (1994). Projections of the suprachiasmatic nuclei, subparaventricular zone and retrochiasmatic area in the golden hamster. Neuroscience, 61, 391–410.

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky, N. (1995). A non-photic gateway to the circadian clock of hamsters. Ciba Foundation Symposium, 183, 154–167.

    PubMed  CAS  Google Scholar 

  • Muller, C., & Torrealba, F. (1998). Postnatal development of neuron number and connections in the suprachiasmatic nucleus of the hamster. Brain Research. Developmental Brain Research, 110, 203–213.

    Article  PubMed  CAS  Google Scholar 

  • Neill, J. D. (1972). Sexual differences in the hypothalamic regulation of prolactin secretion. Endocrinology, 90, 1154–1159.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, K., Takahashi, S., & Kawashima, S. (1988). Maintenance of estrous cycle in female rats with anterior or posterior deafferentation of the suprachiasmatic nucleus. Neuroendocrinology, 47, 444–452.

    Article  PubMed  CAS  Google Scholar 

  • Okamura, H., Murakami, S., Fukui, K., Uda, K, Kawamoto, K., Kawashima, S., Yanaihara, N., & Ibata, Y. (1986). Vasoactive intestinal peptide-and peptide histidine isoleucine amide-like immunoreactivity colocalize with vasopressin-like immunoreactivity in the canine hypothalamo-neurohypophysial neuronal system. Neuroscience Letters, 69, 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Okamura, H., Berod, A., Julien, J. F., Geffard, M., Kitahama, K., Mallet, J., & Bobillier, P. (1989). Demonstration of GABAergic cell bodies in the suprachiasmatic nucleus: In situ hybridization of glutamic acid decarboxylase (GAD) mRNA and immunocytochemistry of GAD and GABA. Neuroscience Letters, 102, 131–136.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, A. R., & Refinetti, R. (1995). Effects of hypothalamic lesions on the body temperature rhythm of the golden hamster. Neuroreport, 6, 2187–2192.

    Article  PubMed  CAS  Google Scholar 

  • Pan, J. T., & Gala, R. R. (1985). Central nervous system regions involved in the estrogen-induced afternoon prolactin surge. I. Lesion studies. Endocrinology, 117, 382–387.

    Article  PubMed  CAS  Google Scholar 

  • Pate, J. R. (1937). Transneuronal atrophy of the nucleus ovoidus following eye removal in cats. Anatomical Record, 67, 39.

    Google Scholar 

  • Pavlidis, T. (1969). Populations of interacting oscillators and circadian rhythms. Journal of Theoretical Biology, 22, 418–436.

    Article  PubMed  CAS  Google Scholar 

  • Pickard, G. E. (1985). Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus. Neuroscience Letters, 55, 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Raisman, G., & Brown-Grant, K. (1977). The `suprachiasmatic syndrome’: Endocrine and behavioural abnormalities following lesions of the suprachiasmatic nuclei in the female rat. Proceedings of the Royal Society of London Series B, Biological Sciences, 198, 297–314.

    PubMed  CAS  Google Scholar 

  • Ralph, M. R., Foster, R. G., Davis, F. C., & Menaker, M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science, 247, 975–978.

    Article  PubMed  CAS  Google Scholar 

  • Rea, M. A. (1998). Photic entrainment of circadian rhythms in rodents. Chronobiology International, 15, 395–423.

    Article  PubMed  CAS  Google Scholar 

  • Refinetti, R., Kaufman, C. M., & Menaker, M. (1994). Complete suprachiasmatic lesions eliminate circadian rhythmicity of body temperature and locomotor activity in golden hamsters. Journal of Comparative Physiology [A], 175, 223–232.

    Article  CAS  Google Scholar 

  • Reppert, S. M., & Weaver, D. R. (1991). A biological clock is oscillating in the fetal suprachiasmatic nuclei. In R. Moore, S. Reppert, & D. E. Klein (Eds.), Suprachiasmatic nucleus: The mind’s clock. New York: Oxford University Press.

    Google Scholar 

  • Romano, G. J., Krust, A., & Pfaff, D. W. (1989). Expression and estrogen regulation of progesterone receptor mRNA in neurons of the mediobasal hypothalamus: An in situ hybridization study. Molecular Endocrinology, 3, 1295–1300; Erratum, 3, 1860.

    Google Scholar 

  • Ronnekleiv, O. K., & Kelly, M. J. (1988). Plasma prolactin and luteinizing hormone profiles during the estrous cycle of the female rat: Effects of surgically induced persistent estrus. Neuroendocrinology, 47, 133–146.

    Article  PubMed  CAS  Google Scholar 

  • Ruby, N. F., Ibuka, N., Barnes, B. M., & Zucker, I. (1989). Suprachiasmatic nuclei influence torpor and circadian temperature rhythms in hamsters. American Journal of Physiology, 257, R210–8215.

    PubMed  CAS  Google Scholar 

  • Sano, H., Hayashi, H., Makino, M., Takezawa, H., Hirai, M., Saito, H., & Ebihara, S. (1995). Effects of suprachiasmatic lesions on circadian rhythms of blood pressure, heart rate and locomotor activity in the rat. Japanese Circulation Journal, 59, 565–573.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, D. K., Chiappa, S. A., Fink, G., & Sherwood, N. M. (1976). Gonadotropin-releasing hormone surge in pro-oestrous rats. Nature, 264, 461–463.

    Article  PubMed  CAS  Google Scholar 

  • Satinoff, E., & Prosser, R. A. (1988). Suprachiasmatic nuclear lesions eliminate circadian rhythms of drinking and activity, but not of body temperature, in male rats. Journal of Biological Rhythms, 3,1–22.

    Article  PubMed  CAS  Google Scholar 

  • Satinoff, E., Liran, J., & Clapman, R. (1982). Aberrations of circadian body temperature rhythms in rats with medial preoptic lesions. American Journal of Physiology, 242, R352–R357.

    PubMed  CAS  Google Scholar 

  • Sawaki, Y., Nihonmatsu, I., & Kawamura, H. (1984). Transplantation of the neonatal suprachiasmatic nuclei into rats with complete bilateral suprachiasmatic lesions. Neuroscience Research, 1(1), 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Scarbrough, K, Harney, J. P., Rosewell, K. L., & Wise, P. M. (1996). Acute effects of antisense antagonism of a single peptide neurotransmitter in the circadian clock. American Journal of Physiology, 270, R283–R288.

    PubMed  CAS  Google Scholar 

  • Schwartz, W. J., Gross, R. A., & Morton, M. T. (1987). The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proceedings of the National Academy of Sciences of the USA, 84, 1694–1698.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, S., & Moore, R. Y. (1988). Electrical and metabolic activity of suprachiasmatic nucleus neurons in hamster hypothalamic slices. Brain Research, 438, 374–378.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, S., Oomura, Y., Kita, H., & Hattori, K. (1982). Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Research, 247, 154–158.

    Article  PubMed  CAS  Google Scholar 

  • Shivers, B. D., Harlan, R. E., Hejtmancik, J. F., Conn, P. M., & Pfaff, D. W. (1986). Localization of cells containing LHRH-like mRNA in rat forebrain using in situ hybridization. Endocrinology, 118, 883–885.

    Article  PubMed  CAS  Google Scholar 

  • Silver, R., LeSauter, J., Tresco, P. A., & Lehman, M. N. (1996). A diffusible coupling signal from the trans-planted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 382, 810–813.

    Article  PubMed  CAS  Google Scholar 

  • Simerly, R. B. (1998). Organization and regulation of sexually dimorphic neuroendocrine pathways. Behavioral Brain Research, 92, 195–203.

    Article  CAS  Google Scholar 

  • Simerly, R. B., Chang, C., Muramatsu, M., & Swanson, L. W. (1990). Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: An in situ hybridization study. Journal of Comparative Neurology, 294, 76–95.

    Article  PubMed  CAS  Google Scholar 

  • Simerly, R. B., Carr, A. M., Zee, M. C., & Lorang, D. (1996). Ovarian steroid regulation of estrogen and progesterone receptor messenger ribonucleic acid in the anteroventral periventricular nucleus of the rat. Journal of Neuroendocrinology, 8, 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew, M. V., & Weindl, A. (1978). Projections from the parvocellular vasopressin-and neurophysin-containing neurons of the suprachiasmatic nucleus. American Journal of Anatomy, 153, 391–429.

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew, M. V., & Weindl, A. (1980). Identification of parvocellular vasopressin and neurophysin neurons in the suprachiasmatic nucleus of a variety of mammals including primates. Journal of Comparative Neurology, 193, 659–675.

    Article  PubMed  CAS  Google Scholar 

  • Sollars, P. J., & Pickard, G. E. (1998). Restoration of circadian behavior by anterior hypothalamic grafts containing the suprachiasmatic nucleus: Graft/host interconnections. Chronobiology International, 15, 513–533.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, F. K, & Zucker, I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proceedings of the National Academy of Sciences of the USA, 69, 1583–1586.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, E K., Berkley, K J., & Moss, R. L. (1981). Efferent connections of the rat suprachiasmatic nucleus. Neuroscience, 6, 2625–2646.

    Article  PubMed  CAS  Google Scholar 

  • Stetson, M. H., & Watson-Whitmyre, M. (1976). Nucleus suprachiasmaticus: The biological clock in the hamster? Science, 191, 197–199.

    Article  PubMed  CAS  Google Scholar 

  • Stobie, K. M., & Weick, R. F. (1989). Vasoactive intestinal peptide inhibits luteinizing hormone secretion: The inhibition is not mediated by dopamine. Neuroendocrinology, 49, 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Stobie, K M., & Weick, R. F. (1990). Effects of lesions of the suprachiasmatic and paraventricular nuclei on the inhibition of pulsatile luteinizing hormone release by exogenous vasoactive intestinal peptide in the ovariectomized rat. Neuroendocrinology, 51, 649–657.

    Article  PubMed  CAS  Google Scholar 

  • Swann, J. M., & Turek, E W. (1985). Multiple circadian oscillators regulate the timing of behavioral and endocrine rhythms in female golden hamsters. Science, 228, 898–900.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W. (1987). The hypothalamus. In Handbook of chemical neuroanatomy. Vol. 5. Integrated systems of the CNS. Part I (pp. 1–24). Amsterdam. Elsevier Science.

    Google Scholar 

  • Swanson, L. W., & Cowan, W. M. (1975). The efferent connections of the suprachiasmatic nucleus of the hypothalamus. Journal of Comparative Neurology, 160, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., Cowan, W. M., Sc Jones, E. G. (1974). An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. Journal of Comparative Neurology, 156, 143–163.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., Canteras, N. W., & Watts, A. G. (1993). Organization of suprachiasmatic nucleus inputs to forebrain circuitry. In H. Nakagawa, Y. Oomura, & K Nagai (Eds.), New functional aspects of the suprachiasmatic nucleus of the hypothalamus (pp. 35–44). London: Libbey and Co.

    Google Scholar 

  • Szafarczyk, A., Ixart, G., Malaval, F., Nouguier-Soule, J., & Assenmacher, I. (1979). Effects of lesions of the suprachiasmatic nuclei and of p-chlorophenylalanine on the circadian rhythms of adrenocorticotrophic hormone and corticosterone in the plasma, and on locomotor activity of rats. Journal of Endocrinology, 83, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Szymusiak, R., & Satinoff, E. (1982). Acute thermoregulatory effects of unilateral electrolytic lesions of the medial and lateral preoptic area in rats. Physiology and Behavior, 28, 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, M., Okamura, H., Matsuda, T., Shigeyoshi, Y., Hisa, Y., Chihara, K, & Ibata, Y. (1996). Somatostatin neurons form a distinct peptidergic neuronal group in the rat suprachiasmatic nucleus: A double labeling in situ hybridization study. Neuroscience Letters, 215, 119–122.

    Article  PubMed  CAS  Google Scholar 

  • Teclemariam-Mesbah, R., Kalsbeek, A., Pevet, P., & Buijs, R. M. (1997). Direct vasoactive intestinal polypeptide-containing projection from the suprachiasmatic nucleus to spinal projecting hypothalamic paraventricular neurons. Brain Research, 748, 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Terasawa, E., & Davis, G. A. (1983). The LHRH neuronal system in female rats: Relation to the medial preoptic nucleus. Endocrinologia Japonica, 30, 405–417.

    Article  PubMed  CAS  Google Scholar 

  • Terasawa, E., Wiegand, S. J., & Bridson, W. E. (1980). A role for medial preoptic nucleus on afternoon of proestrus in female rats. American journal of Physiology, 238, E533–E539.

    PubMed  CAS  Google Scholar 

  • van den Pol, A. N. (1980). The hypothalamic suprachiasmatic nucleus of rat: Intrinsic anatomy. Journal of Comparative Neurology, 191, 661–702.

    Article  PubMed  Google Scholar 

  • van den Pol, A. N. (1986). Gamma-aminobutyrate, gastrin releasing peptide, serotonin, somatostatin, and vasopressin: Ultrastructural immunocytochemical localization in presynaptic axons in the suprachiasmatic nucleus. Neuroscience, 17, 643–659.

    Article  PubMed  Google Scholar 

  • van den Pol, A. N., & Gores, T. (1986). Synaptic relationships between neurons containing vasopressin, gastrin-releasing peptide, vasoactive intestinal polypeptide, and glutamate decarboxylase immunoreactivity in the suprachiasmatic nucleus: Dual ultrastructural immunocytochemistry with gold-substituted silver peroxidase. Journal of Comparative Neurology, 252, 507–526.

    Article  PubMed  Google Scholar 

  • van den Pol, A. N., & Tsujimoto, K L. (1985). Neurotransmitters of the hypothalamic suprachiasmatic nucleus: Immunocytochemical analysis of 25 neuronal antigens. Neuroscience, 15, 1049–1086.

    Article  PubMed  Google Scholar 

  • van der Beek, E. M., Wiegant, V. M., van der Donk, H. A., van den Hurk, C., & Buijs, R. M. (1993). Lesions of the suprachiasmatic nucleus indicate the presence of a direct vasoactive intestinal polypeptide-containing projection to gonadotrophin-releasing hormone neurons in the female rat. Journal of Neuroendocrinology, 5, 137–144.

    Article  PubMed  Google Scholar 

  • van der Beek, E. M., van Oudheusden, H. J., Buijs, R. M., van der Donk, H. A., van den Hurk, R., Sc Wiegant, V. M. (1994). Preferential induction of c-fos immunoreactivity in vasoactive intestinal polypeptide-innervated gonadotropin-releasing hormone neurons during a steroid-induced luteinizing hormone surge in the female rat. Endocrinology, 134, 2636–2644.

    Article  PubMed  Google Scholar 

  • van der Beek, E. M., Horvath, T. L., Wiegant, V. M., van den Hurk, R., & Buijs, R. M. (1997). Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-releasing hormone system: Combined tracing and light and electron microscopic immunocytochemical studies. Journal of Comparative Neurology, 384, 569–579.

    Article  PubMed  Google Scholar 

  • van der Beek, E. M., Swarts, H. J., & Wiegant, V. M. (1999). Central administration of antiserum to vasoactive intestinal peptide delays and reduces luteinizing hormone and prolactin surges in ovariectomized, estrogen-treated rats. Neuroendocrinology, 69, 227–237.

    Article  PubMed  Google Scholar 

  • Vandesande, F., Dierickx, K, & DeMey,J. (1975). Identification of the vasopressin-neurophysin producing neurons of the rat suprachiasmatic nuclei. Cell Tissue Research, 156, 377–380.

    PubMed  CAS  Google Scholar 

  • Vrang, N., Larsen, P.J., & Mikkelsen, J. D. (1995a). Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated by means of Phaseolus vulgaris-leucoagglutinin tract tracing. Brain Research, 684, 61–69.

    Article  CAS  Google Scholar 

  • Vrang, N., Larsen, P. J., Moller, M., & Mikkelsen, J. D. (1995b). Topographical organization of the rat suprachiasmatic-paraventricular projection. Journal of Comparative Neurology, 353, 585–603.

    Article  CAS  Google Scholar 

  • Vrang, N., Mikkelsen, J. D., & Larsen, P. J. (1997). Direct link from the suprachiasmatic nucleus to hypothalamic neurons projecting to the spinal cord: A combined tracing study using cholera toxin subunit B and Phaseolus vulgaris-leucoagglutinin. Brain Research Bulletin, 44, 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Wachulec, M., Li, H., Tanaka, H., Peloso, E., & Satinoff, E. (1997). Suprachiasmatic nuclei lesions do not eliminate homeostatic thermoregulatory responses in rats. Journal of Biological Rhythms, 12, 226–234.

    Article  PubMed  CAS  Google Scholar 

  • Warren, W. S., Champney, T. H., & Cassone, V. M. (1994). The suprachiasmatic nucleus controls the circadian rhythm of heart rate via the sympathetic nervous system. Physiology and Behavior, 55, 1091–1099.

    Article  PubMed  CAS  Google Scholar 

  • Watson, R. E., Jr., Langub, M. C., Jr., Engle, M. G., & Maley, B. E. (1995). Estrogen-receptive neurons in the anteroventral periventricular nucleus are synaptic targets of the suprachiasmatic nucleus and perisuprachiasmatic region. Brain Research, 689, 254–264.

    Article  PubMed  CAS  Google Scholar 

  • Watts, A. G. (1991). The efferent projections of the suprachiasmatic nucleus. Anatomical insights into the control of circadian rhythms. In D. C. Klein, R. Y. Moore, & S. M. Reppert (Eds.), Suprachiasmatic nucleus: The mind’s clock (pp. 77–106). New York: Oxford University Press.

    Google Scholar 

  • Watts, A. G., & Swanson, L. W. (1987). Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. Journal of Comparative Neurology, 258, 230–252.

    Article  PubMed  CAS  Google Scholar 

  • Watts, A. G., Swanson, L. W., & Sanchez-Watts, G. (1987). Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. Journal of Comparative Neurology, 258, 204–229.

    Article  PubMed  CAS  Google Scholar 

  • Watts, A. G., Sheward, W. J., Whale, D., Sc Fink, G. (1989). The effects of knife cuts in the subparaventricular zone of the female rat hypothalamus on oestrogen-induced diurnal surges of plasma prolactin and LH, and circadian wheel-running activity. Journal of Endocrinology, 122, 593–604.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, D. R. (1998). The suprachiasmatic nucleus: A 25-year retrospective. Journal of Biological Rhythms, 13, 100–112.

    Article  PubMed  CAS  Google Scholar 

  • Weick, R. F., & Stobie, K M. (1992). Vasoactive intestinal peptide inhibits the steroid-induced LH surge in the ovariectomized rat. Journal of Endocrinology, 133, 433–437.

    Article  PubMed  CAS  Google Scholar 

  • Weick, R. F., & Stobie, K. M. (1995). Role of VIP in the regulation of LH secretion in the female rat. Neuroscience and Biobehavioral Reviews, 19, 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, P. A. (1972). Neuronal dynamics and axonal flow: Axonal peristalsis. Proceedings of the National Academy of Sciences of the USA, 69, 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Welsh, D. K, Logothetis, D. E., Meister, M., & Reppert, S. M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron, 14, 697–706.

    Article  PubMed  CAS  Google Scholar 

  • Wiegand, S. J., & Terasawa, E. (1982). Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Neuroendocrinology, 34, 395–404.

    Article  PubMed  CAS  Google Scholar 

  • Wiegand, S. J., Terasawa, E., & Bridson, W. E. (1978). Persistent estrus and blockade of progesterone-induced LH release follows lesions which do not damage the suprachiasmatic nucleus. Endocrinology, 102, 1645–1648.

    Article  PubMed  CAS  Google Scholar 

  • Wiegand, S.J., Terasawa, E., Bridson, W. E., & Goy, R. W. (1980). Effects of discrete lesions of preoptic and suprachiasmatic structures in the female rat. Alterations in the feedback regulation of gonadotropin secretion. Neuroendocrinology, 31, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Witkin, J. W., Paden, C. M., Sc Silverman, A. J. (1982). The luteinizing hormone-releasing hormone (LHRH) systems in the rat brain. Neuroendocrinology, 35, 429–438.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moore, R.Y., Leak, R.K. (2001). Suprachiasmatic Nucleus. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics