Skip to main content

Photoreceptor Intersegmental Transport and Retinal Degeneration

A Conserved Pathway Common to Motile and Sensory Cilia

  • Conference paper
Retinal Degenerations

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 533))

Abstract

During early development of rod and cone photoreceptors, the outer segment (OS) assembles on the apical cell surface by an elaborate process of membrane and protein transport followed by membrane reorganization to form the highly organized stack of membrane disks found in the OS of mature cells. The process of membrane and protein transport continues in mature photoreceptors as the molecular components of the OS turnover at a prodigious rate for the life of the cell (Young, 1967). Intersegmental transport between the inner segment (IS) and the OS is a major logistical problem as all OS macromolecules are synthesized in the IS and must be transported to the OS. Elucidating the molecular pathways involved in intersegmental transport will ultimately require a refined understanding of the photoreceptor connecting cilium as this structure is the only stable connecting link between the IS and the OS and is the likely transport corridor (reviewed in Besharse and Horst, 1990). In addition, understanding the details of these pathways is likely to provide an improved understanding of photoreceptor degeneration diseases that involve trafficking between the two segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beech, P.L., K. Pagh-Roehl, Y. Noda, N. Hirokawa, B. Burnside, and J.L. Rosenbaum, 1996, Localization of kinesin superfamily proteins to the connecting cilium of fish photoreceptors, JCell Sci. 109:889–97.

    CAS  Google Scholar 

  • Besharse, J.C., and C.J. Horst. 1990. The Photoreceptor Connecting Cilium. A Model for the Transition Zone. In Ciliary and Flagellar Membranes. R.A. Bloodgood, editor. Plenum Press, New York. 389–417. Boesze-Battaglia, K., and A.F. Goldberg, 2002, Photoreceptor renewal: a role for peripherin/rds, Int Rev Cytol. 217:183–225.

    Book  Google Scholar 

  • Cole, D.G., D.R. Diener, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum, 1998, Chlamydomonas kinesin-Il-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons, J Cell Biol. 141:993–1008.

    Article  PubMed  CAS  Google Scholar 

  • Deane, J.A., D.G. Cole, E.S. Seeley, D.R. Diener, and J.L. Rosenbaum, 2001, Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles, Curr Biol. 11:1586–90.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons, B.H., D.J. Asai, W.J. Tang, T.S. Hays, and I.R. Gibbons, 1994, Phylogeny and expression of axonemal and cytoplasmic dynein genes in sea urchins, Mol Biol Cell. 5:57–70.

    PubMed  CAS  Google Scholar 

  • Grissom, P.M., E.A. Vaisberg, and J.R. McIntosh, 2002, Identification of a novel light intermediate chain (D2LIC) for mammalian cytoplasmic dynein 2, Mol Biol Cell. 13:817–29.

    Article  PubMed  CAS  Google Scholar 

  • Hagstrom, S.A., M. Adamian, M. Scimeca, B.S. Pawlyk, G. Yue, and T. Li, 2001, A role for the Tubby-like protein 1 in rhodopsin transport, Invest Ophthalmol Vis Sci. 42:1955–62.

    PubMed  CAS  Google Scholar 

  • Hagstrom, S.A., M. Duyao, M.A. North, and T. Li, 1999, Retinal degeneration in tulpl-/- mice: vesicular accumulation in the interphotoreceptor matrix, Invest Ophthalmol Vis Sci. 40:2795–802.

    PubMed  CAS  Google Scholar 

  • Haycraft, C.J., P. Swoboda, P.D. Taulman, J.H. Thomas, and B.K. Yoder, 2001, The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms, Development. 128:1493–505.

    PubMed  CAS  Google Scholar 

  • Horst, C.J., L.V. Johnson, and J.C. Besharse, 1990, Transmembrane assemblage of the photoreceptor connecting cilium and motile cilium transition zone contain a common immunologic epitope, Cell Motil Cytoskeleton. 17:329–44.

    Article  PubMed  CAS  Google Scholar 

  • Iomini, C., V. Babaev-Khaimov, M. Sassaroli, and G. Pipemo, 2001, Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases,.1 Cell Biol. 153:13–24.

    Article  CAS  Google Scholar 

  • Liu, X., I.P. Udovichenko, S.D. Brown, K.P. Steel, and D.S. Williams, 1999, Myosin VIIa participates in opsin transport through the photoreceptor cilium, JNeurosci. 19:6267–74.

    CAS  Google Scholar 

  • Marshall, W.F., and J.L. Rosenbaum, 2001, Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control, J Cell Biol. 155:405–14.

    Article  PubMed  CAS  Google Scholar 

  • Marszalek, J.R., and L.S. Goldstein, 2000, Understanding the functions of kinesin-II, Biochim Biophys Acta. 1496:142–150.

    Article  PubMed  CAS  Google Scholar 

  • Marszalek, J.R., X. Liu, E.A. Roberts, D. Chui, J.D. Mardi, D.S. Williams, and L.S. Goldstein, 2000, Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors [In Process Citation], Cell. 102:175–87.

    Article  PubMed  CAS  Google Scholar 

  • Mikami, A., S.H. Tynan, T. Hama, K. Luby-Phelps, T. Saito, J.E. Crandall, J.C. Besharse, and R.B. Vallee, 2002, Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells, J Cell Sci. 115:4801–4808.

    Article  PubMed  CAS  Google Scholar 

  • Moyer, J.H., M.J. Lee-Tischler, H.Y. Kwon, J.J. Schrick, E.D. Avner, W.E. Sweeney, V.L. Godfrey, N.L. Cacheiro, J.E. Wilkinson, and R.P. Woychik, 1994, Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice, Science. 264:1329–33.

    Article  PubMed  CAS  Google Scholar 

  • Murcia, N.S., W.G. Richards, B.K. Yoder, M.L. Mucenski, J.R. Dunlap, and R.P. Woychik, 2000, The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination, Development. 127:2347–55.

    PubMed  CAS  Google Scholar 

  • Muresan, V., A. Lyass, and B.J. Schnapp, 1999, The kinesin motor KIF3A is a component of the presynaptic ribbon in vertebrate photoreceptors, JNeurosci. 19:1027–37.

    CAS  Google Scholar 

  • Nir, I., and D.S. Papermaster, 1986, Immunocytochemical localization of opsin in the inner segment and ciliary plasma membrane of photoreceptors in retinas of rds mutant mice, Invest Ophthalmol Vis Sci. 27:836–40.

    PubMed  CAS  Google Scholar 

  • Nir, I., G. Sagie, and D.S. Papermaster, 1987, Opsin accumulation in photoreceptor inner segment plasma membranes of dystrophic RCS rats, Invest Ophthalmol Vis Sci. 28:62–9.

    PubMed  CAS  Google Scholar 

  • Pazour, G.J., S.A. Baker, J.A. Deane, D.G. Cole, B.L. Dickert, J.L. Rosenbaum, G.B. Witman, and J.C. Besharse, 2002, The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance, J Cell Biol. 157:103–14.

    Article  PubMed  CAS  Google Scholar 

  • Pazour, G.J., B.L. Dickert, Y. Vucica, E.S. Seeley, J.L. Rosenbaum, G.B. Witman, and D.G. Cole, 2000, Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella, JCell Biol. 151:709–18.

    Article  CAS  Google Scholar 

  • Pazour, G.J., B.L. Dickert, and G.B. Witman, 1999, The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly, J Cell Biol. 144:473–81.

    Article  PubMed  CAS  Google Scholar 

  • Pazour, G.J., C.G. Wilkerson, and G.B. Witman, 1998, A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT), J Cell Biol. 141:979–92.

    Article  PubMed  CAS  Google Scholar 

  • Philp, N.J., W. Chang, and K. Long, 1987, Light-stimulated protein movement in rod photoreceptor cells of the rat retina, FEBS Lett. 225:127–32.

    Article  PubMed  CAS  Google Scholar 

  • Pipemo, G., and K. Mead, 1997, Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella, Proc Natl Acad Sci USA. 94:4457–62.

    Article  Google Scholar 

  • Piperno, G., K. Mead, and S. Henderson, 1996, Inner dynein arms but not outer dynein arms require the activity of kinesin homologue protein KHPI(FLA10) to reach the distal part of flagella in Chlamydomonas, J Cell Biol. 133:371–9.

    Article  PubMed  CAS  Google Scholar 

  • Porter, M.E., R. Bower, J.A. Knott, P. Byrd, and W. Dentler, 1999, Cytoplasmic dynein heavy chain lb is required for flagellar assembly in Chlamydomonas, Mol Biol Cell. 10:693–712.

    PubMed  CAS  Google Scholar 

  • Qin, H., J.L. Rosenbaum, and M.M. Barr, 2001, An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons, Curr Biol. 11:457-61.

    Article  PubMed  CAS  Google Scholar 

  • Rohlich, P., 1975, The sensory cilium of retinal rods is analogous to the transitional zone of motile cilia, Cell Tissue Res. 161:421–30.

    Article  PubMed  CAS  Google Scholar 

  • Roof, D.J., and C.A. Heth, 1988, Expression of transducin in retinal rod photoreceptor outer segments, Science. 241:845–7.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum, J.L., D.G. Cole, and D.R. Diener, 1999, Intraflagellar transport: the eyes have it, JCell Biol. 144:385–8.

    Article  CAS  Google Scholar 

  • Rosenbaum, J.L., and G.B. Witman, 2002, Intraflagellar transport, Nat Rev Mol Cell Biol. 3:813–25.

    Article  PubMed  CAS  Google Scholar 

  • Signor, D., K.P. Wedaman, J.T. Orozco, N.D. Dwyer, C.I. Bargmann, L.S. Rose, and J.M. Scholey, 1999a, Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans, J Cell Biol. 147:519–30.

    Article  CAS  Google Scholar 

  • Signor, D., K.P. Wedaman, L.S. Rose, and J.M. Scholey, 1999b, Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans, Mol Biol Cell. 10:345–60.

    CAS  Google Scholar 

  • Sokolov, M., A.L. Lyubarsky, K.J. Strissel, A.B. Savchenko, V.I. Govardovskii, E.N. Pugh, and V.Y. Arshaysky, 2002, Massive Light-Driven Translocation of Transducin between the Two Major Compartments of Rod Cells. A Novel Mechanism of Light Adaptation, Neuron. 34:95–106.

    Article  PubMed  CAS  Google Scholar 

  • Tai, A.W., J.Z. Chuang, C. Bode, U. Wolfrum, and C.H. Sung, 1999, Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1, Cell. 97:877–87.

    Article  PubMed  CAS  Google Scholar 

  • Traboulsi, E.I., 1998, Ocular malformations and developmental genes, JAapos. 2:317–23.

    CAS  Google Scholar 

  • Walther, Z., M. Vashishtha, and J.L. Hall, 1994, The Chlamydomonas FLA10 gene encodes a novel kinesinhomologous protein, J Cell Biol. 126:175–88.

    Article  PubMed  CAS  Google Scholar 

  • Whelan, J.P., and J.F. McGinnis, 1988, Light-dependent subcellular movement of photoreceptor proteins, J Neurosci Res. 20:263–70.

    Article  PubMed  CAS  Google Scholar 

  • Whitehead, J.L., S.Y. Wang, L. Bost-Usinger, E. Hoang, K.A. Frazer, and B. Bumside, 1999, Photoreceptor localization of the KIF3A and KIF3B subunits of the heterotrimeric microtubule motor kinesin II in vertebrate retina, Exp Eye Res. 69:491–503.

    Article  PubMed  CAS  Google Scholar 

  • Young, R.W., 1967, The renewal of photoreceptor cell outer segments, J Cell Biol. 33:61–72.

    Article  PubMed  CAS  Google Scholar 

  • Young, R.W., and D. Bok, 1969, Participation of the retinal pigment epithelium in the rod outer segment renewal process, J Cell Biol. 42:392–403.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Besharse, J.C., Baker, S.A., Luby-Phelps, K., Pazour, G.J. (2003). Photoreceptor Intersegmental Transport and Retinal Degeneration . In: LaVail, M.M., Hollyfield, J.G., Anderson, R.E. (eds) Retinal Degenerations. Advances in Experimental Medicine and Biology, vol 533. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0067-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0067-4_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4909-9

  • Online ISBN: 978-1-4615-0067-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics