Key words

1 Introduction and Background

Throughout the note, we fix a Euclidean space V =  ℝ d + 1, and consider the Euclidean spheres X = S d ⊂ V, and Y = S d ⊂ V  ∗ . For p ∈ Y, C p  ⊂ X will denote the copy of S d − 1 ⊂ X given by C p  = { q ∈ X : ⟨q, p⟩ = 0}. Let σ d − 1(q) denote the SO(d)-invariant probability measure on C p . The set C q  ⊂ Yand the measure σ d − 1(p) on it are defined similarly. Then the spherical Radon transform is defined as follows:

$$\displaystyle\begin{array}{rcl} & & \mathcal{R} : {C}^{\infty }(X) \rightarrow {C}^{\infty }(Y ) \\ & & \mathcal{R}f(p) =\displaystyle\int _{C_{p}}f(q)d\sigma _{d-1}(q).\end{array}$$

Let σ be the unique SO(d + 1)-invariant probability measure on the incidence variety Z = { (q, p) ∈ X ×Y: ⟨q, p⟩ = 0}. Assume one is given a smooth, not necessarily positive measure dμ on Z, given by μ(q, p)σ where μ ∈ C (Z), and which satisfies μ( ± q, ± p) = μ(q, p) (call such μ symmetric). Introduce \(\mathcal{R}_{\mu } : {C}^{\infty }(X) \rightarrow {C}^{\infty }(Y )\) by

$$(\mathcal{R}_{\mu }f)(p) =\displaystyle\int _{C_{p}}f(q)\mu (q,p)d\sigma _{d-1}(q).$$

Introduce also the dual Radon transform \(\mathcal{R}_{\mu }^{T} : {C}^{\infty }(Y ) \rightarrow {C}^{\infty }(X)\) which is formally adjoint to \(\mathcal{R}_{\mu }\) and given by

$$(\mathcal{R}_{\mu }^{T}g)(q) =\displaystyle\int _{ C_{q}}g(p)\mu (q,p)d\sigma _{d-1}(p).$$

Let \(L_{s}^{2}(\mathbb{P}X)\) and \(L_{s}^{2}(\mathbb{P}Y )\) denote the Sobolev space of even functions on X and Y, respectively. It is well known (see [2]) that the spherical Radon transform extends to an isomorphism of Sobolev spaces:

$$\mathcal{R} : L_{s}^{2}(\mathbb{P}X) \rightarrow L_{ s+\frac{d-1} {2} }^{2}(\mathbb{P}Y )$$

for every \(s \in \mathbb{R}\). For general μ as above, \(\mathcal{R}_{\mu }\) is a Fourier integral operator of order \(\frac{d-1} {2}\) (see [3, 5]), and so extends to a bounded map \(\mathcal{R}_{\mu } : L_{s}^{2}(\mathbb{P}X) \rightarrow L_{s+\frac{d-1} {2} }^{2}(\mathbb{P}Y )\). We look for conditions on μ so that this is again an isomorphism.

It follows from Guillemin’s theorem on general Radon transforms associated to double fibrations [1], that \(\mathcal{R}_{\mu }^{T}\mathcal{R}_{\mu } : {C}^{\infty }(\mathbb{P}X) \rightarrow {C}^{\infty }(\mathbb{P}X)\) is an elliptic pseudo-differential operator of order d − 1 for all smooth, positive, symmetric measures μ on Z (for completeness, this is verified in the Appendix). The dependence of the principal symbol of \(\mathcal{R}_{\mu }^{T}\mathcal{R}_{\mu }\) on μ was investigated in [5]. In this note, we analyze the dependence on μ of the operator norm of \(\mathcal{R}_{\mu }^{T}\mathcal{R}_{\mu } : L_{s}^{2}(\mathbb{P}X) \rightarrow L_{s+(d-1)}^{2}(\mathbb{P}X)\). We then give a sufficient condition on a perturbation μ of μ0 so that \(\mathcal{R}_{\mu } : {C}^{\infty }(\mathbb{P}X) \rightarrow {C}^{\infty }(\mathbb{P}Y )\) remains an isomorphism. Namely, we prove the following

Theorem. The set of C measures μ on Z for which \(\mathcal{R}_{\mu } : {C}^{\infty }(\mathbb{P}X) \rightarrow {C}^{\infty }(\mathbb{P}Y )\) is an isomorphism, is open in the C 2d+1 (Z) topology.

2 Bounding the Norm of \(\mathcal{R}_{\nu }^{T}\mathcal{R}_{\mu }\)

We start by recalling an equivalent description of the Radon transform. Consider the double fibration

Let σ X  = π ∗ σ and σ Y  = ρ ∗ σ be the rotation-invariant probability measures on X and Y, respectively. Then for f ∈ C (X), \((\mathcal{R}f)\sigma _{Y } = \rho _{{\ast}}(\sigma ({\pi }^{{\ast}}f))\). For smooth symmetric measures dμ, dν on Z, given by μ(q, p)σ and ν(q, p)σ we can define \(\mathcal{R}_{\mu } : {C}^{\infty }(X) \rightarrow {C}^{\infty }(Y )\), \(\mathcal{R}_{\nu }^{T} : {C}^{\infty }(Y ) \rightarrow {C}^{\infty }(X)\) respectively by

$$(\mathcal{R}_{\mu }f)\sigma _{Y } = \rho _{{\ast}}(\mu \sigma ({\pi }^{{\ast}}f))$$

and

$$(\mathcal{R}_{\nu }^{T}g)\sigma _{ X} = \pi _{{\ast}}(\nu \sigma ({\rho }^{{\ast}}g)).$$

It follows from [1] that both \(\mathcal{R}_{\mu }\) and \(\mathcal{R}_{\nu }^{T}\) are Fourier integral operators of order \(\frac{d-1} {2}\). Thus we restrict to even functions and consider \(\mathcal{R}_{\mu } : L_{s}^{2}(\mathbb{P}X) \rightarrow L_{s+\frac{d-1} {2} }^{2}(\mathbb{P}Y )\) and \(\mathcal{R}_{\nu }^{T} : L_{s+\frac{d-1} {2} }^{2}(\mathbb{P}Y ) \rightarrow L_{s+(d-1)}^{2}(\mathbb{P}X)\).

As before, q will denote a point in X and p a point in Y. We will often write q ∈ p instead of ⟨q, p⟩ = 0 ⇔ q ∈ C p  ⇔ p ∈ C q . In the following, the functions f, g are even. We also assume d ≥ 2.

Proposition 1.

The Schwartz kernel of \(\mathcal{R}_{\nu }^{T}\mathcal{R}_{\mu } : L_{s}^{2}(\mathbb{P}X) \rightarrow L_{s+(d-1)}^{2}(\mathbb{P}X)\) is

$$K(q^{\prime},q) = \frac{c_{d}} {\sin \text{dist}(q^{\prime},q)}\alpha (q,q^{\prime})$$

that is,

$$\mathcal{R}_{\nu }^{T}\mathcal{R}_{ \mu }f(q^{\prime}) =\displaystyle\int _{X}f(q)K(q^{\prime},q)d\sigma _{X}(q).$$

Here c d is a constant, and α(q,q′) is the average over all p ∈ Y s.t. q,q′∈ p of μ(q,p)ν(q′,p). More precisely,

$$\alpha (q,q^{\prime}) =\displaystyle\int _{SO(d-1)}\mu (q,Mp_{0})\nu (q^{\prime},Mp_{0})dM$$

where SO(d − 1) ={ g ∈ SO(d + 1) : gq = q,gq′ = q′}, \(C_{p_{0}}\) is any fixed copy of S d through q,q′, and dM is the Haar probability measure on SO(d − 1).

Proof.

Fix some q′ ∈ X, and p 0 ∈ Ys.t. q′ ∈ p 0. Let SO(d) ⊂ SO(d + 1) be the stabilizer of q′ ∈ X. For g ∈ C (Y) we may write

$$\mathcal{R}_{\nu }^{T}g(q^{\prime}) =\displaystyle\int _{ p\ni q^{\prime}}g(p)\nu (q^{\prime},p)d\sigma _{d-1}(p) =\displaystyle\int _{SO(d)}g(Mp_{0})\nu (q^{\prime},Mp_{0})dM$$

where dM is the Haar probability measure on SO(d). Then taking

$$g(p) = \mathcal{R}_{\mu }f(p) =\displaystyle\int _{\tilde{q}\in p}f(\tilde{q})\mu (\tilde{q},p)d\sigma _{d-1}(\tilde{q})$$

we get

$$\displaystyle\begin{array}{rcl} \mathcal{R}_{\nu }^{T}\mathcal{R}_{ \mu }f(q^{\prime})& =& \displaystyle\int _{SO(d)}\Big{(}\displaystyle\int _{\tilde{q}\in Mp_{0}}f(\tilde{q})\mu (\tilde{q},Mp_{0})d\sigma _{d-1}(\tilde{q})\Big{)}\nu (q^{\prime},Mp_{0})dM \\ & =& \displaystyle\int _{SO(d)}\Big{(}\displaystyle\int _{\tilde{q}\in p_{0}}f(M\tilde{q})\mu (M\tilde{q},Mp_{0})d\sigma _{d-1}(\tilde{q})\Big{)}\nu (q^{\prime},Mp_{0})dM \\ & =& \displaystyle\int _{\tilde{q}\in p_{0}}d\sigma _{d-1}(\tilde{q})\displaystyle\int _{SO(d)}f(M\tilde{q})\mu (M\tilde{q},Mp_{0})\nu (q^{\prime},Mp_{0})dM.\end{array}$$

Denote \(\theta = \text{dist}(\tilde{q},q^{\prime})\), and S θ d − 1 = { q : dist(q′, q) = θ}. Let dσ d − 1 θ(q) denote the rotationally invariant probability measure on S θ d − 1. The inner integral may be written as

$$\displaystyle\int _{S_{\theta }^{d-1}}f(q)\alpha (q,q^{\prime})d\sigma _{d-1}^{\theta }(q).$$

Here α(q, q′) =  SO(d − 1)μ(q, Mp 0)ν(q′, Mp 0)dM with SO(d − 1) = Stab(q) ∩ Stab(q 0) is just the average of μ(q, p)ν(q′, p) over all (d − 1)-dimensional spheres C p containing both q and q′. Then

$$\mathcal{R}_{\nu }^{T}\mathcal{R}_{ \mu }f(q^{\prime}) =\displaystyle\int _{\tilde{q}\in p_{0}}d\sigma _{d-1}(\tilde{q})\displaystyle\int _{S_{\theta }^{d-1}}f(q)\alpha (q,q^{\prime})d\sigma _{d-1}^{\theta }(q)$$

and since the inner integral only depends on \(\theta = \text{dist}(\tilde{q},q^{\prime})\), this may be rewritten as

$$c_{d}\displaystyle\int _{0}^{\pi /2}d{\theta \sin }^{d-2}\theta \displaystyle\int _{ S_{\theta }^{d-1}}f(q)\alpha (q,q^{\prime})d\sigma _{d-1}^{\theta }(q).$$

Finally, dσ d  = c d sind − 1θdθdσ d − 1 θ, and so

$$\mathcal{R}_{\nu }^{T}\mathcal{R}_{ \mu }f(q^{\prime}) = c_{d}\displaystyle\int _{X}\frac{1} {\sin \theta }f(q)\alpha (q,q^{\prime})d\sigma _{d}(q).$$

We conclude that the Schwartz kernel is

$$K(q^{\prime},q) = \frac{c_{d}} {\sin \text{dist}(q^{\prime},q)}\alpha (q,q^{\prime}).$$

We proceed to estimate the norm of \(\mathcal{R}_{\nu }^{T}\mathcal{R}_{\mu }\). Our main tool will be the following proposition proved in Sect. C

Proposition.

Consider a pseudodifferential operator P of order m

$$P : L_{s+m}^{2}({\mathbb{R}}^{n}) \rightarrow L_{ s}^{2}({\mathbb{R}}^{n})$$

between Sobolev spaces with x−compactly supported symbol p(x,ξ) in \(K \subset {\mathbb{R}}^{n}\) s.t.

$$\vert D_{x}^{\alpha }p(x,\xi )\vert \leq C_{ \alpha 0}{(1 + \vert \xi \vert )}^{\alpha }.$$

There exists a constant C(n,s) such that

$$\|P\|_{L_{s+m}^{2}({\mathbb{R}}^{n})\rightarrow L_{s}^{2}({\mathbb{R}}^{n})} \leq C(n,s)\sup\limits_{\vert \alpha \vert \leq n+\lfloor \vert s\vert \rfloor +1}C_{\alpha 0}\vert K\vert.$$

Proposition 2.

The norm of \(\mathcal{R}_{\nu }^{T}\mathcal{R}_{\mu } : L_{-(d-1)}^{2}(\mathbb{P}X) \rightarrow L_{0}^{2}(\mathbb{P}X)\) is bounded from above by

$$\|\mathcal{R}_{\nu }^{T}\mathcal{R}_{ \mu }\| \leq C\displaystyle\sum _{j+k=0}^{2d+1}\|{D}^{j}\mu \|_{ \infty }\|{D}^{k}\nu \|_{ \infty }$$

for some constant C dependent on the double fibration.

Proof.

First introduce coordinate charts. Choose a partition of unity χ i (q′) corresponding to a covering of X by charts U i , and a function \(\rho : [0,\infty ) \rightarrow \mathbb{R}_{+}\) with support in [0, 1] s.t. ρ(r) = 1 for \(r \leq \frac{1} {2}\). Write

$$\displaystyle\begin{array}{rcl} K(q^{\prime},q)& =& \displaystyle\sum _{i}K_{i}(q^{\prime},q) + L_{i}(q^{\prime},q) \\ K_{i}(q^{\prime},q)& =& \chi _{i}(q^{\prime})\rho (\sin \text{dist}(q^{\prime},q))K(q^{\prime},q) \\ \end{array}$$

and

$$L_{i}(q^{\prime},q) = \chi _{i}(q^{\prime})(1 - \rho (\sin \text{dist}(q^{\prime},q)))K(q^{\prime},q).$$

Let \(\mathcal{R}_{\nu }^{T}\mathcal{R}_{\mu } =\sum _{i}T_{K_{i}} + T_{L_{i}}\) be the corresponding decomposition for the operators.

First we will bound the norm of the diagonal terms, i.e., the operators defined by K i . Fix i, and choose some point q′ ∈ U i . Introduce polar coordinates (r, ψ) around q′ so that ψ ∈ S 1 d − 1(q′) and r = sinθ for \(r \leq \frac{1} {2}\), θ = dist(q, q′). Note that α(q′, (r, ψ)) = α(q′, (r, − ψ)). By Proposition 5, the corresponding symbol is

$$p_{1}(q^{\prime},\xi ) = \chi _{i}(q^{\prime})\displaystyle\int _{0}^{1}\displaystyle\int _{{ S}^{d-1}} \frac{\alpha (q^{\prime},r\psi )} {r} {e}^{-i\langle \xi,\psi \rangle }\rho (r){r}^{d-1}drd\psi.$$

For a given q′, introduce spherical coordinates ψ = (ϕ, ϕ1, , ϕ d − 2) 0 ≤ ϕ ≤ π, on S 1 d − 1(q′) in such a way that cosϕ = ψ1; Take ξ0 = (1, 0, , 0). Then

$$p_{1}(q^{\prime},T\xi _{0}) = C_{d}\displaystyle\int _{0}^{1}\rho (r){r}^{d-2}dr\displaystyle\int _{ 0}^{\pi }m(q^{\prime},r,\phi ){e{}^{-iTr\cos \phi }\cos }^{d-2}\phi d\phi $$

where m(q′, r, ϕ) = χ i (q′) 0 π …∫ 0 π 0 dϕ1 …dϕ d − 2α(q′, r, ϕ, ϕ1, , ϕ d − 2). We then have m(q′, r, π ∕ 2 + ϕ) = m(q′, r, π ∕ 2 − ϕ). Take t = cosϕ and M(q′, r, t) = m(q′, r, arccost). Then M(q′, r, t) = M(q′, r, − t) and

$$p_{1}(q^{\prime},T\xi _{0}) = C_{d}\displaystyle\int _{0}^{1}\rho (r){r}^{d-2}dr\displaystyle\int _{ -1}^{1}M(q^{\prime},r,t){e}^{-iTrt}{(1 - {t}^{2})}^{\frac{d-3} {2} }dt.$$

Since M is even, we may write

$$p_{1}(q^{\prime},T\xi _{0}) = 2\displaystyle\int _{0}^{1}\rho (r){r}^{d-2}dr\displaystyle\int _{ 0}^{1}M(q^{\prime},r,t)\cos (Trt){(1 - {t}^{2})}^{\frac{d-3} {2} }dt$$

and so for all multi-indices α

$$D_{q^{\prime}}^{\alpha }p_{ 1}(q^{\prime},T\xi _{0}) = 2\displaystyle\int _{0}^{1}\rho (r){r}^{d-2}dr\displaystyle\int _{ 0}^{1}D_{ q^{\prime}}^{\alpha }M(q^{\prime},r,t)\cos (Trt){(1 - {t}^{2})}^{\frac{d-3} {2} }dt.$$

Define as in Appendix A

$$I(d,\rho,m) =\displaystyle\int _{ 0}^{1}\rho (r){r}^{d-2}dr\displaystyle\int _{ 0}^{1}M(q^{\prime},r,t)\cos (Trt){(1 - {t}^{2})}^{\frac{d-3} {2} }dt$$

then we can write

$$D_{q^{\prime}}^{\alpha }p_{ 1}(q^{\prime},T\xi _{0}) = 2I(d,\rho,D_{q^{\prime}}^{\alpha }m(q^{\prime},r,\phi ))$$

and conclude by Proposition 3 that

$$\displaystyle\begin{array}{rcl} \vert p_{1}(q^{\prime},T\xi _{0})\vert & \leq & \frac{C} {{T}^{d-1}}\displaystyle\sum _{\begin{array}{c} a + b \leq d \\ a \leq d/2,b \leq d - 1\end{array} }\sup\frac{{\partial }^{a+b}} {\partial {r}^{a}\partial {\phi }^{b}}m \\ &\leq & \frac{C} {{T}^{d-1}}\displaystyle\sum _{j+k\leq d}\|{D}^{j}\mu \|_{ \infty }\|{D}^{k}\nu \|_{ \infty } \\ \end{array}$$

and similarly for all multi-indices α

$$\vert D_{q^{\prime}}^{\alpha }p_{ 1}(q^{\prime},T\xi _{0})\vert \leq \frac{C} {{T}^{d-1}}\displaystyle\sum _{j+k\leq \vert \alpha \vert +d}\|{D}^{j}\mu \|_{ \infty }\|{D}^{k}\nu \|_{ \infty }.$$

It is also immediate that

$$\vert p_{1}(q^{\prime},T\xi _{0})\vert \leq C_{d}\displaystyle\int _{0}^{1}\rho (r){r}^{d-2}dr\displaystyle\int _{ 0}^{\pi }\vert m(q^{\prime},r,\phi )\vert d\phi \leq C\|\mu \|_{ \infty }\|\nu \|_{\infty }$$

and similarly

$$\vert D_{q^{\prime}}^{\alpha }p_{ 1}(q^{\prime},T\xi _{0})\vert \leq C\displaystyle\sum _{j+k\leq \vert \alpha \vert }\|{D}^{j}\mu \|_{ \infty }\|{D}^{k}\nu \|_{ \infty }.$$

So we can write

$$\vert D_{q^{\prime}}^{\alpha }p_{ 1}(q^{\prime},\xi )\vert \leq \frac{C} {{(1 + \vert \xi \vert )}^{d-1}}\displaystyle\sum _{j+k\leq \vert \alpha \vert +d}\|{D}^{j}\mu \|_{ \infty }\|{D}^{k}\nu \|_{ \infty }$$

for some universal constant C = C(d). Then choosing s = 0 and | α |  = d + 1 in Proposition 4 we get that

$$\|T_{K_{i}}\|_{L_{-(d-1)}^{2}(\mathbb{P}X)\rightarrow L_{0}^{2}(\mathbb{P}X)} \leq C\displaystyle\sum _{j+k=0}^{2d+1}\|{D}^{j}\mu \|_{ \infty }\|{D}^{k}\nu \|_{ \infty }.$$

Now we bound the norm of the off-diagonal term, namely the sum of operators corresponding to L i . They constitute a smoothing operator T L (μ, ν); its Schwartz kernel k(q′, q) = (1 − ρ(dist(q′, q)))K(q′, q) is a smooth function in both arguments. Denoting by ∇ j : C (X) → (T  ∗  X) ⊗ j the j-th derivative obtained from the Levi-Civita connection,

$$\displaystyle\begin{array}{rcl} & & \left \|\displaystyle\int _{X}d\sigma _{X}(q)f(q)k(q^{\prime},q)\right \|_{L_{d-1}^{2}(\mathbb{P}X)}^{2} \\ & & \quad =\displaystyle\int _{X}{\vert }\nabla _{q^{\prime}}^{d-1}\displaystyle\int _{ X}d\sigma _{X}(q)f(q)k(q^{\prime},q){{\vert }}^{2}d\sigma _{ X}(q^{\prime}) \\ & & \quad =\displaystyle\int _{X}{\vert }\displaystyle\int _{X}d\sigma _{X}(q)f(q)\nabla _{q^{\prime}}^{d-1}k(q^{\prime},q){{\vert }}^{2}d\sigma _{ X}(q^{\prime}) \\ & & \quad \leq \displaystyle\int _{X}d\sigma _{X}(q^{\prime})\left (\displaystyle\int _{X}\vert f{(q)}^{2}\vert d\sigma _{ X}(q)\displaystyle\int _{X}\vert \nabla _{q^{\prime}}^{d-1}k(q^{\prime},q){\vert }^{2}d\sigma _{ X}(q)\right ) \\ & & \quad =\| f\|_{{L}^{2}(X)}^{2}\displaystyle\int _{ X}\vert \nabla _{q^{\prime}}^{d-1}k(q^{\prime},q){\vert }^{2}d\sigma _{ X}(q) \\ \end{array}$$

and

$$\sup\limits_{q^{\prime}}\sqrt{\displaystyle\int _{X } \vert \nabla _{q^{\prime} }^{d-1 }k(q^{\prime}, q){\vert }^{2 } d\sigma _{X } (q)} \leq C\displaystyle\sum _{j+k\leq d-1}\|{D}^{j}\mu \|_{ \infty }\|{D}^{k}\nu \|_{ \infty }.$$

So

$$\|T_{L}(\mu,\nu )\|_{L_{0}^{2}(\mathbb{P}X)\rightarrow L_{d-1}^{2}(\mathbb{P}X)} \leq C\displaystyle\sum _{j+k\leq d-1}\|{D}^{j}\mu \|_{ \infty }\|{D}^{k}\nu \|_{ \infty }.$$

It is easy to see that the adjoint operator \(T_{L}{(\mu,\nu )}^{{\ast}} : L_{(d-1)}^{2}{(\mathbb{P}X)}^{{\ast}}\rightarrow L_{0}^{2}{(\mathbb{P}X)}^{{\ast}}\) equals T L (ν, μ) after the isomorphic identification \(L_{s}^{2}{(\mathbb{P}X)}^{{\ast}}\simeq L_{-s}^{2}(\mathbb{P}X)\) for s = 0, d − 1. Since the bound above is symmetric in μ, ν we conclude

$$\|T_{L}(\mu,\nu )\|_{L_{-(d-1)}^{2}(\mathbb{P}X)\rightarrow L_{0}^{2}(\mathbb{P}X)} \leq C\displaystyle\sum _{j+k\leq d-1}\|{D}^{j}\mu \|_{ \infty }\|{D}^{k}\nu \|_{ \infty }.$$

Finally

$$\|\mathcal{R}_{\nu }^{T}\mathcal{R}_{ \mu }\| \leq \|\displaystyle\sum _{i}T_{K_{i}}\| +\| T_{L}\| \leq C\displaystyle\sum _{j+k=0}^{2d+1}\|{D}^{j}\mu \|_{ \infty }\|{D}^{k}\nu \|_{ \infty }.$$

Theorem 1.

Assume d ≥ 2, and let μ 0 ∈ C (Z) be such that \(\mathcal{R}_{\mu _{0}} : {C}^{\infty }(\mathbb{P}X) \rightarrow {C}^{\infty }(\mathbb{P}Y )\) is an isomorphism. Then there exists ε 0 > 0 (depending on the double fibration), such that if \(\|\mu - \mu _{0}\|_{{C}^{2d+1}(Z)} < \epsilon _{0}\) then \(\mathcal{R}_{\mu } : {C}^{\infty }(\mathbb{P}X) \rightarrow {C}^{\infty }(\mathbb{P}Y )\) is an isomorphism (for all s).

Proof.

Since \(\mathcal{R}_{\mu _{0}}^{T}\mathcal{R}_{\mu _{0}} : L_{-(d-1)}^{2}(\mathbb{P}X) \rightarrow L_{0}^{2}(\mathbb{P}X)\) (and likewise for Y) is elliptic, it is an isomorphism. Let us verify that both of the maps \(\mathcal{R}_{\mu }^{T}\mathcal{R}_{\mu } : L_{-(d-1)}^{2}(\mathbb{P}X) \rightarrow L_{0}^{2}(\mathbb{P}X)\) and \(\mathcal{R}_{\mu }\mathcal{R}_{\mu }^{T} : L_{-(d-1)}^{2}(\mathbb{P}Y ) \rightarrow L_{0}^{2}(\mathbb{P}Y )\) remain an isomorphism for small perturbations μ of μ0 in the C 2d + 1(Z) norm:

$$\displaystyle\begin{array}{rcl} \|\mathcal{R}_{\mu }^{T}\mathcal{R}_{ \mu } -\mathcal{R}_{\mu _{0}}^{T}\mathcal{R}_{ \mu _{0}}\|& =& \|(\mathcal{R}_{\mu _{0}}^{T} + \mathcal{R}_{ \mu -\mu _{0}}^{T})(\mathcal{R}_{ \mu _{0}} + \mathcal{R}_{\mu -\mu _{0}}) -\mathcal{R}_{\mu _{0}}^{T}\mathcal{R}_{ \mu _{0}}\| \\ & \leq & \|\mathcal{R}_{\mu _{0}}^{T}\mathcal{R}_{ \mu -\mu _{0}}\| +\| \mathcal{R}_{\mu -\mu _{0}}^{T}\mathcal{R}_{ \mu _{0}}\| +\| \mathcal{R}_{\mu -\mu _{0}}^{T}\mathcal{R}_{ \mu -\mu _{0}}\| \\ \end{array}$$

so by Corollary 2, there is an ε0 > 0 s.t. all norms are indeed small when \(\|\mu - \mu _{0}\|_{{C}^{2d+1}(Z)} < \epsilon _{0}\). The operator \(\mathcal{R}_{\mu }\mathcal{R}_{\mu }^{T}\) is treated identically, and we take the minimal of the two ε0.

Since both \(\mathcal{R}_{\mu }^{T}\mathcal{R}_{\mu }\) and \(\mathcal{R}_{\mu }\mathcal{R}_{\mu }^{T}\) are elliptic operators, the dimension of the kernel and cokernel are independent of s. It follows that \(\mathcal{R}_{\mu }^{T}\mathcal{R}_{\mu } : L_{s}^{2}(\mathbb{P}X) \rightarrow L_{s+d-1}^{2}(\mathbb{P}X)\) and \(\mathcal{R}_{\mu }\mathcal{R}_{\mu }^{T} : L_{s}^{2}(\mathbb{P}Y ) \rightarrow L_{s+d-1}^{2}(\mathbb{P}Y )\) are isomorphisms for all s. In particular, \(\text{Ker}(\mathcal{R}_{\mu } : L_{s}^{2}(\mathbb{P}X) \rightarrow L_{s+\frac{d-1} {2} }^{2}(\mathbb{P}Y )) = 0\) and \(\text{Coker}(\mathcal{R}_{\mu } : L_{s}^{2}(\mathbb{P}X) \rightarrow L_{s+\frac{d-1} {2} }^{2}(\mathbb{P}Y )) = 0\), implying by the open mapping theorem that \(\mathcal{R}_{\mu } : L_{s}^{2}(\mathbb{P}X) \rightarrow L_{s+\frac{d-1} {2} }^{2}(\mathbb{P}Y )\) is an isomorphism for all s. The result follows.

Remark 1.

It is unlikely that the result is sharp. For instance, in the case of d = 1 one only needs \(\|\mu - 1\|_{{C}^{0}}\) to be small to conclude that \(\mathcal{R}_{\mu }\) is an isomorphism, while the statement (although non-applicable for d = 1) would suggest bounding the C 3-norm.

3 Appendix

3.1 A Some Integral Estimates

Fix some real T > 0. For an integer d ≥ 2, a smooth function \(\rho : [0,\infty ) \rightarrow \mathbb{R}\) compactly supported in [0, 1), and smooth functions \(m(r,\phi ),n(r,\phi ) : [0,\infty ) \times [0,\pi ]\mathbb{R}\) we define the integrals

$$I(d,\rho,m) =\displaystyle\int _{ 0}^{1}\rho (r){r}^{d-2}dr\displaystyle\int _{ 0}^{1}M(r,t)\cos (Trt){(1 - {t}^{2})}^{\frac{d-3} {2} }dt$$

and

$$J(d,\rho,m) =\displaystyle\int _{ 0}^{1}\rho (r){r}^{d-2}dr\displaystyle\int _{ 0}^{1}N(r,t)\sin (Trt){(1 - {t}^{2})}^{\frac{d-3} {2} }dt$$

where M(r, t) = m(r, ϕ) and N(r, t) = n(r, ϕ) for t = cosϕ. We assume m is even w.r.t. \(\frac{\pi } {2}\), namely \(m(r, \frac{\pi } {2} + \phi ) = m(r, \frac{\pi } {2} - \phi )\;\Longleftrightarrow\;M(r,t) = M(r,-t)\); while n is odd, i.e. \(n(r, \frac{\pi } {2} + \phi ) = -n(r, \frac{\pi } {2} - \phi )\;\Longleftrightarrow\;N(r,t) = -N(r,-t).\)

Proposition 3.

There exists a constant C = C(d,ρ) such that for d ≥ 2 and all even functions m

$$\vert I(d,\rho,m)\vert \leq \frac{C} {{T}^{d-1}}\displaystyle\sum _{\begin{array}{c} a + b \leq d \\ a \leq d/2,b \leq d - 1 \end{array} }\sup {\vert } \frac{{\partial }^{a+b}} {\partial {r}^{a}\partial {\phi }^{b}}m{\vert }$$

and for odd functions n

$$\vert J(d,\rho,n)\vert \leq \frac{C} {{T}^{d-1}}\displaystyle\sum _{\begin{array}{c} a + b \leq d \\ a \leq d/2,b \leq d - 1 \end{array} }\sup {\vert } \frac{{\partial }^{a+b}} {\partial {r}^{a}\partial {\phi }^{b}}n{\vert }.$$

Proof.

Induction on d. Start by verifying the bounds for d = 2. To bound

$$I(2,\rho,m) =\displaystyle\int _{ 0}^{1}{(1 - {t}^{2})}^{-\frac{1} {2} }\displaystyle\int _{0}^{1}\rho (r)M(r,t)\cos (Trt)dr$$

we first integrate the inner integral by parts:

$$\displaystyle\int _{0}^{1}M(r,t)\rho (r)\cos (Trt)dr = - \frac{1} {Tt}\displaystyle\int _{0}^{1}\sin (Trt)(M(r,t)\rho ^{\prime}(r) + \frac{\partial M} {\partial r} (r,t)\rho (r))dr$$

Let us bound separately

$$\displaystyle\int _{0}^{1} \frac{dt} {t\sqrt{1 - {t}^{2}}}\displaystyle\int _{0}^{1}\sin (Trt)M(r,t)\rho ^{\prime}(r)dr$$

and

$$\displaystyle\begin{array}{rcl} \displaystyle\int _{0}^{1} \frac{dt} {t\sqrt{1 - {t}^{2}}}\displaystyle\int _{0}^{1}\sin (Trt)\frac{\partial M} {\partial r} (r,t)\rho (r)dr.& & \\ \end{array}$$

Now

$$\displaystyle\begin{array}{rcl} {\vert }\displaystyle\int _{\frac{1} {2} }^{1}\frac{\sin (Trt)M(r,t)dt} {t\sqrt{1 - {t}^{2}}} {\vert }\leq C\sup \vert m\vert & & \\ \end{array}$$

and since \(\frac{\partial M} {\partial t} = -\frac{\partial m} {\partial \phi } \frac{1} {\sqrt{1-{t}^{2}}}\),

$$\displaystyle\begin{array}{rcl} & & \displaystyle\int _{0}^{\frac{1} {2} } \frac{\sin (Trt)M(r,t)dt} {t\sqrt{1 - {t}^{2}}} \\ & & = Si(Trt) \frac{M(r,t)} {\sqrt{1 - {t}^{2}}}{\vert }_{0}^{\frac{1} {2} } \\ & & \qquad +\displaystyle\int _{ 0}^{\frac{1} {2} }Si(Trt)\Bigg{(}\frac{\partial m} {\partial \phi } (r,t) \frac{1} {{\sqrt{1 - {t}^{2}}}^{2}} + M(r,t) \frac{t} {{(1 - {t}^{2})}^{3/2}}\Bigg{)}dt\end{array}$$

Now since Si is bounded, it follows that

$${\vert }\displaystyle\int _{0}^{\frac{1} {2} } \frac{\sin (Trt)M(r,t)dt} {t\sqrt{1 - {t}^{2}}} {\vert }\leq C\left (\sup \vert m\vert +\sup \left \vert \frac{\partial m} {\partial \phi } \right \vert \right )$$

Thus

$$\displaystyle\begin{array}{rcl} & & {\vert }\displaystyle\int _{0}^{1} \frac{dt} {t\sqrt{1 - {t}^{2}}}\displaystyle\int _{0}^{1}\sin (Trt)M(r,t)\rho ^{\prime}(r)dr{\vert } \\ & &\quad \leq C\left (\sup \vert m\vert +\sup \left \vert \frac{\partial m} {\partial \phi } \right \vert \right )\displaystyle\int _{0}^{1}dr\vert \rho ^{\prime}(r)\vert \leq C\left (\sup \vert m\vert +\sup \left \vert \frac{\partial m} {\partial \phi } \right \vert \right )\end{array}$$

Similarly,

$${\vert }\displaystyle\int _{0}^{1} \frac{dt} {t\sqrt{1 - {t}^{2}}}\displaystyle\int _{0}^{1}\sin (Trt)\frac{\partial M} {\partial r} (r,t)\rho (r)dr{\vert }\leq C\left (\sup \left \vert \frac{\partial m} {\partial r} \right \vert +\sup \left \vert \frac{{\partial }^{2}m} {\partial r\partial \phi }\right \vert \right ).$$

Tracing back,

$$\vert I(2,\rho,m)\vert \leq \frac{C} {T}\left (\sup \vert m\vert +\sup \left \vert \frac{\partial m} {\partial r} \right \vert +\sup \left \vert \frac{\partial m} {\partial \phi } \right \vert +\sup \left \vert \frac{{\partial }^{2}m} {\partial r\partial \phi }\right \vert \right ).$$

Next we bound | J(2, ρ, n) | 

$$J(2,\rho,n) =\displaystyle\int _{ 0}^{1}{(1 - {t}^{2})}^{-1/2}dt\displaystyle\int _{ 0}^{1}N(r,t)\rho (r)\sin (Trt)dr.$$

Integrate the inner integral by parts:

$$\displaystyle\begin{array}{rcl} \displaystyle\int _{0}^{1}N(r,t)\rho (r)\sin (Trt)dr& =& - \frac{1} {Tt}\displaystyle\int _{0}^{1}(1 -\cos (Trt))(N(r,t)\rho ^{\prime}(r) \\ & & +\frac{\partial N} {\partial r} (r,t)\rho (r))dr.\end{array}$$

Let us bound separately

$$\displaystyle\int _{0}^{1} \frac{dt} {t\sqrt{1 - {t}^{2}}}\displaystyle\int _{0}^{1}(1 -\cos (Trt))N(r,t)\rho ^{\prime}(r)dr$$

and

$$\displaystyle\int _{0}^{1} \frac{dt} {t\sqrt{1 - {t}^{2}}}\displaystyle\int _{0}^{1}(1 -\cos (Trt))\frac{\partial N} {\partial r} (r,t)\rho (r)dr.$$

Now

$${\vert }\displaystyle\int _{\frac{1} {2} }^{1}\frac{(1 -\cos (Trt))N(r,t)dt} {t\sqrt{1 - {t}^{2}}} {\vert }\leq C\sup \vert n\vert $$

and since \(\frac{\partial N} {\partial t} = -\frac{\partial n} {\partial \phi } \frac{1} {\sqrt{1-{t}^{2}}}\) and N(r, 0) = 0 we get that \(\vert \frac{\partial } {\partial t}N(r,t)\vert \leq C\sup \vert \frac{\partial n} {\partial \phi }\vert \) for \(0 \leq t \leq \frac{1} {2}\) so \(\vert N(r,t)\vert \leq C\sup \vert \frac{\partial n} {\partial \phi }\vert t\) and

$${\vert }\displaystyle\int _{0}^{\frac{1} {2} } \frac{(1 -\cos (Trt))N(r,t)dt} {t\sqrt{1 - {t}^{2}}} {\vert }\leq C\sup \left \vert \frac{\partial n} {\partial \phi }\right \vert \displaystyle\int _{0}^{1} \frac{dt} {\sqrt{1 - {t}^{2}}} = C\sup \left \vert \frac{\partial n} {\partial \phi }\right \vert.$$

Thus

$$\displaystyle\begin{array}{rcl} & & {\vert }\displaystyle\int _{0}^{1} \frac{dt} {t\sqrt{1 - {t}^{2}}}\displaystyle\int _{0}^{1}(1 -\cos (Trt))N(r,t)\rho ^{\prime}(r)dr{\vert } \\ & &\quad \leq C\left (\sup \vert n\vert +\sup \left \vert \frac{\partial n} {\partial \phi }\right \vert \right )\displaystyle\int _{0}^{1}dr\vert \rho ^{\prime}(r)\vert \leq C\left (\sup \vert n\vert +\sup \left \vert \frac{\partial n} {\partial \phi }\right \vert \right )\end{array}$$

Similarly,

$${\vert }\displaystyle\int _{0}^{1} \frac{dt} {t\sqrt{1 - {t}^{2}}}\displaystyle\int _{0}^{1}(1 -\cos (Trt))\frac{\partial N} {\partial r} (r,t)\rho (r)dr{\vert }\leq C\left (\sup \left \vert \frac{\partial n} {\partial r}\right \vert +\sup \left \vert \frac{{\partial }^{2}n} {\partial r\partial \phi }\right \vert \right )$$

and putting all together,

$$\vert J(2,\rho,n)\vert \leq \frac{C} {T}\left (\sup \vert n\vert +\sup \left \vert \frac{\partial n} {\partial r}\right \vert +\sup \left \vert \frac{\partial n} {\partial \phi }\right \vert +\sup \left \vert \frac{{\partial }^{2}n} {\partial r\partial \phi }\right \vert \right )$$

as required.

Next consider the case d = 3. We bound I, J simultaneously. Apply integration by parts to the inner integrals:

$$\displaystyle\begin{array}{rcl} I(3,\rho,m)& =& \displaystyle\int _{0}^{1}\rho (r)rdr\displaystyle\int _{ 0}^{1}M(r,t)\cos (Trt)dt \\ & =& \frac{1} {T}\displaystyle\int _{0}^{1}r\rho (r)dr\displaystyle\int _{ 0}^{1}\frac{\partial m} {\partial \phi } (r,t) \frac{1} {\sqrt{1 - {t}^{2}}} \frac{\sin (Trt)} {r} dt \\ & & + \frac{1} {T}\displaystyle\int _{0}^{1}r\rho (r)M(r,1)\frac{\sin (Tr)} {r} dr \\ \end{array}$$

and similarly

$$\displaystyle\begin{array}{rcl} J(3,\rho,n)& =& -\frac{1} {T}\displaystyle\int _{0}^{1}r\rho (r)dr\displaystyle\int _{ 0}^{1}\frac{\partial n} {\partial \phi }(r,t) \frac{1} {\sqrt{1 - {t}^{2}}} \frac{\cos (Trt)} {r} dt \\ & & -\frac{1} {T}\displaystyle\int _{0}^{1}r\rho (r)\left (N(r,1)\frac{\cos (Tr)} {r} -\frac{N(r,0)} {r} \right )dr\end{array}$$

These first summands are

$$\frac{1} {T}\displaystyle\int _{0}^{1}\rho (r)dr\displaystyle\int _{ 0}^{1}\frac{\partial m} {\partial \phi } (r,t) \frac{1} {\sqrt{1 - {t}^{2}}}\sin (Trt)dt = \frac{1} {T}J\left (2,\rho, \frac{\partial m} {\partial \phi } \right )$$

and

$$-\frac{1} {T}\displaystyle\int _{0}^{1}\rho (r)dr\displaystyle\int _{ 0}^{1}\frac{\partial n} {\partial \phi }(r,t) \frac{1} {\sqrt{1 - {t}^{2}}}\cos (Trt)dt = -\frac{1} {T}I\left (2,\rho, \frac{\partial n} {\partial \phi }\right )$$

the second summand for I

$$\displaystyle\begin{array}{rcl} & & \frac{1} {T}\displaystyle\int _{0}^{1}r\rho (r)M(r,1)\frac{\sin (Tr)} {r} dr \\ & & \quad = \frac{1} {T}\displaystyle\int _{0}^{1}\rho (r)M(r,1)\sin (Tr)dr \\ & & \quad = -\frac{1} {T}\rho (r)M(r,1)\frac{\cos (Tr)} {T} {\vert }_{0}^{1} + \frac{1} {{T}^{2}}\displaystyle\int _{0}^{1}(\rho ^{\prime}(r)M(r,1) \\ & & \qquad + \rho (r) \frac{\partial } {\partial r}M(r,1))\cos (Tr)dr \\ \end{array}$$

is bounded by

$$\frac{C} {{T}^{2}}\left (\sup \vert m\vert +\sup \left \vert \frac{\partial m} {\partial r} \right \vert \right ).$$

Similarly since N(r, 0) = 0, also the second summand for J

$${\vert }\frac{1} {T}\displaystyle\int _{0}^{1}r\rho (r)N(r,1)\frac{\cos (Tr)} {r} dr{\vert }\leq \frac{C} {{T}^{2}}\left (\sup \vert n\vert +\sup \left \vert \frac{\partial n} {\partial r}\right \vert \right )$$

thus we showed that

$$\vert I(3,\rho,m)\vert \leq \frac{C(3,\rho )} {T} J(2,\rho, \frac{\partial m} {\partial \phi } ) + \frac{C(3,\rho )} {{T}^{2}} \left (\sup \vert m\vert +\sup \left \vert \frac{\partial m} {\partial r} \right \vert \right )$$

and

$$\vert J(3,\rho,n)\vert \leq \frac{C(3,\rho )} {T} I(2,\rho, \frac{\partial n} {\partial \phi }) + \frac{C(3,\rho )} {{T}^{2}} \left (\sup \vert n\vert +\sup \left \vert \frac{\partial n} {\partial r}\right \vert \right )$$

and plugging the already proved estimates for d = 2 concludes the case d = 3.

Finally, for d > 3 we will apply induction. Again consider both integrals simultaneously. Start by integrating by parts the inner integral: the boundary term is zero (for J since n is odd), so

$$\displaystyle\begin{array}{rcl} & & \displaystyle\int _{0}^{1}M(r,t)\cos (Trt){(1 - {t}^{2})}^{\frac{d-3} {2} }dt \\ & & \quad = \frac{1} {Tr}\displaystyle\int _{0}^{1}\sin (Trt)\left (\frac{\partial m} {\partial \phi } {(1 - {t}^{2})}^{\frac{d-4} {2} } + (d - 3)M(r,t)t{(1 - {t}^{2})}^{\frac{d-5} {2} }\right )dt \\ \end{array}$$
$$\displaystyle\begin{array}{rcl} & & \displaystyle\int _{0}^{1}N(r,t)\sin (Trt){(1 - {t}^{2})}^{\frac{d-3} {2} }dt \\ & & \quad = - \frac{1} {Tr}\displaystyle\int _{0}^{1}\cos (Trt)\left (\frac{\partial n} {\partial \phi }{(1 - {t}^{2})}^{\frac{d-4} {2} } + (d - 3)N(r,t)t{(1 - {t}^{2})}^{\frac{d-5} {2} }\right )dt.\end{array}$$

Thus

$$\displaystyle\begin{array}{rcl} I(d,\rho,m)& =& \displaystyle\int _{0}^{1}\rho (r){r}^{d-2}dr\displaystyle\int _{ 0}^{1}M(r,t)\cos (Trt){(1 - {t}^{2})}^{\frac{d-3} {2} }dt \\ & =& \frac{1} {T}\displaystyle\int _{0}^{1}\rho (r){r}^{d-3}dr\displaystyle\int _{ 0}^{1}\sin (Trt)\frac{\partial m} {\partial \phi } {(1 - {t}^{2})}^{\frac{d-4} {2} }dt \\ & & +\frac{C_{d}} {T} \displaystyle\int _{0}^{1}\rho (r){r}^{d-3}\displaystyle\int _{ 0}^{1}M(r,t)t{(1 - {t}^{2})}^{\frac{d-5} {2} }\sin (Trt)dt. \end{array}$$

and

$$\displaystyle\begin{array}{rcl} J(d,\rho,n)& =& \displaystyle\int _{0}^{1}\rho (r){r}^{d-2}dr\displaystyle\int _{ 0}^{1}N(r,t)\sin (Trt){(1 - {t}^{2})}^{\frac{d-3} {2} }dt \\ & =& -\frac{1} {T}\displaystyle\int _{0}^{1}\rho (r){r}^{d-3}dr\displaystyle\int _{ 0}^{1}\cos (Trt)\frac{\partial n} {\partial \phi }{(1 - {t}^{2})}^{\frac{d-4} {2} }dt \\ & & -\frac{C_{d}} {T} \displaystyle\int _{0}^{1}\rho (r){r}^{d-3}\displaystyle\int _{ 0}^{1}N(r,t)t{(1 - {t}^{2})}^{\frac{d-5} {2} }\cos (Trt)dt.\end{array}$$

The first terms are \(\frac{1} {T}J(d - 1,\rho, \frac{\partial m} {\partial \phi } )\) and \(-\frac{1} {T}I(d - 1,\rho, \frac{\partial n} {\partial \phi })\), respectively.

In the second term, first change the order of integration:

$$\displaystyle\begin{array}{rcl} & & \frac{C_{d}} {T} \displaystyle\int _{0}^{1}\rho (r){r}^{d-3}\displaystyle\int _{ 0}^{1}M(r,t)t{(1 - {t}^{2})}^{\frac{d-5} {2} }\sin (Trt)dt \\ & & \quad = \frac{C_{d}} {T} \displaystyle\int _{0}^{1}t{(1 - {t}^{2})}^{\frac{d-5} {2} }dt\displaystyle\int _{0}^{1}M(r,t)\sin (Trt){r}^{d-3}\rho (r)dr.\end{array}$$

Now apply integration by parts to the inner integral. Since d − 3 > 0 and ρ(1) = 0, again there is no boundary term:

$$\displaystyle\begin{array}{rcl} & & \displaystyle\int _{0}^{1}M(r,t)\sin (Trt){r}^{d-3}\rho (r)dr \\ & & =\displaystyle\int _{ 0}^{1}dr\frac{\cos (Trt)} {Tt} ({r}^{d-3}\rho (r)\frac{\partial M} {\partial r} (r,t) + ({r}^{d-3}\rho ^{\prime}(r) \\ & & \quad + (d - 3){r}^{d-4}\rho (r))M(r,t)) \\ \end{array}$$

Thus

$$\displaystyle\begin{array}{rcl} & & \frac{C_{d}} {T} \displaystyle\int _{0}^{1}\rho (r){r}^{d-3}\displaystyle\int _{ 0}^{1}M(r,t)t{(1 - {t}^{2})}^{\frac{d-5} {2} }\sin (Trt)dt \\ & & \quad = \frac{C_{d}} {{T}^{2}} \displaystyle\int _{0}^{1}{(1 - {t}^{2})}^{\frac{d-5} {2} }dt\displaystyle\int _{0}^{1}dr\cos (Trt){r}^{d-3}\rho (r)\frac{\partial M} {\partial r} (r,t) \\ & & \qquad + \frac{C_{d}} {{T}^{2}} \displaystyle\int _{0}^{1}{(1 - {t}^{2})}^{\frac{d-5} {2} }dt\displaystyle\int _{0}^{1}dr\cos (Trt)({r}^{d-3}\rho ^{\prime}(r) \\ & & \qquad + (d - 3){r}^{d-4}\rho (r))M(r,t) \\ & & \quad = \frac{C_{d}} {{T}^{2}} I\left (d - 2,r\rho (r), \frac{\partial m} {\partial r} \right ) + \frac{C_{d}} {{T}^{2}} I(d - 2,\rho (r) + r\rho ^{\prime}(r),m) \\ \end{array}$$

and the corresponding term for J:

$$\displaystyle\begin{array}{rcl} & & -\frac{C_{d}} {T} \displaystyle\int _{0}^{1}\rho (r){r}^{d-3}\displaystyle\int _{ 0}^{1}N(r,t)t{(1 - {t}^{2})}^{\frac{d-5} {2} }\cos (Trt)dt \\ & & = -\frac{C_{d}} {T} \displaystyle\int _{0}^{1}t{(1 - {t}^{2})}^{\frac{d-5} {2} }dt\displaystyle\int _{0}^{1}N(r,t)\cos (Trt){r}^{d-3}\rho (r)dr \\ & & = -\frac{C_{d}} {T} \displaystyle\int _{0}^{1}t{(1 - {t}^{2})}^{\frac{d-5} {2} }dt\displaystyle\int _{0}^{1}dr\frac{\sin (Trt)} {Tt} \\ & & \quad \times \left ({r}^{d-3}\rho (r)\frac{\partial N} {\partial r} (r,t) + ({r}^{d-3}\rho ^{\prime}(r) + (d - 3){r}^{d-4}\rho (r))N(r,t)\right ) \\ & & = -\frac{C_{d}} {{T}^{2}} J(d - 2,r\rho (r), \frac{\partial n} {\partial r} ) + \frac{C_{d}} {{T}^{2}} J(d - 2,\rho (r) + r\rho ^{\prime}(r),n) \\ \end{array}$$

and we conclude by induction.

3.2 B Guillemin’s Condition

For q ∈ X, we denote by \(\bar{q} \in X\) the unique point proportional to q and distinct from it. We will consider the projective space \(\mathbb{P}X = \mathbb{R}{\mathbb{P}}^{d}\), \(\mathbb{P}Y = \mathbb{R}{\mathbb{P}}^{d}\) and the projectivized incidence variety \(\mathbb{P}Z =\{ (q,p) \in \mathbb{P}X \times \mathbb{P}Y :\langle q,p\rangle = 0\}\).Consider the projectivized double fibration

Then any two fibers F p (ℙX) intersect transversally (since before projectivization, the only non-transversal intersection was between fibers over antipodal points). Denote N W  ⊂ T  ∗ (ℙX ×ℙY ), N E  ⊂ T  ∗ (X ×Y) the conormal bundles of W, E respectively. Since dimE = 2d − 1 and dim(X ×Y) = 2d, the fibers of N E , N W are one-dimensional. Recall that T (q, p) E = { (ξ, η) ∈ T q X ×T p Y: ⟨q, η⟩ + ⟨ξ, p⟩ = 0}. Therefore, N E over (q, p) ∈ E has its fiber spanned by (p, q) ∈ T q  ∗  X ×T p  ∗  Y. One thus has N E  ∖ 0 ⊂ (T  ∗  X ∖ 0) ×(T  ∗  Y ∖ 0), and ρ : N E  ∖ 0 → T  ∗  Y ∖ 0 given by ((q, p), t(p, q))↦(p, tq) is an immersion, which is two-to-one since \(\rho ((q,p),t(p,q)) = \rho ((\bar{q},p),(-t)(p,\bar{q}))\). The corresponding map ρ : N W  ∖ 0 → T  ∗  ℙY ∖ 0 is already an injective immersion. Thus Guillemin’s condition is satisfied, and we conclude

Corollary 1.

For any smooth positive measure \(\mu \in {\mathcal{M}}^{\infty }(\mathbb{P}Z)\) , ℛ μ T μ : C (ℙX) → C (ℙX) is an elliptic pseudodifferential operator.

3.3 C Pseudo-Differential Operators

For a survey of the subject, see for instance [4].We will study the norm of a pseudodifferential linear operator \(P : {C}^{\infty }({\mathbb{R}}^{n}) \rightarrow {C}^{\infty }({\mathbb{R}}^{n})\) which is given by its symbol p(x, ξ)

$$Pf(x) =\displaystyle\int d\xi {e}^{i\langle x,\xi \rangle }p(x,\xi )\hat{f}(\xi )$$

where p ∈ Sym m(K), i.e.,

  1. 1.

    \(p \in {C}^{\infty }({\mathbb{R}}^{n} \times {\mathbb{R}}^{n})\)

  2. 2.

    p has compact x − support \(K \subset {\mathbb{R}}^{n}\)

  3. 3.

     | D ξ β D x α p(x, ξ) | ≤ C αβ(1 +  | ξ | )m − | β | 

It is well known that for all \(s \in \mathbb{R}\), P extends to a bounded operator between Sobolev spaces

$$P : L_{s+m}^{2}({\mathbb{R}}^{n}) \rightarrow L_{ s}^{2}({\mathbb{R}}^{n})$$

We will trace the proof of this fact to understand the dependence on p of the operator norm \(\|P\|\).

Proposition 4.

There exists a constant C(n,s) such that

$$\|P\|_{L_{s+m}^{2}\rightarrow L_{s}^{2}} \leq C(n,s)\sup\limits_{\vert \alpha \vert \leq n+\lfloor \vert s\vert \rfloor +1}C_{\alpha 0}\vert K\vert $$

Proof.

All the integrals in the following are over \({\mathbb{R}}^{n}\). Start by integrating by parts:

$${\vert }\displaystyle\int dxD_{x}^{\alpha }p(x,\xi ){e}^{i\langle x,\zeta \rangle }{\vert } = {\vert }{\zeta }^{\alpha }{\vert }{\vert }\displaystyle\int dxp(x,\xi ){e}^{i\langle x,\zeta \rangle }{\vert }.$$

So

$$\displaystyle\begin{array}{rcl} \left \vert \displaystyle\int dxp(x,\xi ){e}^{i\langle x,\zeta \rangle }\right \vert & \leq & \min (\vert \zeta {\vert }^{-\vert \alpha \vert }C_{ \alpha 0}{(1 + \vert \xi \vert )}^{m}\vert K\vert,C_{ 00}{(1 + \vert \xi \vert )}^{m}\vert K\vert ) \\ & \leq & {2}^{\vert \alpha \vert }(C_{ 00} + C_{\alpha 0})\vert K\vert {(1 + \vert \xi \vert )}^{m}{(1 + \vert \zeta \vert )}^{-\vert \alpha \vert } \\ & =& C_{\alpha }\vert K\vert {(1 + \vert \xi \vert )}^{m}{(1 + \vert \zeta \vert )}^{-\vert \alpha \vert } \\ \end{array}$$

where C α = 2 | α | (C 00 + C α0). We want to bound

$$Pu(x) =\displaystyle\int d\xi {e}^{i\langle x,\xi \rangle }p(x,\xi )\hat{u}(\xi ).$$

Take \(v \in L_{-s}^{2}({\mathbb{R}}^{n})\), then

$$\displaystyle\begin{array}{rcl} (Pu,v)& =& \displaystyle\int d\zeta \hat{v}(\zeta )\hat{Pu}(\zeta ) =\displaystyle\int d\zeta \hat{v}(\zeta )\displaystyle\int dxPu(x){e}^{-i\langle x,\zeta \rangle } \\ & =& \displaystyle\int \displaystyle\int d\zeta dx\hat{v}(\zeta ){e}^{-i\langle x,\zeta \rangle }\displaystyle\int d\xi \hat{u}(\xi )p(x,\xi ){e}^{i\langle x,\xi \rangle } \\ & =& \displaystyle\int \displaystyle\int d\zeta d\xi \hat{u}(\xi )\hat{v}(\zeta )\displaystyle\int dxp(x,\xi ){e}^{i\langle x,\xi -\zeta \rangle } \\ \end{array}$$

so denoting

$$\Phi (\xi,\zeta ) = {(1 + \vert \xi \vert )}^{-m-s}{(1 + \vert \zeta \vert )}^{s}\left \vert \displaystyle\int dxp(x,\xi ){e}^{i\langle x,\xi -\zeta \rangle }\right \vert $$

we have

$$\displaystyle\begin{array}{rcl} \vert (Pu,v)\vert & \leq & \displaystyle\int \displaystyle\int d\xi d\zeta \hat{u}(\xi )\hat{v}(\zeta )\Phi (\xi,\zeta ){(1 + \vert \xi \vert )}^{m+s}{(1 + \vert \zeta \vert )}^{-s} \\ & \leq & \Big{(}\displaystyle\int d\xi \vert \hat{u}(\xi ){\vert }^{2}(1 + \vert \xi )\vert {)}^{2(m+s)}\displaystyle\int d\zeta \Phi (\xi,\zeta ){\Big{)}}^{1/2} \\ & & \times \Big{(}\displaystyle\int \displaystyle\int d\zeta \vert \hat{v}(\zeta ){\vert }^{2}{(1 + \vert \zeta \vert )}^{-2s}\displaystyle\int d\xi \Phi (\xi,\zeta ){\Big{)}}^{1/2}.\end{array}$$

Now

$$\displaystyle\begin{array}{rcl} \Phi (\xi,\zeta )& \leq & C_{\alpha }\vert K\vert {(1 + \vert \xi \vert )}^{-m-s}{(1 + \vert \zeta \vert )}^{s}{(1 + \vert \xi \vert )}^{m}{(1 + \vert \xi - \zeta \vert )}^{-\vert \alpha \vert } \\ &\leq & C_{\alpha }\vert K\vert {(1 + \vert \xi - \zeta \vert )}^{\vert s\vert -\vert \alpha \vert }.\end{array}$$

Therefore,

$$\displaystyle\int d\xi \Phi (\xi,\zeta ) \leq A(n,\vert s\vert -\vert \alpha \vert )C_{\alpha }\vert K\vert $$

where

$$A(n,l) =\displaystyle\int d\xi {(1 + \vert \xi \vert )}^{l}$$

similarly

$$\displaystyle\int d\zeta \Phi (\xi,\zeta ) \leq C(n,\vert s\vert -\vert \alpha \vert )C_{\alpha }\vert K\vert $$

implying

$$\vert (Pu,v)\vert \leq A(n,\vert s\vert -\vert \alpha \vert )C_{\alpha }\vert K\vert \|u\|_{m+s}\|v\|_{-s}$$
$$\Rightarrow \| P\|_{L_{s+m}^{2}\rightarrow L_{s}^{2}} \leq A(n,\vert s\vert -\vert \alpha \vert )C_{\alpha }\vert K\vert $$

and this holds for all α s.t. A(n, | s | − | α | ) = ∫dξ(1 +  | ξ | ) | s | − | α |  < , i.e. | s | − | α |  <  − n ⇔  | α |  > n +  | s | . We thus choose α s.t. | α |  = ⌊ | s | ⌋ + n + 1, and recall that C α = 2 | α | (C 00 + C α0) to obtain the stated estimate.

We will also need the relation between the Schwartz kernel and the symbol.

Proposition 5.

Suppose the Schwartz kernel of P is given by K(x,y), namely

$$\langle Pf(x),g(x)\rangle =\displaystyle\int dxdyK(x,y)f(y)g(x).$$

Then the symbol p(x,ξ) of P is given by

$$p(x,\xi ) =\displaystyle\int {e}^{-i\langle y,\xi \rangle }K(x,x - y)dy.$$

Proof.

Write for smooth compactly supported f, g

$$\displaystyle\begin{array}{rcl} \langle Pf(x),g(x)\rangle & =& \displaystyle\int dxd\xi {e}^{i\langle x,\xi \rangle }p(x,\xi )\hat{f}(\xi )g(x) \\ & =& \displaystyle\int dxdyd\xi {e}^{i\langle x-y,\xi \rangle }p(x,\xi )f(y)g(x)\end{array}$$

That is, K(x, y) = ∫dξe ix − y, ξ⟩ p(x, ξ), and ⟨Pf, g⟩ = ∫f(y)g(x)K(x, y)dydx. Denoting by \(\check{h}(x) =\int d\xi h(\xi ){e}^{i\langle x,\xi \rangle }\) the inverse Fourier transform, we can also write \(K(x,y) =\check{ p}(x,\bullet )(x - y)\;\Longleftrightarrow\;K(x,x - y) =\check{ p}(x,\bullet )(y)\), so

$$p(x,\xi ) =\displaystyle\int {e}^{-i\langle y,\xi \rangle }K(x,x - y)dy$$

as claimed.