Skip to main content

Significance of Endothelium-Derived Relaxing Factor (EDRF) on Pulmonary Vasoconstriction Induced by Hypoxia and Hypercapnia

  • Chapter
Oxygen Transport to Tissue XVII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 388))

Abstract

Distribution of pulmonary blood flow is physiologically regulated by alveolar PO2 and PCO2 surrounding the microcirculation in the lung (Fishman, 1976; Yamaguchi et al., 1994). Decrease in PO2 and/or increase in PC02 has been considered to evoke a rise in the pulmonary microvascular resistance to blood flow (Sylvester et al., 1986; Rodman and Voelkel, 1991). It has been suggested that hypoxic pulmonary vasoconstriction (HPV) as well as hypercapnic-induced vasoconstriction may divert blood flow away from the poorly ventilated areas (Fishman, 1976). The importance of the endothelial-derived vasoactive agents in modulating blood flow has been increasingly recognized since the discovery of endothelium-derived relaxing factor (EDRF), a noble vasodilator of both the systemic and pulmonary circulation (Palmer et al., 1987; Ignaro et al., 1987; Moncada et al., 1991). Many authors have attempted to clarify a possible role of EDRF in the occurrence of HPV, however definite conclusion has not been attained. Although hypercapnia caused by alveolar hypoventilation is considered as the additionally important factor affecting pulmonary hemodynamics (O’Brodovich et al., 1982; Marshall et al., 1984; Sylvester et al., 1986; Yamaguchi et al., 1994), there have been no systematic studies showing the potential effects of hypercapnic-induced acidosis on EDRF modulation for pulmonary circulation. The first aim of this study is systematically to reinvestigate the effects of EDRF on HPV applying varied inhibitors or inactivators for EDRF acting on different levels of EDRF metabolic pathway. The second aim is to make clear the possible roles of EDRF modulating the pulmonary vascular response to acute hypercapnia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Archer, S.L., Tolins, J.R, Raiji, L., Weir, E.K., 1989, Hypoxic pulmonary vasoconstriction is enhanced by inhibition of the synthesis of an endothelium derived relaxing factor, Biochem. Biophys. Res. Commun. 164: 1198–1205.

    Article  PubMed  CAS  Google Scholar 

  • Barer, G.R., and McCurrie, J.R., 1969, Pulmonary vasomotor responses in the cat; the effects and interrelationships of drugs, hypoxia and hypercapnia, Q. J. Exp. Physiol. 54: 156–172.

    CAS  Google Scholar 

  • Boron, W.F., and Weer, P.D., 1976, Intracellular pH transients in Squid Giant axons caused by CO2, NH3, and metabolic inhibitors, J. Gen. Physiol. 67: 91–112.

    Article  PubMed  CAS  Google Scholar 

  • Brashers, V.L., Peach, M.J., and Rose, C.E., 1988, Augmentation of hypoxic pulmonary vasoconstriction in the isolated perfused rat lung by in vitro antagonists of endothelium-dependent relaxation, J. Clin. Invest. 82: 1495–1502.

    Article  PubMed  CAS  Google Scholar 

  • Farrukh, LS., Gurtner, G.H., Terry, P.B., Tohidi, W, Yang, J., Adkinson, F., and Michael, J.R., 1989, Effect of pH on pulmonary vascular tone, reactivity, and arachidonate metabolism, J. Appl. Physiol. 67: 445–452.

    PubMed  CAS  Google Scholar 

  • Fishman, A.P., 1976, Hypoxia and pulmonary circulation, Cir. Res. 38: 221–231.

    CAS  Google Scholar 

  • Gold, M.E., Wood, K.S., Buga, G.M., Byrns, R.E., and Ignarro, L.J., 1989, L-arginine causes whereas L-argininosuccinic acid inhibits endothelium-dependent vascular smooth muscle relaxation, Biochem, Biophys. Res. Commun. 161: 536–543.

    Article  CAS  Google Scholar 

  • Green, L.C., Wagner, D.A., Glogswski, J., Skipper, P.L., Winshnok, J.S., and Tannenbaum, S.R., 1982, Analysis of nitrate, nitrite and (15N) nitrate in biological fluid, Anal. Biochem. 126: 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Hasunuma, K., Yamaguchi, T., Rodman, D.M., O’Brien, R.F., and McMurtry, LR, 1991, Effects of inhibitors of EDRF and EDHF on vasoreactivity of perfused rat lungs. Am. J. Physiol. 260: L97–L104.

    PubMed  CAS  Google Scholar 

  • Hyman, A.L., Lippton, H.L., and Kadowitz, P. J., 1991, Methylene blue prevents hypoxic pulmonary vasoconstriction in cats, Am. J. Physiol. 260: H586–H-592.

    PubMed  CAS  Google Scholar 

  • Ignaro, L.J., Buga, G.W., Wood, K.S., Byrns, R.E., and Chaudhuri, G., 1987, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sei. USA. 84: 9265–9269.

    Article  Google Scholar 

  • Johns, RA., Linden, J.M., and Peach, J., 1989, Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit pulmonary artery are selectively impaired by moderate hypoxia, Cir. Res. 65:1508–1515.

    CAS  Google Scholar 

  • Kato, M., Staub, N.C., 1966, Response of small pulmonary arteries to unilobar hypoxia and hypercapnia, Cir. Res. 19: 426–440.

    CAS  Google Scholar 

  • Koyama, T., and Horimoto, M., 1982, Pulmonary microcirculatory response to localized hypercapnia, J. Appl. Physiol. 53: 1556–1564.

    PubMed  CAS  Google Scholar 

  • Liu, S., Crawley, D.E., Barnes, P.J., and Evans, T.W, 1991, Endothelium-derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats, Am. Rev. Respir. Dis. 143: 32–37.

    PubMed  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Fair, A.L., and Randall, R.J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. 193: 265–275.

    CAS  Google Scholar 

  • Malik, B., and Kidd, B.S.L., 1973, Independent effects of changes in H+ and CO2 concentrations on hypoxic pulmonary vasoconstriction, J. Appl. Physiol. 34: 318–323.

    PubMed  CAS  Google Scholar 

  • Marshall, C, Lindgren, L., and Marshall, B.E., 1984, Metabolic and respiratory hydrogen ion effects on hypoxic pulmonary vasoconstriction, J. Appl. Physiol. 57: 545–550.

    PubMed  CAS  Google Scholar 

  • Mazmanian, G-M., Baudet, B., Brink, C, Cerrina, J., Kirkiacharian, S., and Weiss, M., 1989, Methylene blue potentiates vascular reactivity in isolated rat lungs, J. Appl. Physiol. 66: 1040–1045.

    PubMed  CAS  Google Scholar 

  • Moncada, S., Palmer, R.M., and Higgs, E.A., 1991, Nitric oxide: physiology, pathophysiology, and pharmacology, Pharmacol. Rev. 43: 109–142.

    PubMed  CAS  Google Scholar 

  • O’Brodovich, H.M., Stalcup, S.A., Pang, L.M., and Mellins, R.B., 1982, Hemodynamics and vasoactive mediator response to experimental respiratory failure, J. Appl. Physiol. 52: 1230–1236.

    PubMed  Google Scholar 

  • Orchard, C.H., and Kentish, J.C., 1990, Effects of changes of pH on the contractile function of cardiac muscle, Am. J. Physiol. 258: C967–C981.

    PubMed  CAS  Google Scholar 

  • Palmer, R.M., Ferrige, A.G., and Moncada, S., 1987, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature (London) 327: 524–526.

    Article  CAS  Google Scholar 

  • Raffestin, B., and McMurtry, I.F., 1987, Effects of intracellular pH on hypoxic vasoconstriction in rat lungs, J. Appl. Physiol. 63: 2524–2531.

    PubMed  CAS  Google Scholar 

  • Rodman, D.M., Yamaguchi, T., Hasunuma, K., O’Brien, R.F., and McMurtry, I.F., 1990, Effects of hypoxia on endothelium-dependent relaxation of rat pulmonary artery, Am. J. Physiol. 258: L207–214.

    PubMed  CAS  Google Scholar 

  • Rodman, D.M., and Voelkel, N.F., 1991, Regulation of vascular tone, In: The Lung: Scientific Foundations edited by R.G. Crystal, J.B. West, Raven Press., New York, vol. II, p. 1105–1119.

    Google Scholar 

  • Schini, V., Schoeffter, P., and Miller, R.C., 1989, Effect of endothelium on basal and on stimulated accumulation and efflux of cyclic GMP in rat isolated aorta, Br. J. Pharmacol. 97: 853–865.

    PubMed  CAS  Google Scholar 

  • Sylvester, J.T., Rock, P., Gottlieb, J.E., and Wetzel, R.C., 1986, Acute hypoxic responses, In: Abnormal Pulmonary Circulation, edited by E.H. Bergofsky, Churchill Livingstone, New York, p. 127–165.

    Google Scholar 

  • Viles, PH., and Shepherd, J.T., 1968, Evidence for a dilator action of carbon dioxide on the pulmonary vessels of the cat, Cir. Res. 22: 325–332.

    CAS  Google Scholar 

  • Von Euler, U., and Lilijestrand, G, 1946, Observations on the pulmonary arterial blood pressure in the cat, Acta. Physiol. Scand. 12: 301–320.

    Article  Google Scholar 

  • Warren, J.B., Maltby, N.H., MacCormack, D., and Barnes, P.J., 1989, Pulmonary endothelium-derived relaxing factor is impaired in hypoxia, Clin. Sei. 77: 671–676.

    CAS  Google Scholar 

  • Yamaguchi, K., Mori, M., Kawai, A., Takasugi, T., Umeda, A., Kawashiro, T., and Yokoyama, T., 1994, Regulation of blood flow in pulmonary microcirculation by vasoactive arachidonic acid metabolites-analysis in acute lung injury, Adv. Exp. Med. Biol., 345: 113–120.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press New York

About this chapter

Cite this chapter

Yamaguchi, K. et al. (1996). Significance of Endothelium-Derived Relaxing Factor (EDRF) on Pulmonary Vasoconstriction Induced by Hypoxia and Hypercapnia. In: Ince, C., Kesecioglu, J., Telci, L., Akpir, K. (eds) Oxygen Transport to Tissue XVII. Advances in Experimental Medicine and Biology, vol 388. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0333-6_60

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0333-6_60

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8002-3

  • Online ISBN: 978-1-4613-0333-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics