Skip to main content

Connectivity of Transplants in the Cerebellum: A Model of Developmental Differences in Neuroplasticity

  • Conference paper
Neural Tissue Transplantation Research

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The problem of mammalian central nervous system (CNS) regeneration has been a cynosure for neurobiologists for nearly a century. Different types of central neurons have been shown to differ in their response to direct injury. Some, namely, the weakly myelinated monoaminergic systems, maintain considerable reGenerative capacity through adulthood (reviewed in Björklund and Stenevi 1979). Others, such as the long myelinated systems of the spinal cord, exhibit nearly none. While the current consensus on the capacity of most intrinsic CNS neurons to exhibit true regeneration remains pessimistic, demonstrations of a similar response, compensatory sprouting of residual fibers in response to partial denervation, have gained general acceptance. Clearly, in many respects, these forms of a sprouting response are inherently similar since both involve the active elongation of axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Altman, J. (1969). Autoradiographic and histoloGical studies of postnatal neuroGenesis. III. DatinG the time of proDuction and onset of Differentiation of cerebellar microneurons in the rat. J. Comp. Neurol. 136, 269–294.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J. (1972a). Postnatal Development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J. Comp. Neurol. 145, 399–464.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J. (1972b). Postnatal Development of the cerebellar cortex in the rat. III. Maturation of the components of the Granular layer. J. Comp. Neurol. 145, 465–514.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J., Bayer, S. A. (1978). Prenatal Development of the cerebellar system in the rat. II. CytoGenesis and histoGenesis of the inferior olive, pontine Gray and the precerebellar reticular nuclei. J. Comp. Neurol. 179, 49–76.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J., Winfree, A. T. (1977). Postnatal Development of Purkinje cell perikarya V. Spatial orGanization of Purkinje cell perikarya. J. Comp. Neurol. 171, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Altobelli, R. (1914). Innesti cerebrali. Gazz. Int. MeD Chir. 17, 25.

    Google Scholar 

  • AnGaut, P., AlvarDo-Mallart, R. M., Sotelo, C. (1982). Ultrastructural eviDence for compensatory sproutinG of climbinG and mossy afferents to the cerebellar hemisphere after ipsilateral peDunculotomy in the newborn rat. J. Comp. Neurol. 205, 101–111.

    Article  PubMed  CAS  Google Scholar 

  • Benfrey, M., Aguayo, A. J. (1982). Extensive elongation of axons from rat brain into peripheral nerve Grafts. Nature (London) 296, 150–152.

    Article  Google Scholar 

  • Björklund, A., Johansson, B., Stenevi, U., Svendgaard, N.-A.A. (1975). Reestablishment of functional connections by reGeneratinG central adrenergic and cholinergic axons. Nature (London) 253, 446–448.

    Article  Google Scholar 

  • Björklund, A., Stenevi, U. (1971). Growth of central catecholamine neurons into smooth muscle Grafts in the rat mesencephalon. Brain Res. 31, 1–20.

    Article  PubMed  Google Scholar 

  • Björklund, A., Stenevi, U. (1979). Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system. Physiol. Rev. 59, 62–100.

    PubMed  Google Scholar 

  • Black, M. M., Lasek, R. J. (1979). SlowinG of the rate of axonal regeneration DurinG Growth and maturation. Exp. Neurol. 63, 108–119.

    Article  PubMed  CAS  Google Scholar 

  • BloeDel, J. R. (1973). Cerebellar afferent systems: A review. ProG. Neurobiol. 2, 1–68.

    Article  Google Scholar 

  • BroDai, A., Kawamura, K. (1980). Olivocerebellar proJection: A review. ADvan. Anat. Embryol. Cell Biol. 64, 1–137.

    Google Scholar 

  • Clemente, C. D. (1955). Structural regeneration in the mammalian central nervous system and the role of neuroGlia and connective tissue. In: Regeneration in the Central Nervous System. Windle, W. F. (ed.). SprinGfielD, III.: Charles C. Thomas.

    Google Scholar 

  • Clemente, C. D. (1964). Regeneration in the vertebrate central nervous system. Int. Rev. Neurobiol. 6, 257–301.

    Article  PubMed  CAS  Google Scholar 

  • Cotman, C. W., Lynch, G. S. (1976). Reactive synaptoGenesis in the adult nervous system. In: Neuronal RecoGnition. BaronDes, S. H. (ed.). London: Chapman & Hall.

    Google Scholar 

  • Cotman, C. W., Matthews, D. A., Taylor, D., Lynch, G. S. (1973). Synaptic rearranGement in the Dentate Gyrus: Histochemical eviDence of aDJustments after lesions in immature and adult rats. Proc. Nat. AcaD. Sci. USA 70, 3473–3477.

    Article  PubMed  CAS  Google Scholar 

  • Cotman, C. W., Nieto-SampeDro, M., Harris, E. W. (1981). Synapse replacement in the nervous system of adult vertebrates. Physiol. Rev. 61, 684–784.

    PubMed  CAS  Google Scholar 

  • Crépel, F. (1971). Maturation of climbinG fiber responses in the rat. Brain Res. 35, 272–276.

    Article  PubMed  Google Scholar 

  • Crépel, F., Mariani, J., Delhaye-BouchauD, N. (1976). EviDence for a multiple innervation of Purkinje cells by climbinG fibers in the immature rat cerebellum. J. Neurobiol. 8, 567–578.

    Article  Google Scholar 

  • Das, G. D. (1974). Transplantation of embryonic neural tissue in the mammalian brain. I. Growth and Differentiation of neuroblasts from various regions of the embryonic brain in the cerebellum of neonate rats. TIT J. Life Sci. 4, 93–124.

    PubMed  CAS  Google Scholar 

  • Das, G. D. (1975). Differentiation of DenDrites in the transplanteD neuroblasts in the mammalian brain. In: Physiology and Pathology of DenDrites. Kreutzberg, G. W. (ed.). Advances in NeuroloGy, Vol. 12. New York: Raven Press, pp. 181–199.

    Google Scholar 

  • Das, G. D. (1979). Neural transplants in the brain of the rat: Nature of DeGenerative chanGes in the host brain and the transplant. Anat. Rec. 193, 517.

    Google Scholar 

  • Das, G. D., Altman, J. (1971). TransplanteD precursors of nerve cells: Their fate in the cerebellums of young rats. Science 173, 637–638.

    Article  PubMed  CAS  Google Scholar 

  • Das, G. D., Altman, J. (1972). StuDies on the transplantation of DevelopinG neural tissue in the mammalian brain. I. Transplantation of cerebellar slabs into the cerebellum of neonate rats. Brain Res. 38, 233–249.

    Article  PubMed  CAS  Google Scholar 

  • Das, G. D., Hallas, B. H., Das, K. G. (1979). Transplantation of neural tissues in the brains of laboratory mammals: Technical Details and comments. Experientia 35, 143–153.

    Article  PubMed  CAS  Google Scholar 

  • Das, G. D., Hallas, B. H., Das, K. G. (1980). Transplantation of brain tissue in the brain of the rat. I. Growth characteristics of transplants from embryos of Different aGes. Am. J. Anat. 158, 135–145.

    Article  PubMed  CAS  Google Scholar 

  • Das, G. D., Houlé, J., Oblinger, M. M., Ross, D. (1983). Survivability of Different embryonic neural tissues transplanteD to the neonate rat brain. In preparation.

    Google Scholar 

  • Das, G. D., Nornes, H. O. (1972). NeuroGenesis in the cerebellum of the rat: An autoraDioGrapic study. Z. Anat. EntwicklunGsGesch. 138, 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Das, G. D., Nornes, H. O., Hine, R. J., Pfaffenroth, M. J. (1973). Experimental studies on the postnatal Development of the brain. II. Cytoarchitectural regeneration in the DevelopinG cerebellum of the rabbit. TIT J. Life Sci. 3:29–65.

    PubMed  CAS  Google Scholar 

  • Devor, M. (1976). Neuroplasticity in the rearranGement of olfactory tract fibers after neonatal transection in hamsters. J. Comp. Neurol. 166, 49–72.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, E. (1917). Primary and seconDary finDinGs in a series of attempts to transplant cerebral cortex in the albino rat. J. Comp. Neurol. 27, 565–582.

    Article  Google Scholar 

  • Emson, P. C., Björklund, A., Stenevi, U. (1976). Possible regeneration of γ-aminobutyric aciD containinG fibres into iriDes transplanteD into the central nervous system. Nature (London) 259, 567–570.

    Article  CAS  Google Scholar 

  • Emson, P. C., Björklund, A., Stenevi, U. (1977). Evaluation of the reGenerative capacity of central Dopaminergic, noradrenergic and cholinergic neurones usinG iris implants as tarGets. Brain Res. 135, 87–105.

    Article  PubMed  CAS  Google Scholar 

  • Fink, R. P., Heimer, L. (1967). Two methoDs for selective silver impreGnation of DeGeneratinG axons and their synaptic enDinGs in the central nervous system. Brain Res. 4, 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Gall, C., Lynch, G. (1978). RapiD axon sproutinG in the neonatal rat hippocampus. Brain Res. 153, 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Gall, C., McWilliams, R., Lynch, G. (1979). The effect of collateral sproutinG on the Density of innervation of normal tarGet sites: Implications for theories on the reGulation of the size of DevelopinG synaptic Domains. Brain Res. 175, 37–47.

    Article  PubMed  CAS  Google Scholar 

  • Glees, P. (1955). StuDies on cortical regeneration with special reference to central implants. In: Regeneration in the Central Nervous System. Windle, W. F. (ed.). SprinGfielD, III: Charles C. Thomas.

    Google Scholar 

  • Gould, B. B. (1980). OrGanization of afferents from the brain stem nuclei to the cerebellar cortex in the cat. ADvan. Anat. Embryol. Cell Biol. 62, 1–79.

    Article  Google Scholar 

  • Gutmann, E., Guttman, L., Medawar, P. B., Young, J. Z. (1942). The rate of regeneration of nerve. J. Exp. Biol. 19, 14–44.

    Google Scholar 

  • Hallas, B. H., Oblinger, M. M., Das, G. D. (1980a). Heterotopic neural transplants in the cerebellum of the rat: Their afferents. Brain Res. 196, 242–246.

    Article  PubMed  CAS  Google Scholar 

  • Hallas, B. H., Das, G. D., Das, K. G. (1980b). Transplantation of brain tissue in the brain of rat. II. Growth characteristics of transplants in hosts of Different aGes. Am. J. Anat. 158, 147–159.

    Article  PubMed  CAS  Google Scholar 

  • HenDrickson, A. E., Cowan, M. (1971). ChanGes in the rate of axoplasmic transport DurinG postnatal Development of the rabbit’s optic nerve and tract. Exp. Neurol. 30, 403–422.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, C. B., Lund, R. D. (1980a). Transplantation of embryonic occipital cortex to the brain of newborn rats: A light microscopic study of orGanization and connectivity of the transplants. J. Comp. Neurol. 194, 571–597.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, C. B., Lund, R. D. (1980b). Transplantation of embryonic occipital cortex to the brain of newborn rats. Exp. Brain Res. 40, 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, C. B., Lund, R. D. (1981). Transplantation of embryonic occipital cortex to the brain of newborn rats: A GolGi study of mature and DevelopinG transplants. J. Comp. Neurol. 200, 213–230.

    Article  PubMed  CAS  Google Scholar 

  • Kalil, R. E., Schneider, G. E. (1975). Abnormal symaptic connections of the optic tract in the thalamus after miDbrain lesions in newborn hamsters. Brain Res. 100, 690–698.

    Article  PubMed  CAS  Google Scholar 

  • Kalil, R. E., Reh, T. (1979). ReGrowth of severed axons in the neonatal central nervous system: Establishment of normal connections. Science 205, 1158–1161.

    Article  PubMed  CAS  Google Scholar 

  • Kao, C. C., ShimiGer, Y., Perkins, L. C., Freeman, L. W. (1970). Experimental use of cultureD cerebellar cortical tissue to inhibit the collaGenous scar followinG spinal cord transection. J. Neurosurg. 33, 127–139.

    Article  PubMed  CAS  Google Scholar 

  • Komiya, Y. (1980). SlowinG with aGe of the rate of slow axonal flow in bifurcatinG axons of the rat Dorsal root Ganglion cells. Brain Res. 183, 477–480.

    Article  PubMed  CAS  Google Scholar 

  • Komiya, Y. (1981). Axonal regeneration in bifurcatinG axons of Dorsal root Ganglion cells. Exp. Neurol. 73, 824–826.

    Article  PubMed  CAS  Google Scholar 

  • Kromer, L. F. (1980). Glial scar formation in the brain of adult rats is inhibiteD by implants of embryonic CNS tissue. Soc. Neurosci. Abst. 6, 235.9.

    Google Scholar 

  • Kromer, L. F., Björklund, A., Stenevi, U. (1980). Innervation of embryonic hippo-campal implants by reGeneratinG axons of cholinergic septal neurons in the adult rat. Brain Res. 210, 153–171.

    Article  Google Scholar 

  • Kromer, L. F., Björklund, A., Stenevi, U. (1981). Regeneration of the septohippo-campal pathways in adult rats is promoteD by utilizinG embryonic hippocampal implants as briDGes. Brain Res. 210, 173–200.

    Article  PubMed  CAS  Google Scholar 

  • LarramenDi, L. M. H. (1969). Analysis of synaptoGenesis in the cerebellum of the mouse. In: NeurobioloGy of Cerebellar Evolution and Development. Llinas, R. (ed.). ChicaGo: Am. Med. Assoc.

    Google Scholar 

  • Larsell, O., Jansen, J. (1972). The Comparative Anatomy and HistoloGy of the Cerebellum: The Human Cerebellum, Cerebellum Connections and Cerebellar Cortex. Minneapolis: Univ. Minnesota Press.

    Google Scholar 

  • Lasek, R. J. (1981). The Dynamic orDerinG of neuronal cytoskeletons. Neurosci. Res. ProG. Bull. 19, 7–32. CambriDGe, Mass.: M.I.T. Press.

    Google Scholar 

  • Le Gros Clark, W. E. (1942). The problem of neuronal regeneration in the central nervous system. I. The influence of spinal GanGlia and nerve fraGments Grafted in the brain. J. Anat. (London) 77, 20–48.

    Google Scholar 

  • Le Gros Clark, W. E. (1943). The problem of neuronal regeneration in the central nervous system. II. The insertion of peripheral nerve stumps into the brain. J. Anat. (London) 77, 251–259.

    Google Scholar 

  • LeonG, S. K. (1976). An experimental study of the corticofuGal system followinG cerebral lesions in the albino rats. Exp. Brain Res. 26, 235–247.

    Article  PubMed  CAS  Google Scholar 

  • Lund, R. D. (1978). Development and Plasticity of the Brain. New York: OxforD Univ. Press.

    Google Scholar 

  • Lund, R. D., Hauschka, S. D. (1976). TransplanteD neural tissue Develops connections with host rat brain. Science 193, 582–584.

    Article  PubMed  CAS  Google Scholar 

  • Lund, R. D., Lund, J. S. (1976). Plasticity in the DevelopinG visual system: The effects of retinal lesions maDe in young rats. J. Comp. Neurol. 169, 133–154.

    Article  PubMed  CAS  Google Scholar 

  • Lund, R. D., CunninGham, T. S., Lund, J. S. (1973). MoDifieD optic proJections after unilateral eye removal in young rats. Brain Behav. Evol. 8, 51–72.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G. W., Gall, C., Cotman, C. W. (1977). Temporal parameters of axon sproutinG in the adult brain. Exp. Neurol. 54, 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Matsushita, M., Hosoya, Y., IkeDa, M. (1979). Anatomical orGanization of the spino-cerebellar system in the cat, as stuDieD by retroGraDe transport of horseraDish peroxiDase. J. Comp. Neurol. 184, 81–106.

    Article  PubMed  CAS  Google Scholar 

  • Moyer, E. K., Kimmel, D. L., Winborne, L. W. (1953). Regeneration of sensory spinal roots in young and senile rats. J. Comp. Neurol. 98, 283–388.

    Article  PubMed  CAS  Google Scholar 

  • Mustari, M. J., Lund, R. D. (1976). An aberrant crosseD visual corticotectal pathway in albino rats. Brain Res. 112, 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Nadler, J. V., Cotman, C. W., Lynch, G. S. (1977). Histochemical eviDence of altereD Development of cholinergic fibers in the rat Dentate Gyrus followinG lesions. J. Comp. Neurol. 171, 561–588.

    Article  PubMed  CAS  Google Scholar 

  • Oblinger, M. M., Das, G. D. (1980a). Connectivity of neocortical transplants in the rat cerebellar hemisphere. Anat. Rec. 196, 138.

    Google Scholar 

  • Oblinger, M. M., Das, G. D. (1980b). Afferent and efferent connections of neocortical transplants in the cerebellum of adult hosts. Soc. Neurosci. Abst. 6, 224.4.

    Google Scholar 

  • Oblinger, M. M., Das, G. D. (1981). NeuroGenesis in the brain stem of the rabbit: An autoraDioGraphic study. J. Comp. Neurol. 197, 45–62.

    Article  PubMed  CAS  Google Scholar 

  • Oblinger, M. M., Das, G. D. (1982). Connectivity of neural transplants in adult rats: Analysis of afferents and efferents of neocortical transplants in the cerebellar hemisphere. Brain Res. 249, 31–49.

    Article  PubMed  CAS  Google Scholar 

  • Oblinger, M. M., Das, G. D. (1983). AGe Differences in the maGnituDe of afferent fiber inGrowth to cortical transplants in the cerebellar hemisphere. In preparation.

    Google Scholar 

  • Oblinger, M. M., Hallas, B. H., Das, G. D. (1980). Neocortical transplants in the cerebellum of the rat: Their afferents and efferents. Brain Res. 189, 228–232.

    Article  PubMed  CAS  Google Scholar 

  • Perlow, M. J., Freed, W. J., Hoffer, B. J., Seiger, Å, Olson, L., Wyatt, R. J. (1979). Brain Grafts reDuce motor abnormalities proDuceD by Destruction of niGrostriatal Dopamine system. Science 204, 643–647.

    Article  PubMed  CAS  Google Scholar 

  • Pestronk, A., Drachman, D. B., Griffin, J. W. (1980). Effects of aGinG on nerve sproutinG and reGeneration. Exp. Neurol. 70, 65–82.

    Article  PubMed  CAS  Google Scholar 

  • Pickel, V. M., Krebs, H., Bloom, F. E. (1973). Proliferation of norepinephrine-containinG axons in rat cerebellar cortex after peDuncle lesions. Brain Res. 59, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Puro, D. G., WooDwarD, D. J. (1977a). Maturation of evokeD climbinG fiber input to rat cerebellar Purkinje cells. (I.). Exp. Brain Res. 28, 85–100.

    PubMed  CAS  Google Scholar 

  • Puro, D. G., WooDwarD, D. J. (1977b). Maturation of evokeD mossy fiber input to rat cerebellar Purkinje cells (II.). Exp. Brain Res. 28, 427–441.

    PubMed  CAS  Google Scholar 

  • Ramón J Cajal, S. R. (1928). Degeneration and Regeneration of the Nervous System. London: OxforD Univ. Press.

    Google Scholar 

  • Ranson, S. W. (1909). Transplantation of the spinal Ganglion into the brain. Q. Bull Northwestern Univ. Med. Sch. 11, 176–178.

    Google Scholar 

  • RicharDson, P. M., McGuinness, U. M., Aguayo, A. J. (1982). Peripheral nerve autografts to the rat spinal corD: StuDies with axonal tracinG methoDs. Brain Res. 237, 147–162.

    Article  PubMed  CAS  Google Scholar 

  • Ross, D. T., Das, G. D. (1980). Histogenesis of embryonic neocortex transplanteD into the cerebellum of neonatal hosts. Anat. Rec. 196, 160.

    Google Scholar 

  • Saltykow, S. (1905). Versuche über Gehirnplantation, zugleich ein BeitraG zur Kenntnis Der VorGanGe an den ZellinGen Gehirnelementen. Arch. Psychiatr. Nervenkr. (Berlin). 40, 329–388.

    Article  Google Scholar 

  • Schneider, G. F. (1973). Early lesions of superior colliculus: Factors affectinG the formation of abnormal retinal proJections. Brain Behav. Evol. 8, 73–109.

    Article  PubMed  CAS  Google Scholar 

  • Seiger, Å, Olson, L. (1975). Brain tissue transplanteD to the anterior chamber of the eye. (3). Substitution of lackinG central noraDrenaline input by host iris sympathetic fibers in the isolateD cerebral cortex DevelopeD in oculo. Cell Tissue Res. 159, 325–338.

    Article  PubMed  CAS  Google Scholar 

  • Shimono, T., Nosaka, S., Saskai, K. (1976). Electrophysiological study of the postnatal Development of neuronal mechanisms in the rat cerebellar cortex. Brain Res. 108, 279–294.

    Article  PubMed  CAS  Google Scholar 

  • Sotelo, C., Privat, A. (1978). Synaptic remodelinG of the cerebellar circuitry in mutant mice and experimental cerebellar malformations. Acta Neuropathol. (Berlin) 43, 19–34.

    Article  CAS  Google Scholar 

  • Stenevi, U., Björklund, A. (1978). Transplantation techniques for the study of regeneration in the central nervous system. ProG. Brain Res. 48, 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Stenevi, U., Björklund, A., Svendgaard, N.-A.A. (1976). Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival. Brain Res. 114, 1–20.

    Article  PubMed  CAS  Google Scholar 

  • SuGar, O., Gerard, R. W. (1940). Spinal cord regeneration in the rat. J. Neurophysiol. 3, 1–19.

    Google Scholar 

  • Svendgaard, N.-A.A. Björklund, A., Stenevi, U. (1975). ReGenerative properties of central monoamine neurons. ADvan. Anat. Embryol. Cell Biol. 51, 1–77.

    Google Scholar 

  • Svendgaard, N.-A.A., Björklund, A., Stenevi, U. (1976). Regeneration of central cholinergic neurons in the adult rat brain. Brain Res. 102, 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Tello, F. (1911a). Un experimento sobre la influencia Del neurotropismo en 1a reGene-racion De la corteza cerebral. Rev. Clin. MaDr. 5, 292–294.

    Google Scholar 

  • Tello, F. (1911b). La influencia Del neurotropismo en la reGeneracion De los centros nerviosos. Trab. Lab. Invest. Biol. Univ. MaDr. 9, 123–159.

    Google Scholar 

  • Walberg, F. (1972). Cerebellovestibular relations: Anatomy. ProGr. Brain Res. 37, 361–376.

    Article  CAS  Google Scholar 

  • Wenzel, J., Barlehner, E. (1969). Zur Regeneration Des Cortex cerebri bei mus musculus. II. MorpholoGische BefunDe reGenerativer VorGanGe nach Replantation eines Cortexabschnittes. Zeit. Mikro. Anat. Forsch. 81, 32–70.

    CAS  Google Scholar 

  • Windle, W. F. (1956). Regeneration of axons in the vertebrate central nervous system. Physiol. Rev. 36, 426–440.

    Google Scholar 

  • Yamamoto, M., Chan-Palay, V., Steinbusch, H. W. M., Palay, S. L. (1980). Hyperinnervation of arresteD Granule cells proDuceD by the transplantation of monoamine-containinG neurons into the fourth ventricle of rat. Anat. Embryol. 159, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer, J. (1973). ExtenDeD commissural and ipsilateral proJections in postnatally DeentorhinateD hippocampus and fascia Dentata Demonstrated in rats by silver impreGnation. Brain Res. 64, 293–311.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York Inc.

About this paper

Cite this paper

Oblinger, M.M., Das, G.D. (1983). Connectivity of Transplants in the Cerebellum: A Model of Developmental Differences in Neuroplasticity. In: Wallace, R.B., Das, G.D. (eds) Neural Tissue Transplantation Research. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5539-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5539-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5541-3

  • Online ISBN: 978-1-4612-5539-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics