Skip to main content

Abstract

Microencapsulation is the envelopment of small solid particles, liquids, or gas bubbles with coating. Many methods and materials for preparing microcapsules have been developed and employed in cosmetics, pharmaceutics, and agricultural products. A core material is encapsulated through phase separation of polymer solutions, in situ interfacial polymerization, spray drying, or other techniques. Since most of the techniques used include processes in which the core material is exposed to organic solvents, high temperature, or chemical reactions, they are not applicable to the microencapsulation of mammalian cells, which are so fragile that they are easily destroyed when exposed to such radical processes. Few methods that can successfully microencapsulate mammalian cells without damaging them have been reported. Polysaccharides, such as alginic acid (Lim and Sun 1980), agarose (Iwata et al 1989) and chitosan (Matthew et al 1993), have been used for microencapsulation of mammalian cells, because insoluble membranes or firm hydrogels can be formed from aqueous solutions of these polysaccharides by bringing the solutions into contact with polyvalent cationic metal ions or polyelectrolytes, and by lowering the temperature of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adachi H, Rosengard BR, Hutchins GM, Hall TS, Baumgartner WA, Borkon AM, Reitz BA. 1987. Effect of cyclosporine, aspirin, and cobra venom factor on discordant cardiac xenograft survival in rats. Transplant Proc 19:1145–1148.

    PubMed  CAS  Google Scholar 

  • Bitter-Suermann D, Burger R, Hadding U. 1981. Activation of the alternative pathway of complement: efficient fluid-phase amplification by blockade of the regulatory complement protein β 1H through sulfated polyanions. Eur J Immunol 11:291–295.

    Article  PubMed  CAS  Google Scholar 

  • Brendel MD, Kong SS, Alejandro R, Mintz DH. 1994. TI: Improved functional survival of human islets of Langerhans in three-dimensional matrix culture. Cell-Transplant 3:427–435.

    PubMed  CAS  Google Scholar 

  • Burger R, Hadding U, Schorlemmer HU, Brade V, Bitter-Suermann D. 1975. Dextran sulphate: a synthetic activator of C3 via the alternative pathway, Immunology 29:549–554.

    PubMed  CAS  Google Scholar 

  • Carreno MP, Labarre D, Maillet F, Jozefowics M, Kazatchkine MD. 1989. Regulation of the human alternative complement pathway: Formation of a ternary complex between factor H, surface-bound C3b and chemical groups on nonactivating surfaces. Eur. J. Immunol. 19:2145–2150.

    Article  PubMed  CAS  Google Scholar 

  • Clark AH, Ross-Murphy SB. 1987: Structural and mechanical properties of biopolymer gel. Adv Polym Sci 83:57–207.

    Article  CAS  Google Scholar 

  • Cochrane CG, Muller-Eberhard HJ, Aikin BS. 1970. Depletion of plasma complement in vivo by a protein of cobra-venom: its effect on various immunologie reactions. J Immunol 105:55–69.

    PubMed  CAS  Google Scholar 

  • Dumitriu S, Vidal PF, Chornet E. 1996. Hydrogels based on polysaccharides. In: Dumitriu S, editor. Polysaccharides in medical applications. New York: Marcel Dekker, pp. 125–241.

    Google Scholar 

  • Enosawa S, Suzuki S, Kakefuda T, Amemiya H, Iwata H, Ito N. 1995. Examination of ammonia removal activity by agarose-encapsulated rat hepatocytes and in vivo estimation of ammonia toxicity in the rat model. Jpn J Artif Organs 24:736–739.

    Google Scholar 

  • Frohberg H, Oettel H, Zeller H. 1969. On the mechanism of the fetotoxic effect of tragacanth. Arch Toxikol 25:268–295.

    Article  PubMed  CAS  Google Scholar 

  • Gin H, Dupuy B, Baquey C, Ducassou D, Aubertin J. 1987. Agarose encapsulation of islets of Langerhans: reduced toxicity in vitro. J Microencapsul 4:239–242.

    Article  PubMed  CAS  Google Scholar 

  • Hering BJ, Brendel MD, Schultz AO, Schultz B, Bretzel RG, editors. 1996. International islet transplant registry, Third Medical Department, Center of Internal Medicine Justus-Liebig-University of Giessen.

    Google Scholar 

  • Iwata H, Amemiya H, Matsuda T, Matsuo Y, Takano H, Akutsu T. 1985. Investigation of biomedical materials for hybrid artificial organs. Jpn J Artif Organs 14:864–867.

    Google Scholar 

  • Iwata H, Amemiya H, Matsuda T, Takano H, Hayashi R, Akutsu T, 1989. Evaluation of microencapsulated islets in agarose gels as bioartificial pancreas by studies of hormone secretion in culture and xenotransplantation. Diabetes 38(Suppl. 1):224–225.

    PubMed  Google Scholar 

  • Iwata H, Amemiya H, Matsuda T, Msuda M, Takano H, Akutsu T. 1991. Examination of molecular weight cut-off of a semipermeable membrane for a bioartificial pancreas: islets cultured in chemically defined media. Artif Organs Today 1:229–236.

    Google Scholar 

  • Iwata H, Takagi T, Amemiya H, Shimizu H, Ymashita K, Kobayashi K, Akutsu T. 1992. Agarose for a bioartificial pancreas. J Biomed Mater Res 26:967–977.

    Article  PubMed  CAS  Google Scholar 

  • Iwata H, Kobayashi K, Takagi T, Oka T, Yang H, Amemiya H, Tsuji T, Ito F. 1994a. Feasibility of agarose microbeads with xenogeneic islets as a bioartificial pancreas. J Biomed Mater Res 28:1003–1011.

    Article  PubMed  CAS  Google Scholar 

  • Iwata H, Morikawa N, Fujii T, Takagi T, Samejima T, Ikada Y. 1995. Does immunoisolation need to prevent the passage of antibodies and complements? Transplant Proc 27:3224–3226.

    PubMed  CAS  Google Scholar 

  • Janeway CA, Travers P. 1997. In: Transplant rejection: responses to alloantigens. Immunobiology: the immune system in health and disease—third ed. Current Biology Ltd./Garland Publishing Inc. 12:19–12:42.

    Google Scholar 

  • Jain K, Yang H, Asina SK, Patel SG, Desai J, Diehl C, Stenzel K, Smith BH, Rubin AL. 1996. Long-term preservation of islets of Langerhans in hydrophilic macrobeads. Transplantation 61:532–536.

    Article  PubMed  CAS  Google Scholar 

  • Koistinen V. 1993. Effects of sulphated polyanions on functions of complement factor H. Molecular Immunology 30:113–118.

    Article  PubMed  CAS  Google Scholar 

  • Lim F, Sun AM. 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910.

    Article  PubMed  CAS  Google Scholar 

  • Matthew HW, Salley SO, Peterson WD, Klein MD. 1993. Complex coacervate microcapsules for mammalian cell culture and artificial organ development. Biotechnol Prog 9:510–519.

    Article  PubMed  CAS  Google Scholar 

  • Meer W. 1980. Agar. In: Davidson RL, editor. Handbook of water-soluble gums and resins, v: McGrawHill, Inc. Ch. 7, pp. 1–19.

    Google Scholar 

  • Meri S, Pangburn MK. 1990. Discrimination between activators and nonactivators of the alternative pathway of complement: Regulation via a sialic acid/polyanion binding site on factor H. Proc Natl Acad Sci USA 87:3982–3986.

    Article  PubMed  CAS  Google Scholar 

  • Montdargent B, Labarre D, Jozefowicz M. 1991. Interactions of functionalized polystyrene derivatives with the complement system in human serum. J Biomater Sci Polymer Edn 2:25–35.

    Article  CAS  Google Scholar 

  • Morikawa N, Iwata H, Fujii T, Ikada Y. 1996. An immuno-isolative membrane capable of consuming cytolytic complement proteins. J Biomater Sei Polymer Edn 8:225–236.

    Article  CAS  Google Scholar 

  • Nilsson K, Scheirer W, Merten OW, Ostberg L, Liehl E, Katinger HW, Mosbach K. 1983. Entrapment of animal cells for production of monoclonal antibodies and other biomolecules. Nature 302:629–630.

    Article  PubMed  CAS  Google Scholar 

  • Paul LC. 1991. Mechanism of humoral xenograft rejection. In: Cooper DKC, Kemp E, Reemtsma K, White DJG, editors. Xenotransplantation, Springer-Verlag, pp. 47–61.

    Google Scholar 

  • Richardt M, Menden A, Bretzel RG, Federlin K. 1984. Islet transplantation in experimental diabetes of the rat. VIII. B-cell restoration following islet transplantation. Preliminary results. Horm Metabol Res 16:551–552.

    Article  CAS  Google Scholar 

  • Scheirer W, Nilsson K, Merten OW, Katinger HW, Mosbach K. 1984. Entrapment of animal cells for the production of biomolecules such as monoclonal antibodies. Develop Biol Standard 55:155–161.

    Google Scholar 

  • Takagi T, Iwata H, Tashiro H, Tsuji T, Ito F. 1994. Development of a novel microbead applicable to xenogeneic islet transplantation. J Control Release 31:283–291.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iwata, H., Ikada, Y. (1999). Agarose. In: Kühtreiber, W.M., Lanza, R.P., Chick, W.L. (eds) Cell Encapsulation Technology and Therapeutics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1586-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1586-8_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7205-2

  • Online ISBN: 978-1-4612-1586-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics