Skip to main content

Central Auditory Processing in Fish and Amphibians

  • Chapter
Comparative Hearing: Fish and Amphibians

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 11))

Abstract

Sound communication plays a vital role in the regulation of social and reproductive behaviors of fish and amphibians (see Zelick et al. Chapter 9). These two groups of animals typically communicate in two different media having different physical characteristics and constraints. Research has shown that these animals are well adapted to cope with these constraints and able to communicate effectively. This chapter summarizes the present understanding of how acoustic signals are represented in the central auditory system. The materials presented herein are built upon the comprehensive knowledge of the peripheral auditory physiology and the central auditory anatomy in these animals (see Popper and Fay, Chapter 3; Lewis and Narins, Chapter 4; and McCormick, Chapter 5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beranek LL (1954) Acoustics. New York: McGraw-Hill.

    Google Scholar 

  • Bibikov NG (1974a) Encoding of the stimulus envelope in peripheral and central regions of the auditory system of the frog. Acustica 31:310–314.

    Google Scholar 

  • Bibikov NG (1974b) Impulse activity of torus semicircularis neurons of the frog Rana temporaria. J Evol Biochem Physiol 10:36–41.

    Google Scholar 

  • Bibikov NG (1977) Dependence of the binaural neurons reaction in the frog torus semicircularis on the interaural phase difference. Sechenov Physiol J USSR 63:365–373.

    CAS  Google Scholar 

  • Bibikov NG, Gorodetskaya ON (1980) Single unit responses in the auditory center of the frog mesencephalon to amplitude-modulated tones. Neirofiziologiia 12:264–271.

    PubMed  CAS  Google Scholar 

  • Blair WF (1964) Isolating mechanisms and interspecies interactions in anuran amphibians. Q Rev Biol 20:334–344.

    Google Scholar 

  • Bleckmann H, Bullock TH (1989) Central nervous physiology of the lateral line, with special reference to cartilaginous fishes. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 387–408.

    Google Scholar 

  • Brown CH, Schessler T, Moody D, Stebbins W (1982) Vertical and horizontal sound localization. J Acoust Soc Am 72:1804–1811.

    PubMed  CAS  Google Scholar 

  • Buwalda RJA, Schuijf A, Hawkins AD (1983) Discrimination by the cod of sounds from opposing directions. J Comp Physiol [A] 150:175–184.

    Google Scholar 

  • Caird DM (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J Comp Physiol [A] 127:61–74.

    Google Scholar 

  • Capranica RR (1965) The Evoked Vocal Response of the Bullfrog: A Study of Communication in Anurans. Research monographs #33. Cambridge: MIT Press.

    Google Scholar 

  • Carlisle S, Pettigrew AG (1984) Auditory responses in the torus semicircularis of the cane toad, Bufo marinus. II. Single unit studies. Proc R Soc Lond [B] 222:243–257.

    Google Scholar 

  • Carr CE (1993) Processing of temporal information in the brain. Annu Rev Neurosci 16:223–243.

    PubMed  CAS  Google Scholar 

  • Casseday JH, Ehrlich D, Covey E (1994) Neural tuning for sound direction: role of inhibitory mechanisms in the inferior colliculus. Science 264:847–850.

    PubMed  CAS  Google Scholar 

  • Christensen-Dalsgaard J, Narins PM (1993) Sound and vibration sensitivity of VIIIth nerve fibers in the frogs Leptodactylus albilabris and Rana pipiens pipiens. J Comp Physiol [A] 172:653–662.

    CAS  Google Scholar 

  • Condon CJ, Chang SH, Feng AS (1991) Processing of behaviorally relevant temporal parameters of acoustic stimuli by single neurons in the superior olivary nucleus of the leopard frog. J Comp Physiol [A] 168:709–725.

    CAS  Google Scholar 

  • Condon CJ, Chang SH, Feng AS (1995) Classification of the temporal discharge patterns of single auditory neurons in the frog superior olivary nucleus. Hear Res 83:190–202.

    PubMed  CAS  Google Scholar 

  • Coombs S, Fay RR (1985) Adaptation effects on amplitude modulation detection: behavioral and neurophysiological assessment in the goldfish auditory system. Hear Res 19:57–71.

    PubMed  CAS  Google Scholar 

  • Corwin JT (1981) Audition in elasmobranchs. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 81–105.

    Google Scholar 

  • Crawford JD (1993) Central auditory neurophysiology of a sound-producing fish: the mesencephalon of Pollimyrus isidori (Mormyridae). J Comp Physiol [A] 172:139–152.

    CAS  Google Scholar 

  • Cuadrado MI (1987) The cytoarchitecture of the torus semicircularis in the teleost, Barbus meridionalis. J Morphol 191:233–245.

    Google Scholar 

  • de Wolf FA, Schellart NAM, Hoogland PV (1983) Octavolateral projections to the torus semicircularis in the trout, Salmo gairdneri. Neurosci Lett 38:209213.

    Google Scholar 

  • Diekamp B, Gerhardt HC (1995) Selective phonotaxis to advertisement calls in the gray treefrog Hyla versicolor: behavioral experiments and neurophysiological correlates. J Comp Physiol [A] 177:173–190.

    CAS  Google Scholar 

  • Echteler SM (1985a) Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol [A] 156:267–280.

    Google Scholar 

  • Echteler SM (1985b) Tonotopic organization in the midbrain of a teleost fish. Brain Res 338:387–391.

    CAS  Google Scholar 

  • Eggermont JJ (1988) Mechanisms of sound localization in anurans. In: Fritsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 307–336.

    Google Scholar 

  • Eggermont JJ, Epping WJM (1986) Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. III. Stimulation with natural and synthetic mating calls. Hear Res 24:255–268.

    PubMed  CAS  Google Scholar 

  • Ehret G, Tautz J, Schmitz B, Narins PM (1990) Hearing through the lungs: lung-eardrum transmission of sound in the frog Eleutherodactylus coqui. Naturwissenschaften 77:192–194.

    PubMed  CAS  Google Scholar 

  • Elepfandt A (1996) Underwater acoustics and hearing in the clawed frog, Xenopus. In: Tinsley RC, Kobel HR (eds) The Biology of Xenopus. Oxford: Clarendon Press, pp. 177–193.

    Google Scholar 

  • Enger PS (1967) Hearing in herring. Comp Biochem Physiol 22:527–538.

    PubMed  CAS  Google Scholar 

  • Enger PS (1973) Masking of auditory responses in the medulla oblongata of goldfish. J Exp Bio 159:415–424.

    Google Scholar 

  • Epping WJM, Eggermont JJ (1986a) Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. I. Stimulation with acoustic clicks. Hear Res 24:37–54.

    CAS  Google Scholar 

  • Epping WJM, Eggermont JJ (1986b) Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sound. Hear Res 24:55–72.

    CAS  Google Scholar 

  • Fay RR (1978) Coding of information in single auditory-nerve fibers of the goldfish. J Acoust Soc Am 63:136–146.

    PubMed  CAS  Google Scholar 

  • Fay RR (1984) The goldfish ear codes the axis of acoustic particle motion in three dimension. Science 225:951–954.

    PubMed  CAS  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: a Psychophysics Data Book. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay RR (1990) Suppression and excitation in auditory nerve fibers of the goldfish, Carassius auratus. Hear Res 48:93–110.

    PubMed  CAS  Google Scholar 

  • Fay RR, Feng AS (1987) Mechanisms for directional hearing among non mammalian vertebrates. In: Yost WA, Gourevitch G (eds) Directional Hearing. New York: Springer-Verlag, pp. 179–213.

    Google Scholar 

  • Fay RR, Hillery CM, Bolan K (1982) Presentation of sound pressure and particle motion in the midbrain of goldfish. Comp Biochem Physiol 71:181–191.

    CAS  Google Scholar 

  • Feng AS (1980) Directional characteristics of the acoustic receiver of the leopard frog (Rana pipiens): a study of eighth nerve auditory responses. J Acoust Soc Am 68:1107–1114.

    PubMed  CAS  Google Scholar 

  • Feng AS (1981) Directional response characteristics of single neurons in the tours semicircularis of the leopard frog (Rana pipiens). J Comp Physiol [A] 144:419–428.

    Google Scholar 

  • Feng AS (1982) Quantitative analysis of intensity-rate and intensity-latency functions in peripheral auditory nerve fibers of northern leopard frogs (Rana p. pipiens). Hear Res 6:242–246.

    Google Scholar 

  • Feng AS (1986a) Afferent and efferent innervation patterns of the cochlear nucleus (dorsal medullary nucleus) of the leopard frog. Brain Res 367:183–191.

    CAS  Google Scholar 

  • Feng AS (1986b) Afferent and efferent innervation patterns of the superior olivary nucleus of the leopard frog. Brain Res 364:167–171.

    CAS  Google Scholar 

  • Feng AS, Capranica RR (1976) Sound localization in anurans. I. Evidence of binaural interaction in dorsal medullary nucleus of bullfrogs (Rana catesbeiana). J Neurophysiol 39:871–881.

    PubMed  CAS  Google Scholar 

  • Feng AS, Capranica RR (1978) Sound localization in anurans II. Binaural interaction in superior olivary nucleus of the green treefrog (Hyla cinerea). J Neurophysiol 41:43–54.

    PubMed  CAS  Google Scholar 

  • Feng AS, Gerhardt HC, Capranica RR (1976) Sound localization behavior of the green treefrog (Hyla cinerea) and the barking treefrog (H. gratiosa). J Comp Physiol [A] 107:241–252.

    Google Scholar 

  • Feng AS, Hall JC, Gooler DM (1990) Neural basis of sound pattern recognittion in anurans. Prog Neurobio 134:313–329.

    Google Scholar 

  • Feng AS, Hall JC, Siddique S (1991) Coding of temporal parameters of complex sounds by frog auditory nerve fibers. J Neurophysiol 65:424–445.

    PubMed  CAS  Google Scholar 

  • Feng AS, Lin WY (1991) Differential innervation patterns of three divisions of frog auditory midbrain (torus semicricularis). J Comp Neurol 306:613–630.

    PubMed  CAS  Google Scholar 

  • Feng AS, Lin WY (1994a) Detection of gaps in sinusoids by frog auditory nerve fibers: importance in AM coding. J Comp Physiol [A] 175:531–546.

    CAS  Google Scholar 

  • Feng AS, Lin WY (1994b) Phase-locked response characteristics of single neurons in the frog “cochlear nucleus” to steady-state and sinusoidally-amplitudemodulated tones. J Neurophysiol 72:2209–2221.

    CAS  Google Scholar 

  • Feng AS, Lin WY (1996) The neuronal architecture of the dorsal nucleus (cochlear nucleus) of the frog Rana pipiens pipiens. J Comp Neurol 366:320–334.

    PubMed  CAS  Google Scholar 

  • Feng AS, Narins PM, Capranica RR (1975) Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): their peripheral origins and frequency sensitivities. J Comp Physiol [A] 100:221–229.

    Google Scholar 

  • Feng AS, Shofner WP (1981) Peripheral basis of sound localization in anurans. Acoustic properties of the frog’s ear. Hear Res 5:201–216.

    PubMed  CAS  Google Scholar 

  • Fouquette MJ Jr (1975) Speciation in chorus frogs. I. Reproductive character displacement in the Pseudacris nigrita complex. Syst Zool 24:16–23.

    Google Scholar 

  • Frishkopf LA, Capranica RR, Goldstein MH (1968) Neural coding in the frog’s auditory system—a teleological approach. Proc IEEE 56:969–980.

    Google Scholar 

  • Fujita I, Konishi M (1991) The role of GABAergic inhibition in processing of interaural time difference in the owl’s auditory system. J Neurosci 11:722–739.

    PubMed  CAS  Google Scholar 

  • Fuzessery ZN (1983) Neural correlates of mating call selectivity in the leopard frog, Rana p. pipiens. Ph.D. Thesis, University of Illinois, Urbana-Champaign.

    Google Scholar 

  • Fuzessery ZN, Feng AS (1981) Frequency representation in the dorsal medullary nucleus of the leopard frog, Rana p. pipiens. J Comp Physiol [A] 143:339–349.

    Google Scholar 

  • Fuzessery ZN, Feng AS (1982) Frequency selectivity in the anuran auditory mid-brain: single unit responses to single and multiple tones. J Comp Physiol [A] 146:471–484.

    Google Scholar 

  • Fuzessery ZN, Feng AS (1983a) Frequency selectivity in the anuran medulla: excitatory and inhibitory tuning properties of single neurons in the dorsal medullary and superior olivary nuclei. J Comp Physiol [A] 150:107–119.

    Google Scholar 

  • Fuzessery ZN, Feng AS (1983b) Mating call selectivity in the thalamus and midbrain of the leopard frog (Rana p. pipiens): single and multi-unit analyses. J Comp Physiol [A] 150:333–344.

    Google Scholar 

  • Gerhardt HC (1974) The significance of some spectral features in mating call recognition in the green treefrog (Hyla cinerea). J Exp Biol 61:229–241.

    PubMed  CAS  Google Scholar 

  • Gerhardt HC (1978) Temperature coupling in the vocal communication system of the gray treefrog Hyla versicolor. Science 199:992–994.

    PubMed  CAS  Google Scholar 

  • Gerhardt HC, Doherty JA (1988) Acoustic communication in the gray treefrog, Hyla versicolor: evolutionary and neurobiological implications. J Comp Physiol [A] 162:261–278.

    Google Scholar 

  • Gerhardt HC, Rheinlaender J (1982) Localization of an elevated sound source by the green treefrog. Science 217:663–664.

    Google Scholar 

  • Gooler DM, Feng AS (1992) Temporal coding in the frog auditory midbrain: the influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. J Neurophysiol 67:1–22.

    PubMed  CAS  Google Scholar 

  • Gooler DM, Condon CJ, Xu JH, Feng AS (1993) Sound direction influences the frequency-tuning characteristics of neurons in the frog inferior colliculus. J Neurophysiol 69:1018–1030.

    PubMed  CAS  Google Scholar 

  • Gooler DM, Xu JH, Feng AS (1996) Binaural inhibition is important in shaping the free-field frequency selectivity of single neurons in the frog inferior colliculus. J Neurophysiol 76:2580–2594.

    PubMed  CAS  Google Scholar 

  • Goossens JHLM, Wubbels RJ, Schellart NAM (1995) Computer-controlled vibra-tions of a biological subject in the nm range. Med Biol Eng Comput 33:732–735.

    PubMed  CAS  Google Scholar 

  • Grözinger B (1967) Elektro-physiologische Untersuchugen an der Hirbahn der Schleie (Tinca tinca [L]). Z Vergl Physiol 57:44–76.

    Google Scholar 

  • Hall JC (1994) Central processing of communication sounds in the anuran auditory system. Am Zool 34:670–684.

    Google Scholar 

  • Hall JC, Feng As (1986) Neural analysis of temporally patterned sounds in the frog’s thalamus: processing of pulse duration and pulse repetition rate. Neurosci Lett 63:215–220.

    PubMed  CAS  Google Scholar 

  • Hall JC, Feng AS (1987) Evidence for parallel processing in the frog’s auditory thalamus. J Comp Neurol 258:407–419.

    PubMed  CAS  Google Scholar 

  • Hall JC, Feng AS (1988) Influence of envelope rise time on neural responses in the auditory system of anurans. Hear Res 36:261–276.

    PubMed  CAS  Google Scholar 

  • Hall JC, Feng AS (1990) Classification of the temporal discharge patterns of single neurons in the dorsal medullary nucleus of the northern leopard frog. J Neurophysiol 64:1460–1473.

    PubMed  CAS  Google Scholar 

  • Hall JC, Feng As (1991) Temporal processing in the dorsal medullary nucleus of the northern leopard frog (Rana pipiens pipiens). J Neurophysiol 66:955–973.

    PubMed  CAS  Google Scholar 

  • Hermes DJ, Eggermont JJ, Aertsen AMHJ, Johannesma PIM (1982) Spectrotemporal characteristics of single units in the auditory midbrain of the lightly anesthetized grass frog (Rana temporaria L.) investigated with tonal stimuli. Hear Res 6:103–126.

    PubMed  CAS  Google Scholar 

  • Highstein SM (1991) The central nervous system efferent control of organs of balance and equilibrium. Neurosci Res 12:13–30.

    PubMed  CAS  Google Scholar 

  • Hillery C, Narins PM (1984) Neurophysiological evidence for a traveling wave in the amphibian ear. Science 225:1037–1039.

    PubMed  CAS  Google Scholar 

  • Homer K, Sand O, Enger PS (1980) Binaural interaction in the cod. J Exp Biol 85:323–331.

    Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brain stem. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 153–231.

    Google Scholar 

  • Jorgensen MB (1991) Comparative studies of the biophysics of directional hearing in anurans. J Comp Physiol [A] 169:591–598.

    Google Scholar 

  • Jorgensen MB, Chistensen-Dalsgaard J (1997) Directionality of auditory nerve fiber responses to pure tone stimuli in the grassfrog, Rana temporaria I. Spike rate responses. J Comp Physiol [A] 180:493–502.

    CAS  Google Scholar 

  • Jorgensen MB, Gerhardt HC (1991) Directional hearing in the gray tree frog Hyla versicolor: eardrum vibrations and phonotaxis. J Comp Physiol [A] 169:177–183.

    CAS  Google Scholar 

  • Jorgensen MB, Schmitz B, Christensen-Dalsgaard (1991) Biophysics of directional hearing in the frog Eleutherodactylus coqui. J Comp Physiol [A] 168:223–232.

    Google Scholar 

  • Kaulen R, Lifschitz W, Palazzi C, Adrian H (1972) Binaural interaction in the inferior colliculus of the frog. Exp Neurol 37:469–480.

    PubMed  CAS  Google Scholar 

  • Keilwerth E, Ehret G (1991) The lung of treefrogs as “outer ears” serving in sound localization? Verh Dtsch Zool Ges 84:347.

    Google Scholar 

  • Klump GM, Gerhardt HC (1989) Sound localization in the barking treefrog. Naturwissenschaften 76:35–37.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Blasdel GG, Konishi M (1979) Sound localization by the barn owl (Tyto alba) measured with the search coil technique. J Comp Physiol [A] 133:111.

    Google Scholar 

  • Kuwada S, Yin TCT (1987) Physiological studies of directional hearing. In: Yost WA, Gourevitch G (eds) Directional Hearing. New York: Springer-Verlag, pp. 146–176.

    Google Scholar 

  • Lewis ER, Leverenz EL, Koyama H (1980) Mapping functionally identified auditory afferents from the peripheral origins to the central terminations. Brain Res 197:223–229.

    PubMed  CAS  Google Scholar 

  • Livingstone MS, Hubel DH (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749.

    PubMed  CAS  Google Scholar 

  • Loftus-Hills JJ, Littlejohn MJ (1971) Pulse repetition rate as the basis for mating call discrimination by two sympatric species of Hyla. Copeia 1:154–156.

    Google Scholar 

  • Lu Z, Fay RR (1993) Acoustic response properties of single units in the torus semicircularis of the goldfish, Carassius auratus. J Comp Physiol [A] 173:33–48.

    CAS  Google Scholar 

  • Lu Z, Fay RR (1995) Acoustic response properties of single units in the central posterior nucleus of the thalamus of the goldfish, Carassius auratus. J Comp Physiol [A] 176:747–760.

    CAS  Google Scholar 

  • Lu Z, Fay RR (1996) Two-tone interaction in auditory nerve fibers and midbrain neurons of the goldfish, Carassius auratus. Audit Neurosci 2:257–273.

    Google Scholar 

  • McCormick CA (1992) Evolution of central auditory pathways in anamniotes. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 323–350.

    Google Scholar 

  • Megela AL (1984) Diversity of adaptational patterns in responses of eighth nerve fibers in the bullfrog, Rana catesbeiana. J Acoust Soc Am 75:1155–1162.

    PubMed  CAS  Google Scholar 

  • Megela AL, Capranica RR (1981) Response patterns to tone bursts in peripheral auditory system of anurans. J Neurophysiol 46:465–478.

    PubMed  CAS  Google Scholar 

  • Melssen WJ, Epping WJM (1990) A combined sensitivity for frequency and interaural intensity difference in neurons in the auditory midbrain of the grassfrog. Hear Res 44:35–50.

    PubMed  CAS  Google Scholar 

  • Melssen WJ, Epping WJM (1992) Selectivity for temporal characteristics of sound and interaural time difference of auditory midbrain neurons in the grassfrog. Hear Res 60:178–198.

    PubMed  CAS  Google Scholar 

  • Mohneke R (1983) Tonotopic organization of the auditory midbrain nuclei of the midwife toad (Alytes obstetricans). Hear Res 9:91–102.

    PubMed  CAS  Google Scholar 

  • Narins PM, Capranica RR (1978) Communicative significance of the two-note call of the treefrog, Eleutherodactylus coqui. J Comp Physiol [A] 127:1–9.

    Google Scholar 

  • Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85:1508–1512.

    PubMed  CAS  Google Scholar 

  • Nederstigt LJA, Schellart NAM (1986) Acoustical activity in the torus semicircularis of the trout Salmo gairdneri. Pflugers Arch 406:151–157.

    PubMed  CAS  Google Scholar 

  • Page CH (1970) Electrophysiological study of auditory responses in the goldfish brain. J Neurophysiol 33:116–128.

    PubMed  CAS  Google Scholar 

  • Page CH, Sutterlin AM (1970) Visual and auditory responses in the goldfish tegmentum. J Neurophysiol 33:129–136.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Pinder AC (1984) The directionality of the frog ear described by a mechanical model. J Theor Biol 110:205–215.

    PubMed  CAS  Google Scholar 

  • Passmore NI, Capranica RR, Telford SR, Bishop PJ (1984) Phonotaxis in the painted reed frog (Hyperolius marmoratus). The localization of elevated sound source. J Comp Physiol [A] 154:189–197.

    Google Scholar 

  • Pettigrew AG (1981) Brainstem afferents to the torus semicircularis of the Queensland cane toad (Bufo marinus). J Comp Neurol 202:59–68.

    PubMed  CAS  Google Scholar 

  • Pettigrew AG, Carlisle S (1984) Auditory response in the torus semicircularis of the cane toad (Bufo marinus). I. Field potential studies. Proc R Soc Lond [B] 222:231–242.

    CAS  Google Scholar 

  • Pettigrew AG, Chung S-H, Anson M (1978) Neurophysiological basis of directional hearing in amphibia. Nature 272:138–142.

    PubMed  CAS  Google Scholar 

  • Pettigrew AG, Anson M, Chung S-H (1981) Hearing in the frog: a neurophysiological study of the auditory response in the midbrain. Proc R Soc Lond [B] 212:433–457.

    Google Scholar 

  • Plassmann W (1985) Coding of amplitude-modulated tones in the central auditory system of catfish. Hear Res 17:209–217.

    PubMed  CAS  Google Scholar 

  • Popper AN, Fay RR (1993) Sound detection and processing by fish: a critical review and major research questions. Brain Behav Evol 41:14–38.

    PubMed  CAS  Google Scholar 

  • Popper AN, Saidel WM (1990) Variations in receptor cell innervation in the saccule of a teleost fish ear. Hear Res 46:211–227.

    PubMed  CAS  Google Scholar 

  • Rheinlaender J, Gerhardt HC, Yager DD, Capranica RR (1979) Accuracy of phonotaxis by the green treefrog (Hyla cinerea). J Comp Physiol [A] 133:247–255.

    Google Scholar 

  • Rhode W, Greenberg S (1992) Physiology of the cochlear nuclei. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 94–152.

    Google Scholar 

  • Roberts BL, Meredith GE (1992) The efferent innervation of the ear: variations on an enigma. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 185–210.

    Google Scholar 

  • Rogers PH, Popper AN, Hastings MA, Saidel WM (1988) Processing of acoustic signals in the auditory system of bony fish. J Acoust Soc Am 83:338–349.

    PubMed  CAS  Google Scholar 

  • Rose GJ, Capranica RR (1985) Sensitivity to amplitude modulated sounds in the anuran auditory nervous system. J Neurophysiol 53:446–465.

    PubMed  CAS  Google Scholar 

  • Rubinson K, Skiles MP (1975) Efferent projections of the superior olivary nucleus in the frog, Rana catesbeiana. Brain Behav Evol 122:151–160.

    Google Scholar 

  • Sawa M (1976) Auditory responses from single neurons of the medulla oblongata in the goldfish. Bull Jpn Soc Sci Fish 45:141–152.

    Google Scholar 

  • Schellart NAM (1983) Acoustical and visual processing and their interaction in the torus semicircularis of the trout, Salmo gairdneri. Neurosci Lett 42:39–44.

    PubMed  CAS  Google Scholar 

  • Schellart NAM (1990) The integration of visual and acoustic processing in the teleost subtectum. In: Guthrie DM (ed) Higher Order Sensory Processing. Manchester, England: Manchester University Press, pp. 49–74.

    Google Scholar 

  • Schellart NAM (1992) Interrelations between the auditory, the visual and the lateral line systems; a mini-review of modeling sensory capabilities. Neth J Zool 42:459–477.

    Google Scholar 

  • Schellart NAM, Kroese ABA (1989) Interrelationship of acousticolateral and visual systems in the teleost midbrain. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 421–443.

    Google Scholar 

  • Schellart NAM, Munck JC de (1987) A model for directional and distance hearing in swimbladder-bearing fish based on the displacement orbits of hair cells. J Acoust Soc Am 82:822–829.

    PubMed  CAS  Google Scholar 

  • Schellart NAM, Popper AN (1992) Functional aspects of the evolution of the auditory system of actinopterygian fish. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 295–322.

    Google Scholar 

  • Schellart NAM, Rikkert WEI (1989) Response features of visual units in the lower midbrain of the rainbow trout. J Exp Biol 144:357–375.

    Google Scholar 

  • Schellart NAM, Kamermans M, Nederstigt UA (1987) An electrophysiological study of the topographical organization of the multisensory torus semicircularis of the rainbow trout. Comp Biochem Physiol 88A:461–469.

    Google Scholar 

  • Schellart NAM, Prins M, Kroese ABA (1992) The pattern of trunk lateral line afferents and efferent in the rainbow trout (Salmo gairdneri). Brain Behav Evol 39:371–380.

    PubMed  CAS  Google Scholar 

  • Schellart NAM, Wubbels RJ, Goossens JHLM (1995a) Coding of sound source direction in the trout lower midbrain. Eur J Neurosci Suppl 8:75 (32.20).

    Google Scholar 

  • Schellart NAM, Wubbels RJ, Schreurs W, Faber A Goossens JHLM (1995b) Two-dimensional vibrating platform in nm range. Med Biol Eng Comput 33:217–220.

    CAS  Google Scholar 

  • Schneider H (1982) Phonotaxis bei Weibchen des Kanarischen Laubfrosches, Hyla meridionalis. Zool Anz Jena 208:161–174.

    Google Scholar 

  • Schneider H, Schneichel W, Walkowiak W (1986) Frequency representation in the midbrain of anuran amphibians. Verh Dtsch Zool Ges 79:294–295.

    Google Scholar 

  • Schuijf A (1976) The phase model of directional hearing in fish. In: Schuijf A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 63–86.

    Google Scholar 

  • Schuijf A, Buwalda RJA (1980) Underwater localization: a major problem in fish acoustics. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 43–77.

    Google Scholar 

  • Shotwell SL, Jacobs R, Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. NY Acad Sci 374:1–10.

    CAS  Google Scholar 

  • Suga N (1990) Biosonar and neural computation in bats. Sci Am 262:60–68.

    PubMed  CAS  Google Scholar 

  • Takahashi TT, Keller CH (1992) Commissural connections mediate inhibition for the computation of interaural level difference in the barn owl. J Comp Physiol [A] 170:161–169.

    CAS  Google Scholar 

  • van Bergeijk WA (1962) Variation on a theme of Bekesy: a model of binaural interaction. J Acoust Soc Am 34:1431–1437.

    Google Scholar 

  • van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.

    Google Scholar 

  • Vlaming MSMG, Aertsen AMHJ, Epping WJM (1984) Directional hearing in the grassfrog (Rana temparasia L.): I. Mechanical vibrations of tympanic membrane. Hear Res 14:191–201.

    PubMed  CAS  Google Scholar 

  • Walkowiak W (1980) The coding of auditory signals in the torus semicircularis of the fire-bellied toad and the grassfrog: responses to simple stimuli and to conspecific calls. J Comp Physiol [A] 138:131–148.

    Google Scholar 

  • Walkowiak W, Brzoska J (1982) Significance of spectral and temporal call parameters in the auditory communication of male grassfrogs. Behav Ecol Sociobiol 11:247–252.

    Google Scholar 

  • Walkowiak W, Luksch H (1994) Sensory motor interfacing in acoustic behavior of anurans. Am Zool 34:685–695.

    Google Scholar 

  • Wang J, Ludwig TA, Narins PM (1996) Spatial and spectral dependence of the auditory periphery in the Northern leopard frog. J Comp Physiol [A] 178:159–172.

    CAS  Google Scholar 

  • Wilczynski W (1981) Afferents to the midbrain auditory center in the bullfrog, Rana catesbeiana. J Comp Neurol 198:421–433.

    PubMed  CAS  Google Scholar 

  • Wilczynski W, Resler C, Capranica RR (1987) Tympanic and extra-tympanic sound transmission in the leopard frog. J Comp Physiol [A] 161:659–669.

    CAS  Google Scholar 

  • Wubbels RJ, Kroese ABA, Schellart NAM (1993) Response properties of lateral line and auditory units in the medulla oblongata of the rainbow trout (Oncorhynchus mykiss) J Exp Biol 179:77–92.

    Google Scholar 

  • Wubbels RJ, Schellart NAM (1997) Neural coding of sound direction in the auditory midbrain of the rainbow trout. J Neurophysiol 77:3060–3074.

    PubMed  CAS  Google Scholar 

  • Wubbels RJ, Schellart NAM, Goossens JHLM (1994) Response characteristics of direction selective acoustic units in the trout lower midbrain. In: Elsner N, Breer H (eds) Proceedings of the 22nd Göttingen Neurobiology Conference, vol. 2. Stuttgart: Georg Thieme Verlag, p. 357.

    Google Scholar 

  • Wubbels RJ, Schellart NAM, Goossens JHLM (1995) Mapping of sound direction in the trout lower midbrain. Neurosci Lett 199:179–182.

    PubMed  CAS  Google Scholar 

  • Xu JH, Gooler DM, Feng AS (1994) Single neurons in the frog inferior colliculus exhibit direction-dependent frequency selectivity to iso-intensity tone bursts. J Acoust Soc Am 95:2160–2170.

    PubMed  CAS  Google Scholar 

  • Xu JH, Gooler DM, Feng AS (1996) Effects of sound direction on the processing of amplitude-modulated signals in the frog inferior colliculus. J Comp Physiol [A] 178:435–445.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feng, A.S., Schellart, N.A.M. (1999). Central Auditory Processing in Fish and Amphibians. In: Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Fish and Amphibians. Springer Handbook of Auditory Research, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0533-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0533-3_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6806-2

  • Online ISBN: 978-1-4612-0533-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics