Skip to main content

Abstract

Tissue adhesives have important applications in clinical practice. These biological glues, most especially fibrin, have now been used in European countries for several decades for tissue welding, as hemostatic agents in the control of bleeding, as fluid and gas barriers in fistulas and vascular grafts, as well as in meningeal- and pulmonary-puncture coatings, and, not least, as implants, in which situation they have served as scaffolds and/or as drug-delivery vehicles in wound healing. Fibrin has recently been approved for clinical use in the USA, albeit solely in the capacity of a surgical hemostatic homeostasis agent.

In times of change, learners inherit the earth, while the learned find themselves beautifully equipped to deal with a world that no longer exists.

(Eric Hoffer)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hunter J. A treatise on the blood, inflammation and gunshot wounds, London, 1774. In: Brunner C, editor. Handbuch der Wundbehandlung: (Neue deutsche Chirurgie, Bd. 20). Stuttgart, 1916.

    Google Scholar 

  2. Haeberlein C. Welche geschnittene oder gehauene Wunden sollen durch die Vereinigung und welche sollen durch die Eiterung geheilt werden? In: Rather PW, editor. Gewe-beklebstoffe in der Medizih. Munich: Goldmann, 1972.

    Google Scholar 

  3. Bergel S. Uber Wirkungen des fibrins. Deutsch Med Wochenschr 1909;35:633–65.

    Article  Google Scholar 

  4. Young JZ, Medawar RB. Fibrin Suture of Peripheral Nerves. Lancet 1940;2:126–32.

    Article  Google Scholar 

  5. Matras H. The use of fibrin sealant in oral and maxillofacial surgery. J Oral Maxillofac Surg 1982;40(10): 617–22.

    Article  PubMed  CAS  Google Scholar 

  6. Fuhge P, Heimburger N, Stohr HA, Burk W. 1987. United States Patent #4,650,678.

    Google Scholar 

  7. Heimburger N, Fuhge P, Ronneberge H. 1987. European Patent #87,109,374.

    Google Scholar 

  8. Burnouf-Radosevich M, Burnouf T, Huart JJ. Biochemical and physical properties of a solvent-detergent-treated fibrin glue. Vox Sang 1990;58(2):77–84.

    Article  PubMed  CAS  Google Scholar 

  9. Sierra DH. Fibrin sealant adhesive systems: a review of their chemistry, material properties and clinical applications. J Biomater Appl 1993;7(4):309–52.

    Article  PubMed  CAS  Google Scholar 

  10. Bachet J, Gigou F, Laurian C, Bical O, Goudot B, Guilmet D. Four-year clinical experience with the gelatin-resor-cine-formol biological glue in acute aortic dissection. J Thorac Cardiovasc Surg 1982;83(2):212–17.

    PubMed  CAS  Google Scholar 

  11. Huang ST, Kilpadi DV, Feldman DS. A comparison of the shear strength of fibrin and albumin glues. Transactions of the Wound Healing Society 1997;7:63.

    Google Scholar 

  12. Leonard F. The n-alkylalphacyanoacrylate tissue adhe-sives. Ann N Y Acad Sci 1968;146:203–13.

    Article  PubMed  CAS  Google Scholar 

  13. Feldman D, Sierra D. Tissue adhesives in wound healing. In: Dekker M, editor. Encyclopedic Handbook of Biomaterials and Bioengineering. New York, 1995.

    Google Scholar 

  14. Linder A, Linnau Y. 1986. United States Patent #4,600,574.

    Google Scholar 

  15. Schwartz, Linnau Y, Loblich F, Seelich T. 1980. United Kingdom Patent Application GB 2 041942.

    Google Scholar 

  16. Seelich T. European Patent #85,890,227.

    Google Scholar 

  17. Dahlstrom KK, Weis-Fogh US, Medgyesi S, Rostgaard J, Sorensen H. The use of autologous fibrin adhesive in skin transplantation. Plast Reconstr Surg 1992;89(5): 968–72; discussion 973–6.

    Article  PubMed  CAS  Google Scholar 

  18. Conte JE, Jr., Hadley WK, Sande M. Infection-control guidelines for patients with the acquired immunodeficiency syndrome (AIDS). N Engl J Med 1983;309(12): 740–4.

    Article  PubMed  Google Scholar 

  19. Sedlarik KM, Ursinus W, Lichey C, Reichert A, Schilling B. The sealing of vascular prostheses using autologous electrically activated blood. Thorac Cardiovasc Surg 1984;32(5):329–30.

    Article  PubMed  CAS  Google Scholar 

  20. Dresdale A, Bowman FO, Jr., Malm JR, Reemtsma K, Smith CR, Spotnitz HM, et al. Hemostatic effectiveness of fibrin glue derived from single-donor fresh frozen plasma. Ann Thorac Surg 1985;40(4):385–7.

    Article  PubMed  CAS  Google Scholar 

  21. Mauler R, Hilfenhaus J. Inactivation of viruses in Factor XIII concentrate by pasteurization. Artzneimit-telforschung 1984;34(11):1524–7.

    CAS  Google Scholar 

  22. Koveker G. Clinical application of fibrin glue in cardiovascular surgery. Thorac Cardiovasc Surg 1982; 30(4):228–9.

    Article  PubMed  CAS  Google Scholar 

  23. FDA. New fibrin sealant approved to help control bleeding in surgery, 1998 May 1.

    Google Scholar 

  24. FDA. Revocation of Fibrinogen Licences: FDA, Drug Bull, 1978;8:15.

    Google Scholar 

  25. Jackson MR, Alving BM. Fibrin sealant in preclinical and clinical studies. Curr Opin Hematol 1999;6(6): 415–19.

    Article  PubMed  CAS  Google Scholar 

  26. Jackson MR, MacPhee MJ, Drohan WN, Alving BM. Fibrin sealant: current and potential clinical applications. Blood Coagul Fibrinolysis 1996;7(8): 737–46.

    Article  PubMed  CAS  Google Scholar 

  27. Ferry JD, Morrison PR. Preparation and Properties of Serum and Plasma Proteins. VIII. The Conversion of Human Fibrinogen to Fibrin under Various Conditions. J Amer Chem Soc 1947;69:388–400.

    Article  CAS  Google Scholar 

  28. Ferry JD. The conversion of fibrinogen to fibrin: events and recollections from 1942 to 1982. Ann N Y Acad Sci 1983;408:1–10.

    Article  PubMed  CAS  Google Scholar 

  29. Okada M, Blomback B, Chang MD, Horowitz B. Fibronectin and fibrin gel structure. J Biol Chem 1985;260(3):1811–20.

    PubMed  CAS  Google Scholar 

  30. Blomback B, Okada M. Fibrin gels and their possible implication for surface hemorheology in health and disease. Ann N Y Acad Sci 1983;416:397–409.

    Article  PubMed  CAS  Google Scholar 

  31. Nowotony R, Chalupka A, Nowotony C, Bosch P. Mechanical Properties of Fibrinogen Adhesive Material. In: Winter, GD, Gibbons GF, Plenk H, editors. Bio-materials. London: John Wiley and Sons, 1982.

    Google Scholar 

  32. Jorgensen PH, Jensen KH, Andreassen TT. Mechanical strength in rat skin incisional wounds treated with fibrin sealant. J Surg Res 1987;42(3):237–41.

    Article  PubMed  CAS  Google Scholar 

  33. Byrne DJ, Hardy J, Wood RA, Mcintosh R, Cuschieri A. Effect of fibrin glues on the mechanical properties of healing wounds. Br J Surg 1991;78(7):841–3.

    Article  PubMed  CAS  Google Scholar 

  34. Durham LH, Willatt DJ, Yung MW, Jones I, Stevenson PA, Ramadan MF. A method for preparation of fibrin glue. J Laryngol Otol 1987;101(11):1182–6.

    Article  PubMed  CAS  Google Scholar 

  35. Dresdale A, Rose EA, Jeevanandam V, Reemtsma K, Bowman FO, Malm JR. Preparation of fibrin glue from single-donor fresh-frozen plasma. Surgery 1985;97(6): 750–5.

    PubMed  CAS  Google Scholar 

  36. Avoy DR. 1990. United States Patent #4,902,281.

    Google Scholar 

  37. Wadstrom J, Wik O. Fibrin glue (Tisseel) added with sodium hyaluronate in microvascular anastomosing. Scand J Plast Reconstr Surg Hand Surg 1993;27(4): 257–61.

    PubMed  CAS  Google Scholar 

  38. Wadstrom J, Tengblad A. Fibrin glue reduces the dissolution rate of sodium hyaluronate. Ups J Med Sci 1993;98(2):159–67.

    Article  PubMed  CAS  Google Scholar 

  39. DeBlois C, Cote MF, Doillon CJ. Heparin-fibroblast growth factor-fibrin complex: in vitro and in vivo applications to collagen-based materials. Biomaterials 1994;15(9):665–72.

    Article  PubMed  CAS  Google Scholar 

  40. Schlag G, Redl H. Fibrin sealant in orthopedic surgery. Clin Orthop 1988;227:269–85.

    PubMed  CAS  Google Scholar 

  41. Ono K, Shikata J, Shimizu K, Yamamuro T. Bone-fibrin mixture in spinal surgery. Clin Orthop 1992(275): 133–9.

    PubMed  Google Scholar 

  42. Pico G. Thermodynamic aspects of thermal stability of human serum albumin. Biochem Mol Biol Int 1995;36:1017–23.

    PubMed  CAS  Google Scholar 

  43. Bleustein CB, Walker CN, Felsen D, Poppas DP. Semisolid albumin solder improved mechanical properties for laser tissue welding. Lasers Surg Med 2000;27(2): 140–6.

    Article  PubMed  CAS  Google Scholar 

  44. Phillips AB, Ginsburg BY, Shin SJ, Soslow R, Ko W, Poppas DP. Laser welding for vascular anastomosis using albumin solder: an approach for MID-CAB. Lasers Surg Med 1999;24(4):264–8.

    Article  PubMed  CAS  Google Scholar 

  45. Lauto A, Poppas DP, Murreil GA. Solubility study of albumin solders for laser tissue welding. Lasers Surg Med 1998;23(5):258–62.

    Article  PubMed  CAS  Google Scholar 

  46. Massicotte JM, Stewart RB, Poppas DP. Effects of endogenous absorption in human albumin solder for acute laser wound closure. Lasers Surg Med 1998;23(1):18–24.

    Article  PubMed  CAS  Google Scholar 

  47. Scherr DS, Poppas DP. Laser tissue welding. Urol Clin North Am 1998;25(1):123–35.

    Article  PubMed  CAS  Google Scholar 

  48. Poppas DP, Wright EJ, Guthrie PD, Shlahet LT, Retik AB. Human albumin solders for clinical application during laser tissue welding. Lasers Surg Med 1996;19(1):2–8.

    Article  PubMed  CAS  Google Scholar 

  49. Pavanetto F, Genta I, Giunchedi P, Conti B, Conte U. Spray-dried albumin microspheres for the intraarticular delivery of dexamethasone. J Microencapsul 1994;II(4):445–54.

    Article  Google Scholar 

  50. Luft JH. Fixation for biological ultrastructure. II. Cross-linking of bovine serum albumin by nanosecond pulses of ionizing radiation. J Microsc 1992;167(Pt 3):259–72.

    Article  PubMed  CAS  Google Scholar 

  51. Luft JH. Fixation for biological ultrastructure. I. A vis-cometric analysis of the interaction between glu-taraldehyde and bovine serum albumin. J Microsc 1992;167(Pt 3):247–58.

    Article  PubMed  CAS  Google Scholar 

  52. Goosen MF, Leung YF, Chou S, Sun AM. Insulinalbumin microbeads: an implantable, biodegradable system. Biomater Med Devices Artif Organs 1982; 10(3):205–18.

    PubMed  CAS  Google Scholar 

  53. Lee TK, Sokoloski TD, Royer GP. Serum albumin beads: an injectable, biodegradable system for the sustained release of drugs. Science 1981;213(4504):233–5.

    Article  PubMed  CAS  Google Scholar 

  54. Cremers HF, Wolf RF, Blaauw EH, Schakenraad JM, Lam KH, Nieuwenhuis P, et al. Degradation and intrahepatic compatibility of albumin-heparin conjugate microspheres. Biomaterials 1994;15(8):577–85.

    Article  PubMed  CAS  Google Scholar 

  55. Lin W, Garnett MC, Davies MC, Bignotti F, Ferruti P, Davis SS, et al. Preparation of surface-modified albumin nanospheres. Biomaterials 1997;18(7):559–65.

    Article  PubMed  CAS  Google Scholar 

  56. Ben Slimane S, Guidoin R, Merhi Y, King MW, Domurado D, Sigot-Luizard ME In vivo evaluation of polyester arterial grafts coated with albumin: the role and importance of cross-linking agents. European Surgical Reseach 1988;20:66–74.

    Article  CAS  Google Scholar 

  57. Chafke N, Gasser B, Lindner V, Rouyer N, Rooke R, Kretz JG, et al. Albumin as a sealant for a polyester vascular prosthesis: its impact on the healing sequence in humans. J Cardiovasc Surg (Torino) 1996;37(5): 431–40.

    CAS  Google Scholar 

  58. Leung YF, O’Shea GM, Goosen MF, Sun AM. Microencapsulation of crystalline insulin or islets of Langerhans: an insulin diffusion study. Artif Organs 1983; 7(2):208–12.

    Article  PubMed  CAS  Google Scholar 

  59. Goosen MF, Leung YF, O’Shea GM, Chou S, Sun AM. Slow release of insulin from a biodegradable matrix implanted in diabetic rats. Diabetes 1983;32(5):478–81.

    Article  PubMed  CAS  Google Scholar 

  60. D’Urso EM, Jean-Francois J, Doillon CJ, Fortier G. Poly (ethylene glycol)-serum albumin hydrogel as matrix for enzyme immobilization: biomedical applications. Artif Cells Blood Substit Immobil Biotechnol 1995;23(5):587–95.

    Article  PubMed  Google Scholar 

  61. Gayet JC, Fortier G. Drug release from new bioartificial hydrogel. Artif Cells Blood Substit Immobil Biotechnol 1995;23(5):605–11.

    Article  PubMed  CAS  Google Scholar 

  62. Evaluation of a new tissue sealant material: Serum albumin crosslinked in vivo with poolyethylene glycol. Fifth World Bioniaterials Conference; 1996 May 29–June 2; Toronto.

    Google Scholar 

  63. In vitro analysis of mechanical properties of a new tissue sealant material: polyethylene glycol crosslinked serum albumin; 1996 May 29–June 2; Toronto.

    Google Scholar 

  64. Warkentin P, Walivaara B, Lundstrom I, Tengvall P. Differential surface binding of albumin, immunoglobulin G and fibrinogen. Biomaterials 1994;15(10):786–95.

    Article  PubMed  CAS  Google Scholar 

  65. Klinger A, Steinberg D, Kohavi D, Sela MN. Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res 1997;36(3):387–92.

    Article  PubMed  CAS  Google Scholar 

  66. An YH, Stuart GW, McDowell SJ, McDaniel SE, Kang Q, Friedman RJ. Prevention of bacterial adherence to implant surfaces with a crosslinked albumin coating in vitro. J Orthop Res 1996;14(5):846–9.

    Article  PubMed  CAS  Google Scholar 

  67. McDowell SG, An YH, Draughn RA, Friedman RJ. Application of a fluorescent redox dye for enumeration of metabolically active bacteria on albumin-coated titanium surfaces. Lett Appl Microbiol 1995;21(1): 1–4.

    Article  PubMed  CAS  Google Scholar 

  68. An YH, Bradley J, Powers DL, Friedman RJ. The prevention of prosthetic infection using a cross-linked albumin coating in a rabbit model. J Bone Joint Surg Br 1997;79(5):816–19.

    Article  PubMed  CAS  Google Scholar 

  69. Ardis AE. 1949. US patent 2,467,927.

    Google Scholar 

  70. Coover HW, Joyner FB, Shearer NH, Wicker TH. Chemistry and performance of cyanoacrylate adhesives. J Soc Plastic Engineering 1959;15:413–17.

    Google Scholar 

  71. Coover HW, Mclntire JM. The chemistry of cyanoacrylate adhesives. In: T. M-m, editor. Tissue Adhesives in Surgery. New York: Medical Examination, 1972.

    Google Scholar 

  72. Smith DC. Lutes, glues, cements and adhesives in medicine and dentistry. BioMedical Engineering 1973;8:108–15.

    PubMed  CAS  Google Scholar 

  73. Kaufman RS. The use of tissue adhesive (isobutyl cyanoacrylate) and topical steroid (0.1 percent dexam-ethasone) in experimental tympanoplasty. Laryngoscope 1974;84:793–804.

    Article  PubMed  CAS  Google Scholar 

  74. Greer RO. Studies concerning the histotoxicity of isobutyl-2-cyanoacrylate tissue adhesive when employed as an oral hemostat. Oral Surgery, Oral Medicine, Oral Pathology 1975;40:659–69.

    Article  CAS  Google Scholar 

  75. Hunter KM. Cyanoacrylate tissue adhesive in osseous repair. Br J Oral Surg 1976;14(1):80–6.

    Article  PubMed  CAS  Google Scholar 

  76. Diaz FG, Mastri AR, Chou SN. Neural and vascular tissue reaction to aneurysm-coating adhesive (ethyl 2-cyanoacrylate). Neurosurgery 1978;3(1):45–9.

    Article  PubMed  CAS  Google Scholar 

  77. Hood TW, Mastri AR, Chou SN. Neural and vascular tissue reaction of cyanoacrylate adhesives: a further report. Neurosurgery 1982; II(3):363–6.

    Article  Google Scholar 

  78. Zumpano BJ, Jacobs LR, Hall JB, Margolis G, Sachs E, Jr. Bioadhesive and histotoxic properties of ethyl-2-cyanoacrylate. Surg Neurol 1982;18(6):452–7.

    Article  PubMed  CAS  Google Scholar 

  79. Vinters HV, Galil KA, Lundie MJ, Kaufmann JC. The histotoxicity of cyanoacrylates. A selective review. Neuroradiology 1985;27(4):279–91.

    Article  PubMed  CAS  Google Scholar 

  80. Vinters HV, Lundie MJ, Kaufmann JC. Long-term pathological follow-up of cerebral arteriovenous malformations treated by embolization with bucrylate. N Engl J Med 1986;314(8):477–83.

    Article  PubMed  CAS  Google Scholar 

  81. Kerr AG, Smyth GD. Bucrylate (isobutyl cyanoacrylate) as an ossicular adhesive. Arch Otolaryngol 1971;94(2):129–31.

    Article  PubMed  CAS  Google Scholar 

  82. Toriumi DM, Raslan WF, Friedman M, Tardy ME, Jr. Variable histotoxicity of histoacryl when used in a subcutaneous site: an experimental study. Laryngoscope 1991;101:339–43.

    PubMed  CAS  Google Scholar 

  83. Purdy PD, Batjer HH, Risser RC, Samson D. Arteriovenous malformations of the brain: choosing embolic materials to enhance safety and ease of excision. J Neu-rosurg 1992;77(2):217–22.

    CAS  Google Scholar 

  84. Cognard C, Miaux Y, Pierot L, Weill A, Martin N, Chiras J. The role of CT in evaluation of the effectiveness of embolisation of spinal dural arteriovenous fistulae with N-butyl cyanoacrylate. Neuroradiology 1996; 38(7):603–8.

    Article  PubMed  CAS  Google Scholar 

  85. DeMeritt JS, Pile-Spellman J, Mast H, Moohan N, Lu DC, Young WL, et al. Outcome analysis of preoperative embolization with N-butyl cyanoacrylate in cerebral arteriovenous malformations. AJNR Am J Neuroradiol 1995;16(9):1801–7.

    PubMed  CAS  Google Scholar 

  86. Tamarin A, Lewis P, Askey J. The structure and formation of the byssus attachment plaque in Mytilus. J Morphology 1976;149:199–221.

    Article  CAS  Google Scholar 

  87. Strausberg RL, Link RP. Trends in Biotechnology. Protein-based medical adhesives, 1990:53–7.

    Google Scholar 

  88. Strausberg RL, Link RP. Protein-Based Medical Adhesives. London: Elsevier Science, 1990.

    Google Scholar 

  89. Filpula DR, Lee SM, Link RP, Strausberg SL, Strausberg RL. Structural and functional repetition in a marine mussel adhesive protein. Biotechnology Progress 1990;6:171–7.

    Article  PubMed  CAS  Google Scholar 

  90. Green K. Mussel adhesive protein. In: Sierra D. H. SR, editor. Surgical Adhesives and Sealants — Current Technology and Applications. Lancaster: Technornic, 1996:19–27.

    Google Scholar 

  91. Robin JB, Lee CF, Riley JM. Preliminary evaluation of two experimental surgical adhesives in the rabbit cornea. Refractive 8c Corneal Surgery 1989;5:302–6.

    CAS  Google Scholar 

  92. Liggett PE, Cano M, Robin JB, Green RL, Lean JS. Intravitreal bio compatibility of mussel adhesive protein. A preliminary study. Retina 1990;10:144–7.

    Article  PubMed  CAS  Google Scholar 

  93. Pitman MI, Menche D, Song EK, Ben-Yishay A, Gilbert D, Grande DA. The use of adhesives in chondrocyte transplantation surgery: in vivo studies. Bulletin of the Hospital for Joint Diseases Orthopedic Institute, 1989;49:213–21.

    CAS  Google Scholar 

  94. Bachet J, Guilmet D. The use of biological glue in aortic surgery. Cardiol Clin 1999;17(4):779–96, ix-x.

    Article  PubMed  CAS  Google Scholar 

  95. Braunwald NS. A clinical evaluation of methyl-2-cyanoacrylate monomer as a hemostatic agent on the aorta. Ann Surg 1966;164(6):967–72.

    Article  PubMed  CAS  Google Scholar 

  96. Tatooles CJ, Braunwald NS. The use of crosslinked gelatin as a tissue adhesive to control hemorrhage from liver and kidney. Surgery 1966;60(4):857–61.

    PubMed  CAS  Google Scholar 

  97. Braunwald NS, Gay W, Tatooles CJ. Evaluation of crosslinked gelatin as a tissue adhesive and hemostatic agent: an experimental study. Surgery 1966;59(6): 1024–30.

    PubMed  CAS  Google Scholar 

  98. Braunwald NS, Tatooles CJ. Use of a crosslinked gelatin tissue adhesive to control hemorrhage from liver and kidney. Surg Forum 1965;16:345–6.

    PubMed  CAS  Google Scholar 

  99. Schwarz N, Redl H, Zeng L, Schlag G, Dinges HP, Eschberger J. Early osteoinduction in rats is not altered by fibrin sealant. Clin Orthop 1993(293):353–9.

    PubMed  Google Scholar 

  100. Schwarz N. The role of fibrin sealant in osteoinduction. Ann Chir Gynaecol Suppl 1993;207:63–8.

    PubMed  CAS  Google Scholar 

  101. Gerngross H, Burri C, Claes L. Experimental studies on the influence of fibrin adhesive, factor XIII, and calcitonin on the incorporation and remodeling of autologous bone grafts. Arch Orthop Trauma Surg 1986;106(1):23–31.

    Article  PubMed  CAS  Google Scholar 

  102. Claes L, Burri C, Gerngross H, Mutschier W. Bone healing stimulated by plasma factor XIII. Osteotomy experiments in sheep. Acta Orthop Scand 1985;56(1): 57–62.

    Article  PubMed  CAS  Google Scholar 

  103. Claes L, Burri C, Gerngross H, Mutschier W. Acceleration of fracture healing with factor XIII. Helv Chir Acta 1984;51(2):209–12.

    PubMed  CAS  Google Scholar 

  104. Bosch P, Braun F, Eschberger J, Kovac W, Spangler HP. The action of high-concentrated fibria on bone healing. Arch Orthop Unfallchir 1977;89(3):259–73.

    Article  PubMed  CAS  Google Scholar 

  105. Bosch P. Bone grafting with fibrin glue. Wien Klin Wochenschr Suppl 1981;124:1–26.

    PubMed  CAS  Google Scholar 

  106. Arbes H, Bosch P, Lintner F, Salzer M. First clinical experience with heterologous cancellous bone grafting combined with the fibrin adhesive system (FAS). Arch Orthop Trauma Surg 1981;98(3):183–8.

    Article  PubMed  CAS  Google Scholar 

  107. Bosch P, Lintner F, Arbes H, Brand G. Experimental investigations of the effect of the fibrin adhesive on the Kiel heterologous bone graft. Arch Orthop Trauma Surg 1980;96(3):177–85.

    Article  PubMed  CAS  Google Scholar 

  108. Bosch P, Braun F, Spangler HP. The technic of fibrin glue in cancellous bone transplants. Arch Orthop Unfallchir 1977;90(1):63–75.

    Article  PubMed  CAS  Google Scholar 

  109. Pfluger G, Bosch P, Grundschober F, Kristen H, Plenk H, Jr., Schider S. Investigation of bone growth into porous metal implants. Wien Klin Wochenschr 1979;91(14):482–7.

    PubMed  CAS  Google Scholar 

  110. Bernett P, Pfister A, Paar O, Deigentesch N. Klebung von Knorpelfrakturen am Knie- und Sprunggelenk mit Hilfe der Fibrinklebung. In: Chapchal G, editor. Sportverletzungen und Sportschäden. Stuttgart: Thieme-Verlag, 1983:159.

    Google Scholar 

  111. Böhler N, Bosch P, Sandbach G, Eschberger J, Schmid L. Experimentelle Erfahrungen mit der Einklebung von Kortikaliszylindern. In: Cotta H, Braun A, editors. Fibrinkleber in Orthopädie und Traumatologic Stuttgart: Thieme-Verlag, 1982:68.

    Google Scholar 

  112. Böhler N, Bosch P, Sandbach G, Schlagg, Eschberger J, Schmid L. Der Einfluss von homologen Fibrinogen auf die Osteomieheilung beim Kaninchen. Unfallheilkunde 1977;80:501.

    PubMed  Google Scholar 

  113. Schumacher G, Braun A, Heine W. Das Alloimplantat am Knochen unter Verwendung des fibrinklebesys-tems Tierexperimentelle Ergebenisse. In: H C, A B, editors. Fibrinkleber in Orthopädie und Traumatologic Stuttgart: Thieme-Verlag, 1982:71.

    Google Scholar 

  114. Kalebo P, Buch F, Albrektsson T. Bone formation rate in osseointegrated titanium implants. Influence of locally applied haemostasis, peripheral blood, autologous bone marrow and fibrin adhesive system (FAS). Scand J Plast Reconstr Surg Hand Surg 1988;22(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  115. Albrektsson T, Bach A, Edshage S, Jonsson A. Fibrin adhesive system (FAS) influence on bone healing rate: a microradiographical evaluation using the bone growth chamber. Acta Orthop Scand 1982;53(5): 757–63.

    Article  PubMed  CAS  Google Scholar 

  116. Pfluger H, Kirchheimer J, Ritschl P, Koller A, Hienert G, Binder BR. Tissue plasminogen activator activity in early prostatic cancer and in bone metastases of prostatic cancer. Wien Klin Wochenschr 1984;96(17): 658–61.

    PubMed  CAS  Google Scholar 

  117. Pfluger H, Redl H. In vivo and in vitro degradation of fibrin adhesives (studies in rats). Z Urol Nephrol 1982;75(1):25–30.

    PubMed  CAS  Google Scholar 

  118. Schlag G, Redl H. Fibrin adhesive system in bone healing [letter]. Acta Orthop Scand 1983;54(4): 655–8.

    Article  PubMed  CAS  Google Scholar 

  119. Zilch H, Noffke B. The influence of the fibrinogen adhesive system on bone healing. Unfallheilkunde 1981;84(9):363–72.

    PubMed  CAS  Google Scholar 

  120. Lucht U, Bunger C, Moller JT, Joyce F, Plenk H, Jr. Fibrin sealant in bone transplantation. No effects on blood flow and bone formation in dogs. Acta Orthop Scand 1986;57(1):19–24.

    Article  PubMed  CAS  Google Scholar 

  121. Keller J, Andreassen TT, Joyce F, Knudsen VE, Jorgensen PH, Lucht U. Fixation of osteochondral fractures. Fibrin sealant tested in dogs. Acta Orthop Scand 1985;56(4):323–6.

    Article  PubMed  CAS  Google Scholar 

  122. Tholpady SS, Schlosser R, Spotnitz W, Ogle RC, Lindsey WH. Repair of an osseous facial critical-size defect using augmented fibrin sealant. Laryngoscope 1999;109(10):1585–8.

    Article  PubMed  CAS  Google Scholar 

  123. Turgut M, Erkus M, Tavus N. The effect of fibrin adhesive (Tisseel) on interbody allograft fusion: an experimental study with cats. Acta Neuro chir (Wien) 1999;141(3):273–8.

    Article  CAS  Google Scholar 

  124. Jarzem P, Harvey EJ, Shenker R, Hajipavlou A. The effect of fibrin sealant on spinal fusions using allograft in dogs. Spine 1996;21(11):1307–12.

    Article  PubMed  CAS  Google Scholar 

  125. Plaga BR, Royster RM, Donigian AM, Wright GB, Caskey PM. Fixation of osteochondral fractures in rabbit knees. A comparison of Kirschner wires, fibrin sealant, and polydioxanone pins. J Bone Joint Surg [Br] 1992;74(2):292–6.

    CAS  Google Scholar 

  126. Palacios-Carvajal J, Moina E. The mixture of fibrin sealant and a porous ceramic as osteoconductor: An experimental study. In: Schalg G, Redl H, editors. Fibrin sealant Operative Medicine. Berlin: Springer-Verlag, 1986.

    Google Scholar 

  127. Siebert HR, Rueggr J, Weidner R, Pannike A. Histo-mophologische Verlaufsbeobachtungen der einheilung eines neuantigen Knochenersatzmittels in Knochen-defecten am femur der Ratte. Langenbecks Arch. Chir. 1982:147.

    Google Scholar 

  128. Urist MR. Bone transplants and implants. In: Urist MR, editor. Fundamental and Clinical Bone Physiology. Phildelphia: Lippincott, 1980:331.

    Google Scholar 

  129. Oberg S, Rosenquist JB. Bone healing after implantation of hydroxyapatite granules and blocks (Interpore 200) combined with autolyzed antigen-extracted allogeneic bone and fibrin glue. Experimental studies on adult rabbits. Int J Oral Maxillofac Surg 1994;23(2): 110–4.

    Article  PubMed  CAS  Google Scholar 

  130. Kania RE, Meunier A, Hamadouche M, Sedei L, Petite H. Addition of fibrin sealant to ceramic promotes bone repair: long-term study in rabbit femoral defect model. J Biomed Mater Res 1998;43(1):38–45.

    Article  PubMed  CAS  Google Scholar 

  131. Perka C, Schultz O, Spitzer RS, Lindenhayn K, Burmester GR, Sittinger M. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Bio-materials 2000;21(11):1145–53.

    CAS  Google Scholar 

  132. Matsumoto K, Kohmura E, Kato A, Hayakawa T. Restoration of small bone defects at craniotomy using autologous bone dust and fibrin glue [see comments]. Surg Neurol 1998;50(4):344–6.

    Article  PubMed  CAS  Google Scholar 

  133. Sierra DH, Saltz R. Surgical adhesives and sealants: Current technology and Application: Techomic Publishing Company, 1996.

    Google Scholar 

  134. Brittberg M, Sjogren-Jansson E, Lindahl A, Peterson L. Influence of fibrin sealant (Tisseel) on osteochondral defect repair in the rabbit knee. Biomaterials 1997; 18(3):235–42.

    Article  PubMed  CAS  Google Scholar 

  135. Homminga GN, Buma P, Koot HW, van der Kraan PM, van den Berg WB. Chondrocyte behavior in fibrin glue in vitro. Acta Orthop Scand 1993;64(4):441–5.

    Article  PubMed  CAS  Google Scholar 

  136. Peretti GM, Randolph MA, Villa MT, Buragas MS, Yaremchuk MJ. Cell-based tissue-engineered allogeneic implant for cartilage repair [In Process Citation]. Tissue Eng 2000;6(5):567–76.

    Article  PubMed  CAS  Google Scholar 

  137. Passl R, Plenk H, Jr., Sauer G, Spangler HP, Radaszkiewicz T, Holle J. Homologous articular cartilage transplantation in animal experiments. Preliminary studies on sheep. Arch Orthop Unfallchir 1976;86(2):243–56.

    Article  PubMed  CAS  Google Scholar 

  138. Ohlsen L, Widenfalk B. The early development of articular cartilage after perichondrial grafting. Scand J Plast Reconstr Surg 1983;17(3):163–77.

    Article  PubMed  CAS  Google Scholar 

  139. Homminga GN, van der Linden TJ, Terwindt-Rouwenhorst EA, Drukker J. Repair of articular defects by perichondrial grafts. Experiments in the rabbit. Acta Orthop Scand 1989;60(3):326–9.

    Article  PubMed  CAS  Google Scholar 

  140. Widenfalk B, Engkvist O, Ohlsen L, Segerstrom K. Perichondrial arthroplasty using fibrin glue and early mobilization. An experimental study. Scand } Plast Reconstr Surg 1986;20(3):251–8.

    Article  CAS  Google Scholar 

  141. Bouwmeester S J, Beckers JM, Kuijer R, van der Linden AJ, Bulstra SK. Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop 1997;21(5):313–17.

    Article  PubMed  CAS  Google Scholar 

  142. Bruns J, Kersten P, Silbermann M, Lierse W. Cartilage-flow phenomenon and evidence for it in perichondrial grafting. Arch Orthop Trauma Surg 1997;116(1–2): 66–73.

    Article  PubMed  CAS  Google Scholar 

  143. Bruns J, Kersten P, Lierse W, Silbermann M. Autologous rib perichondrial grafts in experimentally induced osteochondral lesions in the sheep-knee joint: morphological results. Virchows Arch A Pathol Anat Histopathol 1992;421(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  144. Bruns J, Kersten P, Lierse W, Silbermann M. Autologous transplantation of rib perichondrium in treatment of deep cartilage defects of the knee joint of sheep. Morphologic comparison of two resorbable fixation methods. Unfallchirurg 1993;96(9):462–7.

    PubMed  CAS  Google Scholar 

  145. Homminga GN, Bulstra SK, Bouwmeester PS, van der Linden AJ. Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg [Br] 1990;72(6):1003–7.

    CAS  Google Scholar 

  146. Puzas J, editor. Ten-year follow-up results of a prospective study of human perichondrial grafting versus debridement of cartilage defects in the knee. Orthopaedic Research Society; 2000; Orlondo, Florida. Orthopaedic Research Society.

    Google Scholar 

  147. Orr TE, Patel AM, Wong B, Hatzigiannis GP, Minas T, Spector M. Attachment of periosteal grafts to articular cartilage with fibrin sealant. J Biomed Mater Res 1999;44(3):308–13.

    Article  PubMed  CAS  Google Scholar 

  148. Niedermann B, Boe S, Lauritzen J, Rubak JM. Glued periosteal grafts in the knee. Acta Orthop Scand 1985;56(6):457–60.

    Article  PubMed  CAS  Google Scholar 

  149. Bruns J, Steinhagen J. Transplantation of chondrogenic tissue in the treatment of lesions of of the articular cartilage. Orthopade 1999;28(1):52–60.

    PubMed  CAS  Google Scholar 

  150. Kreder HJ, Moran M, Keeley FW, Salter RB. Biologic resurfacing of a major joint defect with cryopreserved allogeneic periosteum under the influence of continuous passive motion in a rabbit model. Clin Orthop 1994(300):288–96.

    PubMed  Google Scholar 

  151. Tsai CL, Liu TK, Fu SL, Perng JH, Lin AC. Preliminary study of cartilage repair with autologous periosteum and fibrin adhesive system. J Formos Med Assoc 1992;91 Suppl 3:S239–45.

    PubMed  Google Scholar 

  152. Gillogly SD, Voight M, Blackburn T. Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther 1998;28(4):241–51.

    PubMed  CAS  Google Scholar 

  153. Hendrickson DA, Nixon AJ, Grande DA, Todhunter RJ, Minor RM, Erb H, et al. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res 1994;12(4):485–97.

    Article  PubMed  CAS  Google Scholar 

  154. van Susante JL, Buma P, Schuman L, Homminga GN, van den Berg WB, Veth RP. Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials 1999;20(13):1167–75.

    Article  PubMed  Google Scholar 

  155. van Susante JL, Buma P, Homminga GN, van den Berg WB, Veth RP. Chondrocyte-seeded hydroxyapatite for repair of large articular cartilage defects. A pilot study in the goat. Biomaterials 1998;19(24):2367–74.

    Article  PubMed  Google Scholar 

  156. Lewandowska K, Choi HU, Rosenberg LC, Zardi L, Culp LA. Fibronectin-mediated adhesion of fibroblasts: inhibition by dermatan sulfate proteoglycan and evidence for a cryptic glycosaminoglycan-binding domain. J Cell Biol 1987;105(3):1443–54.

    Article  PubMed  CAS  Google Scholar 

  157. Loncar D. Ultrastructural analysis of differentiation of rat endoderm in vitro. Adipose vascular-stromal cells induce endoderm differentiation, which in turn induces differentiation of the vascular-stromal cells into chondrocytes. J Submicrosc Cytol Pathol 1992;24(4):509–19.

    PubMed  CAS  Google Scholar 

  158. Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 1996;78(5):721–33.

    PubMed  CAS  Google Scholar 

  159. Silverman RP, Bonasser L, Passaretti D, Randolph MA, Yaremchuk MJ. Adhesion of tissue-engineered cartilate to native cartilage. Plast Reconstr Surg 2000;105(4): 1393–8.

    PubMed  CAS  Google Scholar 

  160. Katzke D, Pusalkar A, Steinbach E. The effects of fibrin tissue adhesive on the middle ear. J Laryngol Otol 1983;97(2):141–7.

    Article  PubMed  CAS  Google Scholar 

  161. Kudema H, Matras H. Die Klinische Anwendung der Klebung von Nerveanastomosen bei der Rekonstruktion Verletzer Peripherer Nerven. Wein Klin. Wochen-schr 1975;87:495–501.

    Google Scholar 

  162. Chen RJ, Fang JF, Lin BC, Hsu YB, Kao JL, Kao YC, et al. Selective application of laparoscopy and fibrin glue in the failure of nonoperative management of blunt hepatic trauma. J Trauma 1998;44(4):691–5.

    Article  PubMed  CAS  Google Scholar 

  163. Berguer R, Staerkel RL, Moore EE, Moore FA, Galloway WB, Mockus MB. Warning: fatal reaction to the use of fibrin glue in deep hepatic wounds. Case reports. J Trauma 1991;31(3):408–11.

    Article  PubMed  CAS  Google Scholar 

  164. Kram HB, Evan T, Clark T. Techniques of hepatic hemostasis using fibrin glue. Contemp Surg. 1990; 37:11.

    Google Scholar 

  165. Kram HB, Reuben BI, Fleming AW, Shoemaker WC. Use of fibrin glue in hepatic trauma. J Trauma 1988;28(8): 1195–201.

    Article  PubMed  CAS  Google Scholar 

  166. Ochsner MG, Maniscalco-Theberge ME, Champion HR. Fibrin glue as a hemostatic agent in hepatic and splenic trauma. J Trauma 1990;30(7):884–7.

    Article  PubMed  CAS  Google Scholar 

  167. Uranus S, Mischinger H J, Pfeifer J, Kronberger L, Jr., Rabl H, Werkgartner G, et al. Hemostatic methods for the management of spleen and liver injuries. World J Surg 1996;20(8):1107–11; discussion 1111–12.

    Article  PubMed  CAS  Google Scholar 

  168. Hauser CJ. Hemostasis of solid viscus trauma by intra-parenchymal injection of fibrin glue. Arch Surg 1989;124(3):291–3.

    Article  PubMed  CAS  Google Scholar 

  169. McCarthy PM, Trastek VF, Schaff HV, Weiland LH, Bernatz PE, Payne WS, et al. Esophagogastric anastomoses: the value of fibrin glue in preventing leakage. J Thorac Cardiovasc Surg 1987;93(2):234–9.

    PubMed  CAS  Google Scholar 

  170. Siedentop KH, Harris DM, Sanchez B. Autologous fibrin tissue adhesive. Laryngoscope 1985;95(9 Pt 1): 1074–6.

    PubMed  CAS  Google Scholar 

  171. Staindl O. Tissue adhesion with highly concentrated human fibrinogen in otolaryngology. Ann Otol Rhinol Laryngol 1979;88(3 Pt l):413–8.

    PubMed  CAS  Google Scholar 

  172. Salasche SJ, Feldman BD. Skin grafting: perioperative technique and management. J Dermatol Surg Oncol 1987;13(8):863–9.

    PubMed  CAS  Google Scholar 

  173. Chakravorty RC, Sosnowski KM. Autologous fibrin glue in full-thickness skin grafting. Ann Plast Surg 1989;23(6):488–91.

    Article  PubMed  CAS  Google Scholar 

  174. Kjaergard D, Weis-Fogh U, Medgyesi S. The use of autologous fibrin adhesive in skin transplantation. Skin Transplantation 1992;89:968–975.

    Google Scholar 

  175. Redaelli C, Niederhauser U, Carrel T, Meier U, Trentz O. Rupture of the Achilles tendon — fibrin gluing or suture? Chirurg 1992;63(7):572–6.

    PubMed  CAS  Google Scholar 

  176. Lusardi DA, Cain JE, Jr. The effect of fibrin sealant on the strength of tendon repair of full thickness tendon lacerations in the rabbit Achilles tendon. J Foot Ankle Surg 1994;33(5):443–7.

    PubMed  CAS  Google Scholar 

  177. Frykman E, Jacobsson S, Widenfalk B. Fibrin sealant in prevention of flexor tendon adhesions: an experimental study in the rabbit. J Hand Surg [Am] 1993;18(1):68–75.

    Article  CAS  Google Scholar 

  178. Itoh O. An experimental study on effect of bone mor-phogenetic protein and fibrin sealant in tendon implantation into bone. Nippon Seikeigeka Gakkai Zasshi 1991;65(8):580–90.

    PubMed  CAS  Google Scholar 

  179. Shoemaker SC, Rechl H, Campbell P, Kram HB, Sanchez M. Effects of fibrin sealant on incorporation of auto-graft and xenograft tendons within bone tunnels. A preliminary study. Am J Sports Med 1989;17(3):318–24.

    Article  PubMed  CAS  Google Scholar 

  180. Hashimoto J, Kurosaka M, Yoshiya S, Hirohata K. Meniscal repair using fibrin sealant and endothelial cell growth factor. An experimental study in dogs. Am J Sports Med 1992;20(5):537–41.

    Article  PubMed  CAS  Google Scholar 

  181. Roddecker K, Munnich U, Jochims J, Nagelschmidt M. Measurement of the biomechanical stability of the healing menisci in animals: fibrin gluing, an alternative to traditional therapy methods? Z Orthop Ihre Grenzgeb 1991;129(4):350–4.

    Article  PubMed  CAS  Google Scholar 

  182. Nabeshima Y, Kurosaka M, Yoshiya S, Mizuno K. Effect of fibrin glue and endothelial cell growth factor on the early healing response of the transplanted allogenic meniscus: a pilot study. Knee Surg Sports Traumatol Arthrose 1995;3(1):34–8.

    Article  CAS  Google Scholar 

  183. Ritchie JR, Miller MD, Bents RT, Smith DK. Meniscal repair in the goat model. The use of healing adjuncts on central tears and the role of magnetic resonance arthrography in repair evaluation. Am J Sports Med 1998;26(2):278–84.

    PubMed  CAS  Google Scholar 

  184. Ishimura M, Tamai S, Fujisawa Y. Arthroscopic meniscal repair with fibrin glue. Arthroscopy 1991;7(2): 177–81.

    Article  PubMed  CAS  Google Scholar 

  185. Kollias SL, Fox JM. Meniscal repair. Where do we go from here? Clin Sports Med 1996;15(3):621–30.

    PubMed  CAS  Google Scholar 

  186. McAndrews PT, Arnoczky SP. Meniscal repair enhancement techniques. Clin Sports Med 1996;15(3):499–510.

    PubMed  CAS  Google Scholar 

  187. Arnoczky SP, Warren RF, Spivak JM. Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J Bone Joint Surg [Am] 1988;70(8):1209–17.

    CAS  Google Scholar 

  188. Henning CE, Lynch MA, Yearout KM, Vequist SW, Stallbaumer RJ, Decker KA. Arthroscopic meniscal repair using an exogenous fibrin clot. Clin Orthop 1990(252):64–72.

    PubMed  Google Scholar 

  189. Lasa C, Jr., Hollinger J, Drohan W, MacPhee M. Delivery of demineralized bone powder by fibrin sealant. Plast Reconstr Surg 1995;96(6):1409–17; discussion 1418.

    Article  PubMed  Google Scholar 

  190. Miura S, Mii Y, Miyauchi Y, Ohgushi H, Morishita T, Hohnoki K, et al. Efficacy of slow-releasing anticancer drug delivery systems on transplantable osteosarcomas in rats. Jpn J Clin Oncol 1995;25(3):61–71.

    PubMed  CAS  Google Scholar 

  191. Zilch H, Lambiris E. The sustained release of cefotaxim from a fibrin-cefotaxim compound in treatment of osteitis. Pharmacokinetic study and clinical results. Arch Orthop Trauma Surg 1986;106(1):36–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Mainil-Varlet, P., Wang, X., Jakob, R.P. (2004). Tissue Adhesives in Orthopedic Surgery. In: Poitout, D.G. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-4471-3774-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3774-0_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3776-4

  • Online ISBN: 978-1-4471-3774-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics