Skip to main content

Abstract

An overview of the concept and modules of a three phase integrated structural optimization system is the subject of this Chapter. The topology optimization module provides Information about the Optimum layout and topology. In the image processing module by employing Computer vision techniques a structural model with smooth boundaries is extracted. In the third phase, using the conventional size and shape optimization methods the final optimal design is obtained. By constructing integrated design and optimization systems considerable improvement may be achieved by cutting development time and design costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tworzydlo W.W. and Oden J.T., Towards an automated environment in computationa! mechanics, Comp. Meth. Appl. Mech. Engng, 104, 87–143 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sienz J., Integrated structural modelling, adaptive analysis and shape optimization, C/ph/181/94, Dept. of Civil Engineering, University College of Swansea, Swansea, UK (1994)

    Google Scholar 

  3. Bends0e M.P., Optimization of structural topology, shape, and material. Springer, Berlin (1995)

    Google Scholar 

  4. Bends0e M.P. and Rodrigues H.C., Integrated topology and boundary shape optimization of 2-D solids, Computer Methhods in Applied Mchanics and Engineering, 87, 15–34 (1991)

    Article  Google Scholar 

  5. Bremicker M., Chirehdast M., Kikuchi N. and Papalambros P.Y., Integrated topology and shape optimization in structural design, Mech. Struct. Mech, 19(4) 551–587 (1991)

    Article  Google Scholar 

  6. Ballard D. and Brown C., Computer vision . Printice Hall, Englewood Cliffs, New Jersey (1982)

    Google Scholar 

  7. Rozvany G.I.N. (ed.), Shape and layout optimization of structural systems and optimality criteria methods. Springer-Verlag, CISM, Udine (1992)

    MATH  Google Scholar 

  8. Rozvany G.I.N. and Zhou M., Layout and generalized shape optimization by iterative COC methods, in Optimization of large structural systems, edited by Rozvany G.I.N., vol. 1, pp. 103–120, Berchtesgaden (1993). NATO DFG ASI

    Google Scholar 

  9. Rozvany G.I.N. and Zhou M.,Optimality criteria methods for large discretized systems, in Advaces in design optimization, edited by Adeli H., pp. 41–108. Chapman k Hall, London (1994)

    Google Scholar 

  10. Rozvany G.I.N., Bends0e M.P. and Kirsch U., Layout optimization of structures, Appl Mech. Rev., 48(2) 41–119 (1995)

    Article  Google Scholar 

  11. Eschenauer H.A., Schumacher A. and Vietor T., Decision makings for initial designs made of advanced materials, in Topology design of structures, edited by Bends0e M.P. and Mota Soares C.A.. pp 469–480, Dordrecht NL (1993). NATO/ARW, Kluwer Academic Publishers

    Google Scholar 

  12. Eschenauer H.A., Kobelev V.V. and Schumacher A., Bubble method for topology and shape optimization of structures, Structural Optimization, 8, 42–51 (1994)

    Article  Google Scholar 

  13. Zhou M. and Rozvany G.I.N., DCOC: an optimality criteria method for large systems. Part I: theory, Structural Optimization, 5, 12–25 (1992)

    Article  Google Scholar 

  14. Rozvany G.I.N., Zhou M. and Sigmund 0.,Optimization of topology, in Advaces in design optimization, edited by Adeli H., pp. 340–399. Chapman & Hall, London (1994)

    Google Scholar 

  15. Zhou M. and Haftka R.T., A comparison of optimality criteria methods for stress and displacement constraints, Computer meth. in appl. mech. and engng124, 253–271 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Farin G., Curves and surfaces for Computer aided geometric design. Academic Press, London (1990)

    MATH  Google Scholar 

  17. Olhoff N., Bends0e M. and Rasmussen J., On CAD-integrated structural topology and design optimization, Comp. Meth. in Appl. Mech., 89, 259–279 (1991)

    Article  Google Scholar 

  18. Maute K. and Ramm E.. Adaptive topology optimization, Structural Opimization, 10, 100–112 (1995)

    Article  Google Scholar 

  19. Chirehdast M., Gea H.C., Kikuchi N. and Papalambros P.Y., Structural Configuration examples of an integrated optimal design process, J. of Mechanical Design, 1, 997–1004 (1994)

    Article  Google Scholar 

  20. Sigmund O., Design of material structures using topology optimization, Ph.D. thesis, Tech. Univ. of Denmark (1994)

    Google Scholar 

  21. Jog C.S., Variable-topology shape optimization of linear elastic structures, Ph.D. thesis, Dept. of Theoretical and Applied Mechanics, Univ. of Illinois at Urbana-Champaign, USA (1993)

    Google Scholar 

  22. Pratt W.K., Digital signal processing. John Wiley & Sons, New York (1991)

    Google Scholar 

  23. Jog C.S., Haber E.B. and Bends0e M.P.. Variable topology-shape optimization with a constraint on the perimeter, in 20’th ASME Design Automatio Conference, Minneapolis (1994)

    Google Scholar 

  24. Haftka R.T. and Grandhi R.V., Structural shape optimization - a survey, Comp. Meth. Appl. Mech. Engrg., 57, 91–106 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eizadian D. and Trompette A.J., Shape optimization of bidimensional structures by the boundary element method, in CAD/CAM, Robotics and Automation conference, University of Arizona, Tucson, AZ (1985)

    Google Scholar 

  26. Umetani Y. and Hirai S.,Shape optimization of beams subject to displacement restrictions on the basis of the growing-reforming procedure, Bull JSME, 21, 1113–1119 (1978)

    Article  Google Scholar 

  27. Hemada M., Seguchi Y. and Tada Y., Shape determination problems of structures by the inverse variational principle, Bull. JSME, 10, 23–184 (1980)

    Google Scholar 

  28. Schnack E., Computer Simulation of an experimental method for notch shape optimization, in Simulation in engineering science, edited by Burger J. and Jarny Y., pp. 311–316. Elsevier Science Publishers, Amsterdam (1983)

    Google Scholar 

  29. Mattheck C. and Burkhardt S., A new method of structural shape optimization based on biological growth, Tech, rep., Institute für Material - Kernforschungszentrum Karlsruhe GmbH (1989)

    Google Scholar 

  30. NAG, The NAG fortran library manual, Tech, rep., Numerical Algorithms Group Ltd, Oxford, UK (1988)

    Google Scholar 

  31. Vanderplaats G.N., DOT, User manual, VMA Engineering, Colorado Springs, Colorado, USA (1994)

    Google Scholar 

  32. Svanberg K., The method of moving asymptotes - a new method for structural optimization, Int J. Num. Meth. Engng., 23, 359–373 (1987)

    Article  MathSciNet  Google Scholar 

  33. Sienz J., Hassani B. and Hinton E., Structural optimization, in Advanced finite element Solution techniques in innovative Computer architectures, edited by Bugeda G. and Papadrakakis M. CIMNE Barcelona (1996), ( To appear in)

    Google Scholar 

  34. Zienkiewicz O.C. and Zhu J.Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int J. Num. Meth. Engng., 24, 337–357 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zienkiewicz O.C. and Zhu J.Z., Superconvergent derivative recovery techniques and a posteriori error estimates: parts 1 and 2, I n t. J. Num. Meth. Engng., 33, 1331–1382 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mattheck C., Engineering components grow like trees, Mat.-wiss. u. Werkstofftech, 21, 143–168 {1990}

    Article  Google Scholar 

  37. Mattheck C., Trees - The mechanical design. Springer Verlag, Heidelberg, New York (1991)

    Google Scholar 

  38. Jancu G. and Schnack E., Control of the Von Mises stress with dynamic programming, in GAMM-Meeting, Siegen (1988)

    Google Scholar 

  39. Huiskes R., Weinans H., Grootenboer HJ., Dalstra M., Fudala B. and Slooff T.J., Adaptive bone-remodeling theory apphed to prosthetic-design analysis, J. Biomech22, 1135–1150 (1987)

    Article  Google Scholar 

  40. Walther F. and Mattheck C., Local stiffening and sustaining of shell and plate structures by SKQ and CAO, Structural Optimization, pp. 181–188 (1993)

    Google Scholar 

  41. Chen J.L. and Tsai W.C., A study of simuiated biological growth approaches for shape optimization, in Computational methods in engineering advances and applications, pp. 1174–1179. World Scientific, Singapore (1992)

    Google Scholar 

  42. Chen J.L. and Tsai W.C., Shape optimization by using simuiated biological growth approaches, AIAA Journal, 31(11), 2143–2147 (1993)

    Article  MathSciNet  Google Scholar 

  43. Azegami H., A proposal of a shape-optimization method using a constitutive equation of growth, JSME Int J., 33(1), 64–71 (1990)

    Google Scholar 

  44. Rajan S.D. and Belegundu A.D., Shape optimal design using fictitious loads, AIAA Journal, 27(1), 102–107 (1989)

    Article  Google Scholar 

  45. Maute K. and Ramm E., General shape optimization - an integrated model for topology and shape optimization, in First world congress of Structural and Multidisciplinary Optimization, edited by Rozvany G.I.N., Goslar, Lower Saxony,Germany (1995)

    Google Scholar 

  46. Peraire J., Vahdati M., Morgan K. and Zienkiewicz O.C., Adaptive remeshing for compressible flow computations, J. Comp. Phys., 72, 449–466 (1987)

    Article  MATH  Google Scholar 

  47. Olhoff N. and Rozvany G.I.N., Proceedings ofthe First World Congress of Structural and Multidisciplinary Optimization, vol. 1. Pergamon, Goslar, Germany (1995)

    Google Scholar 

  48. Gutkowski W. and Mroz Z., Proceedings of the Second World Congress of Structural and Multidisciplinary Optimization. Zakopane, Poland (1997)

    Google Scholar 

  49. Steven G., Querin O.M., Guan H. and Xie Y.M., Proceedings of The Australasian Conference on Structural Optimization. Oxbridge Press, Sydney Australia (1997)

    Google Scholar 

  50. Beckers M., Optimisation de structures en variables discretes, Ph.D. thesis, Uni versite de Liege, Faculte de Sciences (1997)

    Google Scholar 

  51. Maute K., Topologie— und Formoptimierung von dünnwandigen Tragwerken, Ph.D. thesis, Universität Stuttgart, Institut für Baustatik (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hassani, B., Hinton, E. (1999). Integrated Structural Optimization. In: Homogenization and Structural Topology Optimization. Springer, London. https://doi.org/10.1007/978-1-4471-0891-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0891-7_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1229-7

  • Online ISBN: 978-1-4471-0891-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics