Skip to main content

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 27))

Abstract

The copolymers of olefins with carbon monoxide are of great interest from at least four standpoints [1. First, as a monomer, carbon monoxide is particularly plentiful and inexpensive. Second, the presence of the carbonyl chromophore in the backbone makes them photodegradable [2], A third reason for the interest in olefin-carbon monoxide copolymers is that, because of the ease with which the carbonyl group can be chemically modified, the polyketones serve as excellent starting materials for other classes of functionalized polymers. In fact, about two dozen polymers incorporating a variety of functional groups have been previously synthesized [la] from the random ethylene-carbon monoxide copolymer (C2H4:CO>1) made through radical-initiated polymerization. Since carbon monoxide does not homopolymerize, the alternating olefin-carbon monoxide copolymers (olefin: CO = 1) have the highest possible concentration of the reactive carbonyl groups. Moreover, the 1,4-arrangement of the carbonyl groups in the alternating olefin-carbon monoxide copolymers provides additional functionalization pathways [3]. Finally, specific interest in the alternating ethylene-carbon monoxide copolymer stems from its high mechanical strength which results from its high crystallinity [1c,d,4]. To date, the metal ions that have been found to be active for the copolymerization and cooligomerization of vinyl monomers with carbon monoxide are palladium(II), nickel(II), and rhodium(I). The mechanistic pathways through which chain growth occurs at these metal centers are discussed below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Reviews: (a) Sen, A. Adv. Polym. ScL, 1986, 73/74, 125. (b) Sen, A. Ace. Chem. Res. 1993, 26, 303. (c) Drent, E.; Budzelaar, P. H. M. Chem. Rev 1996, 96, 663. (d) Sommazzi, A.; Garbassi, F. Prog. Polym. ScL, 1997, 22, 1547. (e) Nozaki, K.; Hiyama, T. J.  Organomet. Chem. 1998, 576, 248. (f) Abu-Surrah, A. S.; Rieger, B. Top. Catal 1999, 7, 165. (g) Bianchini, C; Meli, A. Coord. Chem. Rev 2002, 225, 35.

    Google Scholar 

  2. (a) Forbes, M. D. E.; Ruberu, S. R.; Nachtigallova, D.; Jordan, K. D.; Barborak, J. C. J. Am. Chem. Soc. 1995, 117, 3946. (b) Forbes, M. D. E.; Barborak, J. C; Dukes, K. E.; Ruberu, S. R. Macromolecules 1994, 27, 1020. (c) Xu, F. Y.; Chien, J. C. W. Macromolecules 1993, 26, 3485. (d) Guillet, J. Polymer Photophysics and Photochemistry; Cambridge University: Cambridge, 1985; p. 261.

    Google Scholar 

  3. (a) Sen, A.; Jiang, Z.; Chen, J.-T. Macromolecules 1989, 22, 2012. (b) Jiang, Z.; Sen, A. Macromolecules 1992, 25, 880. (c) Jiang, Z.; Sanganeria, S.; Sen, A. J. Polym. Sci: A 1994, 32, 841. (d) Green, M. J.; Lucy, A. R.; Lu, S.; Paton, R. M. J. Chem. Soc, Chem. Commun. 1994, 2063. (e) Mul, W. P.; Dirkzwager, H.; Broekhuis, A. A.; Heeres, H. J.; van der Linden, A. J.; Orpen, A. G. Inorg. Chim. Acta 2002, 327, 147.

    Google Scholar 

  4. (a) Lommerts, B. J.; Klop, E. A.; Aerts, J. J. Polym. Sci., Part B: Polym. Phys 1993, 31, 1319. (b) Klop, E. A.; Lommerts, B. J.; Veurink, J.; Aerts, J.; Peijenbroek, R. R. J. Polym. Sci., Part B: Polym. Phys. 1995, 33, 315. (c) Lageron, J. M.; Vickers, M. E.; Powell, A. K.; Davidson, N. S. Polymer 2000, 41, 3011.

    Google Scholar 

  5. Sen, A.; Lai, T.-W. ,J. Am. Chem. Soc. 1982, 104, 3520.

    Article  CAS  Google Scholar 

  6. Lai, T.-W.; Sen, A. , Organometallies, 1984, 3, 866.

    Article  CAS  Google Scholar 

  7. Shultz, C. S.; Ledford, J.; DeSimone, J. M.; Brookhart, M. ,J. Am. Chem. Soc 2000, 122, 6351.

    Article  CAS  Google Scholar 

  8. Rix, F. C; Brookhart, M.; White, P. S. , J. Am. Chem. Soc 1996, 118, 4746.

    Article  CAS  Google Scholar 

  9. (a) Chen, J.-T.; Sen, A. J. Am. Chem. Soc 1984, 106, 1506. (b) Sen, A.; Chen, J.-T.; Vetter, W. M.; Whittle, R. R. /. Am. Chem. Soc 1987, 109, 148.

    Google Scholar 

  10. (a) Brumbaugh, J. S.; Whittle, R. R.; Parvez, M. A.; Sen. A. Organometallics, 1990, 9, 1735. (b) Vetter, W. M; Sen, A. J. Organomet. Chem 1989, 378, 485.

    Google Scholar 

  11. Drent, E.; van Broekhoven, J. A. M.; Doyle, M. J. , J. Organomet. Chem. 1991, 417, 235.

    Article  CAS  Google Scholar 

  12. Xu, F. Y.; Zhao, X.; Chien, J. C. W. , Macromol. Chem. 1993, 194, 2579.

    Article  CAS  Google Scholar 

  13. Koide, Y.; Bott, S. G.; Barron, A. R. , Organometallics, 1996, 75, 2213.

    Article  Google Scholar 

  14. Dossett, S. J.; Gillon, A.; Orpen, A. G.; Fleming, J. S.; Pringle, P. G.; Wass, D. F.; Jones, M. D. ,Chem. Commun 2001, 699.

    Google Scholar 

  15. (a) Bianchini, C; Lee, H. M.; Meli, A.; Oberhauser, W.; Peruzzini, M.; Vizza, F. Organometallics 2002; 21, 16. (b) Bianchini, C; Lee, H. M.; Meli, A.; Oberhauser, W.; Vizza, F.; Bruegeller, P.; Haid, R.; Langes, C. Chem. Commun 2000, 777.

    Google Scholar 

  16. (a) MacNeil, P. A.; Roberts, N. K.; Bosnich, B. J. Am. Chem. Soc 1981, 103, 2273. (b) Fryzuk, M. D.; Bosnich, B. J. Am. Chem. Soc 1977, 99, 6262.

    Google Scholar 

  17. Doherty, S.; Eastman, G. R.; Tooze, R. P.; Scanlan, T. H.; Williams, D.; Elsegood, M. R. J.; Clegg, W. ,Organometallics 1999, 18, 3558.

    Article  CAS  Google Scholar 

  18. Ledford, J.; Shultz, C. S.; Gates, D. P.; White, P. S.; DeSimone, J. M.; Brookhart, M. ,Organometallics 2001, 20, 5266.

    Article  CAS  Google Scholar 

  19. Reddy, K. R.; Tsai, W.-W.; Surekha, K.; Lee, G.-H.; Peng, S.-M.; Chen, J.-T.; Liu, S-T. J. Chem. Soc, Dalton Trans. 2002, 1776.

    Google Scholar 

  20. Braunstein, P.; Fryzuk, M. D.; Le Dali, M.; Naud, F.; Rettig, S. J.; Speiser, F. J. Chem Soc, Dalton Trans. 2000, 1067.

    Google Scholar 

  21. (a) Chen, Y.-C; Chen, C.-L.; Chen, J.-T.; Liu, S.-T. Organometallics 2001, 20, 1285. (b) Reddy, K. R.; Surekha, K.; Lee, G.-H.; Peng, S.-M.; Chen, J.-T.; Liu, S-T. Organometallics 2001, 20, 1292.

    Google Scholar 

  22. Braunstein, P.; Frison, C; Morise, X.,Angew. Chem., Int. Ed. 2000, 39, 2867.

    Article  CAS  Google Scholar 

  23. (a) Svensson, M.; Matsubara, T.; Morokuma, K. Organometallics 1996, 75, 5568. (b) Koga, M.; Morokuma, K. J. Am. Chem. Soc. 1986, 108, 6136.

    Google Scholar 

  24. (a) Margl, P.; Ziegler, T. J. Am. Chem. Soc 1996, 118, 7337. (b) Margl, P.; Ziegler, T. Organometallics 1996, 15, 5519.

    Google Scholar 

  25. Mul, W. P.; Oosterbeck, H.; Betel, G. A.; Kramer, G.-J.; Drent, E. ,Angew. Chem., Int. Ed. 2000,59, 1848.

    Article  Google Scholar 

  26. Brookhart, M.; Rix, F. C; DeSimone, J. M.; Barborak, J. C. ,J. Am. Chem. Soc. 1992, 114, 5894.

    Article  CAS  Google Scholar 

  27. Markies, B. A.; Kruis, D.; Rietveld, M. H. P.; Verkerk, K. A. N.; Boersma, J.; Kooijman, H.; Lakin, M. T.; Speck, A. L.; van Koten, G. ,J. Am. Chem. Soc 1995, 117, 5263.

    Article  CAS  Google Scholar 

  28. van Asselt, R.; Gielens, E. E. C. G.; Rulke, R. E.; Vrieze, K.; Elsevier, C. J. J. Am. Chem. Soc. 1994, 116, 911.

    Google Scholar 

  29. Kacker, S.; Sen, A. ,J. Am. Chem. Soc. 1995, 117, 10591.

    Article  CAS  Google Scholar 

  30. Borkowsky, S. L.; Waymouth, R. M. ,Macromolecules 1996, 29, 6377.

    Article  CAS  Google Scholar 

  31. Nozaki, K.; Sato, N.; Nakamoto, K.; Takaya, H. ,Bull. Chem. Soc. Jpn. 1997, 70, 659.

    Article  CAS  Google Scholar 

  32. (a) Delis, J. G. P.; Groen, J. H.; Vrieze, K.; van Leeuwen, P. W. N. M.; Veldman, N.; Spek, A. L. Organometallics 1997, 16, 551. (b) Groen, J. H.; Elsevier, C. J.; Vrieze, K.; Smeets, W. J. J.; Spek, A. L. Organometallics 1996, 75, 3445.

    Google Scholar 

  33. Kacker, S.; Sen, A. ,J. Am. Chem. Soc. 1997, 119, 10028.

    Article  CAS  Google Scholar 

  34. (a) Klabunde, U.; Tulip, T. H.; Roe, D. C; Ittel, S. D. J. Organomet. Chem 1987, 334, 141. (b) Klabunde, U.; Ittel, S. D. J. Mol. Catal 1987, 41, 123.

    Google Scholar 

  35. (a) Klaui, W.; Bongards, J.; Reiss, G. J. Angew. Chem., Int. Ed 2000, 39, 3894. (b) Domhover, B.; Klaui, W.; Kremer-Aach, A.; Bell, R.; Mootz, D. Angew. Chem., Int. Ed 1998, 37, 3050. (c) Desjardins, S. Y.; Cavell, K. J.; Hoare, J. L.; Skelton, B. W.; Sobolev, A. N.; White, A. H.; Keim, W. J. Organomet. Chem. 1997, 544, 163.

    Google Scholar 

  36. (a) Shultz, C. S.; DeSimone, J. M.; Brookhart, M. Organometallics 2001, 20, 16. (b) Shultz, C. S.; DeSimone, J. M.; Brookhart, M. J. Am. Chem. Soc 2001, 123, 9172.

    Google Scholar 

  37. Review: Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valey, CA, 1987; p. 621.

    Google Scholar 

  38. The mechanism of the final, aldehyde-forming, step is controversial. Both oxidative addition of hydrogen to the metal-acyl species, followed by reductive elimination of aldehyde, as well as binuclear reductive elimination involving a metal-acyl and a metal- hydride species, have been proposed. See reference 37 for a discussion.

    Google Scholar 

  39. (a) Sen, A.; Brumbaugh, J. S.; Lin, M. J. Mol. Catal. 1992, 73, 297. (b) Sen, A.; Brumbaugh, J. S. J. Organomet. Chem 1985, 279, C5.

    Google Scholar 

  40. Henrici-Olive, G.; Olive, S.,Angew. Chem., Int. Ed. Engl. 1972, 15, 136.

    Article  Google Scholar 

  41. (a) Osakada, K.; Takenaka, Y.; Choi, J.-C.; Yamaguchi, I.; Yamamoto, T. J. Polym. Sci. A: Polym. Chem 2000, 38, 1505. (b) Choi, J.-C; Yamaguchi, I.; Osakada, K.; Yamamoto, T. Macromolecules 1998, 31, 8731. (c) Osakada, K.; Choi, J.-C; Yamamoto, T. J. Am. Chem. Soc. 1997, 119, 12390.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sen, A. (2003). Chain Propagation Mechanisms. In: Sen, A. (eds) Catalytic Synthesis of Alkene-Carbon Monoxide Copolymers and Cooligomers. Catalysis by Metal Complexes, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9266-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9266-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4866-5

  • Online ISBN: 978-1-4419-9266-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics