Skip to main content

Arthrospira (Spirulina): Systematics and EcophysioIogy

  • Chapter
The Ecology of Cyanobacteria

Summary

Notwithstanding the official recognition in 1989 of the cyanobacteria Arthrospiru and Spirulina as distinct genera. the term “Spirulina”has been used to indicate the species of both genera indifferently. particularly the species “S. platensis” and “S. maxima” cultivated and sold as food. feed and a specialty product source.The successful commercial exploitation of Arthrospira, because of its high nutritional value. chemical composition and the safety of its biomass, has made it one of the most important industrially cultivated microalgae. This chapter describes the ecology of Arthrospira, together with morphological and ultrastructural features relevant for supporting the systematic position of this organism. While the confused taxonomy of Arthrospira and its relationship with Spirulina have been resolved by 16S rRNA sequence analysis, the long debated problem of species definition is still ongoing. One study of ten strains suggested that the morphological criteria used to identify the species (A. maxima, A. platensis) corresponded to the molecular data obtained by total DNA restriction profile analyses. However, another study based on a wider range of classical species and forty different strains failed to show a clear correspondance with molecular data obtained for one part of the genome. This emphasises the need to address the problem of the definition of a species by using a polyphasic approach. Knowledge of the ecophysiology of Arthrospira, essential for understanding the growth requirements of this alkaliphilic organism in the natural environment, has been used in developing suitable technologies for mass cultivation. The relationships between environmental and cultural factors, which govern productivity in outdoor cultures, are discussed in connection with growth yield and efficiency. The response of Arthrospira and its modification under stress are described, together with the strategy of osmotic adjustment and the mechanism of internal pH regulation to alkalinity. The metabolic plasticity of the response of this cyanobacterium to disparate environmental stimuli is demonstrated in the natural environment, but is also well-expressed in the maintenance of highly productive monoculture in intensive outdoor cultivation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anagnostidis K and Komárek J (1988) Modem approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch Hydrobiol, Suppl 80, Algological Studies 50/53: 327–329

    Google Scholar 

  • Beadle LC (1974) The Inland Waters of Tropical Africa. An Introduction to Tropical Limnology. Longman, London

    Google Scholar 

  • Belkin S and Boussiba S (1991) Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol 32: 953–958

    CAS  Google Scholar 

  • Blumwald E, Mehlhorn RJ and Packer L (1984) Salt adaptation mechanisms in the cyanobacterium Synechococcus 631 1. In: Sybesma S (ed.) Advances in Photosynthesis Research, pp 627–630, Martinus Nijhoff /Dr W Junk Publs, The Hague

    Google Scholar 

  • Blumwald E and Tel-Or E (1982) Osmoregulation and cell composition in salt adaptation of Nostoc muscorum. Arch Microbiol 132: 168–172

    CAS  Google Scholar 

  • Borowitzka LJ (1986) Osmoregulation in blue-green algae. In: Round FE and Chapman D (eds) Progress in Phycological Research, Vol. 4, pp. 243–256, Biopress Ltd, Bristol

    Google Scholar 

  • Brandily MY (1959) Depuis des lustres une tribu primitive du Tchad exploite la noumture de ľan 2000. Sci Avenir 152: 516–519

    Google Scholar 

  • Brieba C and Merinos C (1993) Some advances in the Spirulina culture in seawater. In: Progress in Biotechnology of Photoautotrophic Microorganisms. Abstr 6th ICAA, p 93, Ceské Budejovice, Czech Republic

    Google Scholar 

  • Busson F (1971 ) Spirulina platensis (Gom.) Geitler et Spirulina geitleri J. de Toni, Cyanophycées Alimentaires. Service de Santé, Marseille

    Google Scholar 

  • Carr NG and Whitton BA (eds) (1973) The Biology of Blue-Green Algae. Blackwell Scientific, Oxford

    Google Scholar 

  • Can NG and Whitton BA (1982) The Biology of Cyanobacteria. Blackwell Scientific, Oxford

    Google Scholar 

  • Castenholz, RW (1989) Subsection III, Order Oscillatoriales. In: Staley JT, Bryant MP, Pfenning N and Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, Vol. 3, pp 1771–1780, Williams and Wilkins Co, Baltimore

    Google Scholar 

  • Ciferri O (1983) Spirulina, the edible micro-organism. Microbiol Rev 47: 551–578

    CAS  PubMed  Google Scholar 

  • Clément G (1968) A new type of food algae. In: Mateles RJ and Tannenbaum SR (eds) Single-cell Protein. MIT Press, Cambridge, Mass

    Google Scholar 

  • Cohen Z and Vonshak A (1991) Fatty acid composition of Spirulina and Spirulina-like strains in relation to their chemotaxonomy. Phytochemistry 30: 205–208

    Article  CAS  Google Scholar 

  • Comet JF, Dussap CG, Cluzel P and Dubertret G (1992b) A structured model for simulation of cultures of the cyanobacterium Spirulinu platensis in photobioreactors: II. Identification of kinetic parameters under light and mineral limitations. Biotechnol Bioengin 40: 826–835

    Google Scholar 

  • Comet JF, Dussap CG and Dubertret G (1992a) A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: I. Coupling between light transfer and growth kinetics. Biotechnol Bioengin 40,817–827

    Google Scholar 

  • Dangeard P (1940) Sur une algue bleue alimentaire pour ľhomme: Arthrospira platensis (Nordst.) Gomont. Actes Soc Linn Bordeaux, 91:39–41

    Google Scholar 

  • De Toni GB (1935) Noterelle di nomenclatura algologica 3: 1–2

    Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council for Agricultural Research, pp 187–198, New Delhi.

    Google Scholar 

  • Desikachary TV and Jeeji Bai N (1992) Taxonomic studies in Spirulina. In: Seshradi CV and Jeeji Bai N (Eds) Spirulina ETTA National Symposium, pp 12–21, MCRC, Madras

    Google Scholar 

  • Desikachary TV and Jeeji Bai N (1996) Taxonomic studies in Spirulinu II. The identification of Arthrospira (“Spirulina”) strains and natural samples of different geographical origins. Arch Hydrobiol, Suppl 116, Algological Studies 83: 163–168

    Google Scholar 

  • Ehrenfeld J and Cousin JL (1984) Ionic regulation of the unicellular green alga Dunaliella tertiolecta: response to hypertonic shock. J Membr Biol 77: 45–55

    CAS  Google Scholar 

  • El-Bestawy E, Bellinger E Gand Sigee DC (1996) Elemental composition of phytoplankton in a subtropical lake: X-ray microanalytical studies on the dominant algae Spirulina platensis (Cyanophyta) and Cyclotella meneghiniana (Bacillariophyceae) Eur J Phycol 31: 157–166

    Google Scholar 

  • Fogg GE, Stewart W D P, Fay P and Walsby A E (1973) The Blue-Green Algae. Academic Press, London

    Google Scholar 

  • Fott B (1977) Taxonomy of planktonic Spirulinas in saline tropical lakes. Schweiz Z Hydrobiol 39:139–140

    Google Scholar 

  • Fott B and Karim GAA (1973) Spirulina plankton community in a Lake in Jebel Marra, Sudan. Arch Protistenk 115: 408–418

    Google Scholar 

  • Fox R D (1996) Spirulina Production and Potential. Edisud, Aix-en-Provence, France

    Google Scholar 

  • Fry IV, Huflejt M, Erber WWA, Peschek GA and Packer L (1986) The role of respiration during adaptation of the freshwater cyanobacterium Synechococcus 6311 to salinity. Arch Biochem Biophys 244: 686–690

    Article  CAS  PubMed  Google Scholar 

  • Gallegos AJ (1993) The past, present and future of algae in Mexico. Bull Inst océanograph, Monaco, 12: 133–139

    Google Scholar 

  • Gardner NL (1917) New Pacific coast marine algae I. Univ Calif Publ Bot 6: 377–418

    Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst’s Kryptogamenflora von Deutschland, Österreich und der Schweiz, Vol. 14, pp 916–931, Akad Verlag, Leipzig

    Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ and Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170: 3584–3592

    CAS  PubMed  Google Scholar 

  • Gomont M (1892) Monographie des Oscillariées. Ann Sci Nat Bot, Sér 7, 15: 263–368; 16: 91–264

    Google Scholar 

  • Grant WD, Mwatha WE and Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75: 255–270

    CAS  Google Scholar 

  • Grant WD and Tindall BJ (1986) The alkaline saline environment. In: Herbert RA and Codd GA (eds) Microbes in Extreme Environments, pp 22–54, Academic Press, London

    Google Scholar 

  • Grobbelaar JU, Nedbal L and Ticghy V (1996) Influence of high frequency light/dark fluctuation on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implication for mass algal cultivation. J Appl Phycol 8: 335–342

    CAS  Google Scholar 

  • Guglielmi G and Cohen-Bazire G (1982) Structure et distribution des pores et des perforations de I’enveloppe de peptidoglycane chez quelques cyanobactéries. Protistologica 18: 151–165

    Google Scholar 

  • Guterman H, Vonshak A and Ben-Yaakov S (1989) Automatic online growth estimation method for outdoor algal biomass production. Biotechnol Bioengin 34: 143–152

    CAS  Google Scholar 

  • Hagemann M, Techel D and Rensing L (1991) Comparison of salt-and heat-induced alterations of protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 155: 587–592

    Article  CAS  Google Scholar 

  • Hindák F (1985) Morphology of trichomes in Spirulina fusiformis Voronichin from Lake Bogoria, Kenya. Arch Hydrobiol, Suppl 71, Algological Studies 38/39: 209–218

    Google Scholar 

  • Horikoshi K and Aiba T (1982) Alkalophilic microorganisms. Springer-Verlag, Berlin

    Google Scholar 

  • Iehana M (1987) Kinetic analysis of the growth of Spirulina sp. in batch culture. J Ferment Technol 65: 267–272

    Article  CAS  Google Scholar 

  • Iltis A (1968) Tolérance de salinité de Spirulinu platensis (Gom.) Geitler,(Cyanophyta) dans les mares natronées du Kanem (Tchad). Cah ORSTOM, sér Hydrobiol, 2: 119–125

    Google Scholar 

  • Iltis A (1969a) Phytoplancton des eaux natronées du Kanem (Tchad). I. Les lacs permanents a Spirulines. Cah ORSTOM, ser Hydrobiol, 3: 29–44

    Google Scholar 

  • Iltis A (1969b) Phytoplancton des eaux natronées du Kanem (Tchad).II.Les mares temporaires. Cah ORSTOM, sér. Hydrobiol, 3: 3–19

    Google Scholar 

  • Iltis A (1970a) Phytoplancton des eaux natronées du Kanem (Tchad). III. Variations annuelles du plancton dune mare temporaire. Cah ORSTOM, sér. Hydrobiol, 4: 53–59

    Google Scholar 

  • Iltis A (1970b) Phytoplancton des eaux natronées du Kanem (Tchad). IV. Note sur les espéces du genre Oscillatoria, sous-genre Spirulina (Cyanophyta). Cah ORSTOM, sér. Hydrobiol, 4: 129–134

    Google Scholar 

  • Iltis A (1971a) Note sur Oscillatoria (sous-genre Spirulina) platensis (Nordst.) Bourrelly (Cyanophyta) au Tchad. Cah ORSTOM, sér. Hydrobiol, 5: 53–72

    Google Scholar 

  • Iltis A (1971b) Phytoplancton des eaux natronées du Kanem (Tchad). V. Les lacs mesohalins. Cah ORSTOM, sér Hydrobiol, 5: 73–84

    Google Scholar 

  • Iltis A (1972) Algues des eaux natronées du Kanem (Tchad). I. Premiére partic. Cah ORSTOM, ser Hydrobiol, 4: 129–134

    Google Scholar 

  • Iltis A and Riou-Duwat S (1971c) Variations saisonniéres du peuplement en rotiferes des eaux natronées du Kanem (Tchad). Cah ORSTOM, sé Hydrobiol, 5: 101–112

    Google Scholar 

  • Jeeji Bai N (1985) Competitive exclusion ormorphological transformation? A case study with Spirulina fusiformis. Arch Hydrobiol, Supp l71, Algological Studies 38/39: 191–199

    Google Scholar 

  • Jeeji Bai N and Seshadri CV (1980) On coiling and uncoiling of trichomes in the genus Spirulina. Arch Hydrobiol, Suppl 60, Algological Studies 26: 32–47

    Google Scholar 

  • Kaplan A (1981) Photoinhibition in Spirulina platensis: response of photosynthesis and HCO3-uptake capability to CO2 depleted conditions. J Exper Bot 32: 669–673

    CAS  Google Scholar 

  • Kebede E and Ahlgren G (1996) Optimum growth conditions and light utilisation efficiency of Spirulina platensis (equal Arthrospirafusiformis) (Cyanophyta) from Lake Chitu, Ethiopia. Hydrobiologia 332: 99–109

    Article  CAS  Google Scholar 

  • Komárek J. and Lund JWG (1990) What is “Spirulina platensis” in fact? Arch Hydrobiol, Suppl 85, Algological Studies 58: 1–6

    Google Scholar 

  • Kyle DJ and Ohad I(1986) The mechanism of photoinhibition in higher plants and green algae. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, New Series Vol. 19 Photosynthesis III, pp 468–475, Springer-Verlag, Berlin

    Google Scholar 

  • Lee HY, Erickson LE and Yang SS (1987) Kinetics and bioenergetics of light-limited photoautotrophic growth of Spirulina platensis. Biotechnol Bioengin 29: 832–838

    CAS  Google Scholar 

  • Léonard J (1966) The 1964–65 Belgian trans-Saharan expedition. Nature, London, 209: 126–128

    Google Scholar 

  • Léonard J and Compere P (1967) Spirulina platensis (Gom.) Geitler, algue bleue de grande valeur alimentaire par sa richesse en protéines. Bull Jard bot Nat Belg 37: 1–23

    Google Scholar 

  • Lewin RA (1980) Uncoiled variants of Spirulina platensis (Cyanophyceae: Oscillatoriaceae). Arch Hydrobiol, Suppl 60, Algological Studies 26: 48–52

    Google Scholar 

  • Maglione G. (1969) Premieres données sur le regime hydrogéochimique des lacs permanents du Kanem (Tchad). Cah ORSTOM, sér Hydrobiol, 3: 121–141

    Google Scholar 

  • Margheri MC, Tomaselli Feroci Le Materassi R (1975) Contributo sperimentale alla sistematica del genere Spirulina Turpin. Atti XVII Congr Naz Soc. Ital Microbiol, Vol. II, pp 891–901, Padova

    Google Scholar 

  • Martel A, Yu S, Garcia-Reina G, Lindblad P and Pedersén M (1992) Osmotic-adjustment in the cyanobacterium Spirulina platensis: Presence of an a-glucosidase. Plant Physiol Biochem 30: 573–578

    CAS  Google Scholar 

  • Melack JM (1979) Photosynthesis and growth of Spirulina platensis (Cyanophyta) in an equatorial lake (Lake Simbi, Kenya). Limnol Oceanogr 24: 753–760

    Google Scholar 

  • Min Thein (1993) Production of Spirulina in Myanmar. Bull Inst océanograph, Monaco, 12: 175–178

    Google Scholar 

  • Molitor V, Erber W and Peschek GA (1986) Increased levels of cytochrome oxidase and sodium proton antiporter in the plasma membrane of Anacystis nidulans after growth in sodium enriched media. FEBS Lett 204: 251–254

    Article  CAS  Google Scholar 

  • Nelissen B, Wilmotte A, Neefs J-M and De Wachter R (1994) Phylogenetic relationship among filamentous helical cyanobacteria investigated on the basis of 16S ribosomal RNA gene sequence analysis. System Appl Microbiol 17: 206–210

    CAS  Google Scholar 

  • Ogawa T and Aiba S (1978) CO2 assimilation and growth of a blue-green alga, Spirulina platensis, in continuous culture. J. Appl. Chem. Biotechnol. 28: 5151–5157

    Google Scholar 

  • Ogawa T and Terui G (1970) Studies on the growth of Spirulina platensis (I) On the pure culture of Spirulina platensis. J Ferment Technol 48: 361–364

    Google Scholar 

  • Padan E, Zilberstein D and Schuldiner S (1981) pH Homeostasis in bacteria. Biochem Biophys Acta 650: 151–166

    CAS  PubMed  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35: 15–37

    Article  CAS  Google Scholar 

  • Reed RH, Richardson DL and Stewart WDP (1985) Na+ uptake and extrusion in the cyanobacterium Synechocystis PCC 6714 in response to hyper-saline treatment. Evidence for transient changes in plasmalemma Na+ permeability. Biochim Biophys Acta 814: 347–353

    CAS  Google Scholar 

  • Rich F (1931) Notes on Arthrospira platensis. Rev Algol 6: 75–82

    Google Scholar 

  • Richmond A (1988) Spirulina. In: Borowitzka MA and Borowitzka LY (eds) Micro-algal Biotechnology, pp 85–101, Cambridge, Cambridge Univ Press, UK

    Google Scholar 

  • Richmond A (1996) Efficient utilization of high irradiance for production of photoautotrophic cell mass: a survey. J Appl Phycol 8: 381–386

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61

    Google Scholar 

  • Rippka R and Herdman M (1992) Catalogue of strains. Pasteur Culture Collection of cyanobacterial strains in axenic culture, 103 pp. Institut Pasteur, Paris

    Google Scholar 

  • Scheldeman P, Baurain D, Bouhy R, Scott M, Muhling M, Whitton BA, Belay A, Wilmotte A (1999) Arthrospira (’spirulina’) strains from four continents are resolved into two only two clusters, based on ARDRA (Amplified Ribosomal DNA Restriction Analysis) of the ITS (Internally Transcribed Spacer). FEMS Microbiol Lett 172: 213–222

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger P, Belkin S and Boussiba S (1996) Sodium deprivation under alkaline conditions causes rapid death of the filamentous cyanobacterium Spirulina platensis. J Phycol 32: 608–613

    Article  CAS  Google Scholar 

  • Shimada A, Oguchi M, Otsubo K, Nitta K, Koyano T and Miki K (1989) Application of tubular photo-bioreactor system to culture Spirulina for food production and gas exchange. In: Miyachi S, Karube I and Ishida Y (eds) Current Topics in Marine Biotechnology, pp 147–161, Jap Soc Mar Biotechnol, Tokyo

    Google Scholar 

  • Stizenberger E. (1852) Spirulina und Arthrospira (nov. gen.). Hedwigia 1: 32–41

    Google Scholar 

  • Tomaselli L (1997) Systematic and Ecology. In: Vonshak A (ed.) Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. pp 1–19, Taylor & Francis Ltd, London, UK

    Google Scholar 

  • Tomaselli L, Boldrini G and Margheri MC (1997) Physiological behaviour of Arthrospira (Spirulina) maxima during acclimation to changes in irradiance. J Appl Phycol 9: 37–43

    Article  Google Scholar 

  • Tomaselli Feroci L, Margheri MC and Pelosi E (1976) Die Ultrastruktur von Spirulina im Vergleich zu Oscillatoria. Zbl Bakt Abt II, 131: 592–599

    Google Scholar 

  • Tomaselli L, Giovannetti L and Margheri MC (1981) On the mechanism of trichome breakage in Spirulina platensis and S. maxim. Ann Microbiol 31: 27–31

    Google Scholar 

  • Tomaselli L, Giovannetti L, Sacchi A and Bocci F (1988) Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2. In: Staedler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal Biotechnology, pp 305–314, Elsevier Applied Sciences, London and New York

    Google Scholar 

  • Tomaselli L, Giovannetti L and Torzillo G (1993a) Physiology of stress response in Spirulina spp. Bull Inst océanograph, Monaco, 12: 65–75

    Google Scholar 

  • Tomaselli L, Margheri MC and Sacchi A (1995) Effects of light on photosynthetic activity in a phycoerythrin-rich strain of Spirulina subsalsa. Aquat microb Ecol 9: 27–31

    Google Scholar 

  • Tomaselli L, Palandri MR and Tani G (1993b) Advances in preparative techniques for observation of the fine structure of Arthrospira maxima Setch. et Gardner (syn. Spimlina maxima Geitler). Arch Hydrobiol, Suppl 100, Algological Studies 71: 43–50

    Google Scholar 

  • Tomaselli L, Palandri MR and Tredici MR (1996) On the correct use of the Spirulina designation. Arch Hydrobiol, Supp 116, Algological Studies 83: 539–548

    Google Scholar 

  • Tomaselli L, Torzillo G, Giovannetti L, Pushparaj B, Bocci F, Tredici M, Papuzzo T, Balloni W and Materassi R (1987) Recent research on Spirulina in Italy. Hydrobiologia 151/152: 79–82

    Article  Google Scholar 

  • Torzillo G, Sacchi A, Materassi R and Richmond A (1991) Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J Appl Phycol 3: 103–108

    Google Scholar 

  • Torzillo G and Vonshak A (1994) Effect of light and temperature on the photosynthetic activity of the cyanobacterium Spirulina platensis. Biomass Bioeng 6: 399–404

    Google Scholar 

  • Tredici MR, Papuzzo T and Tomaselli L (1986) Outdoor mass culture of Spimlina maxima in sea-water. Appl Microbiol Biotechnol 24: 42–50

    Article  Google Scholar 

  • Tsen CT and Chang TP (1990) Ultrastrukturen von vier ≪Spirulina≫-Arten (Cyanophyceae). Arch Hydrobiol, Suppl 87, Algological Studies 60: 33–41

    Google Scholar 

  • Tuite CH (1981) Standing crop densities and distribution of Spirulina and bentic diatoms in East African alkaline saline lakes. Freshwater Biol 11: 345–360

    Google Scholar 

  • Turpin PJF (1829) Spirulina oscillarioide. In: Dictionnaire des Sciences Naturelles, Vol 50, pp 309–310, De Lévrault, Paris

    Google Scholar 

  • Van Eykelenburg C (1977) On the morphology and ultrastructure of the cell wall of Spirulinaplatensis. A Leeuwenhoek J Microbiol 43: 89–94

    Google Scholar 

  • Van Eykelenburg C (1979) The ultrastructure of Spirulina platensis in relation to temperature and light intensity. A Leeuwenhoek J Microbiol 45: 369–375

    Google Scholar 

  • Van Eykelenburg C and Fuchs A (1980) Rapid reversible macromorphological changes in Spirulina platensis. Natunvissenschaften 67: 200–204

    Google Scholar 

  • Van Liere L and Mur L (1979) Growth kinetics of Oscillatoria agardhii Gomont in continuous culture limited in its growth by the light energy supply. J Gen Microbiol 115: 153–159

    Google Scholar 

  • Vareschi E (1982) The ecology of lake Nakuru (Kenya). III: Abiotic factors and primary production. Oecologia 55: 81–101

    Article  Google Scholar 

  • Viti C, Ventura S, Lotti F, Capolino E, Tomaselli L and Giovannetti L (1997) Genotypic diversity and typing of cyanobacterial strains of the genus Arthrospira by very sensitive total DNA restriction profile analysis. Res Microbiol 148: 605–611

    Article  CAS  PubMed  Google Scholar 

  • Vonshak A (1987a) Biological limitations in developing the biotechnology for algal mass cultivation. Science de Leau. (J. of Water Sci.) 6: 99–103

    CAS  Google Scholar 

  • Vonshak A (1987b) Strain selection of Spirulina suitable for mass production. Hydrobiologia 151/152: 79–82

    Article  Google Scholar 

  • Vonshak A (ed.) (1997a) Spirulinu platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor & Francis Ltd, London, UK

    Google Scholar 

  • Vonshak A (1997b) Spimlina: growth, physiology and biochemistry. In: Vonshak A (ed.) Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology, pp 43–65, Taylor & Francis Ltd, London, UK

    Google Scholar 

  • Vonshak A, Abeliovich A, Boussiba S, Arad S and Richmond A (1982) Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2: 175–185

    Article  Google Scholar 

  • Vonshak A, Boussiba S, Abeliovich A and Richmond A (1983) Production of Spirulina biomass: maintenance of pure culture outdoors. Biotechnol Bioeng 25: 341–349

    Article  CAS  Google Scholar 

  • Vonshak A, Chanawongse L, Bunnang B and Tanticharoen M (1996a) Light acclimation and photoinhibition in three Spirulina platensis (cyanobacteria) isolates. J Appl Phycol 8: 35–40

    Google Scholar 

  • Vonshak A and Guy R (1992) Photoadaptation, photoinhibition and productivity in outdoor grown Spirulina platensis strains. Plant Cell Environm 15: 613–616

    Google Scholar 

  • Vonshak A, Guy R and Guy M (1988a) The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch Microbiol 150: 417–420

    Article  Google Scholar 

  • Vonshak A, Guy R, Poplawsky R and Ohad 1 (1988b) Photoinhibition and its recovery in two different strains of Spirulina. Plant Cell Physiol. 29: 721–726

    CAS  Google Scholar 

  • Vonshak A, Kancharaksa N, Bunnang B and Tanticharoen M (1996b) Role of light and photosynthesis on the acclimation process of the cyanobacterium Spimlina platensis to salinity stress. J Appl Phycol 8: 119–124

    Google Scholar 

  • Vonshak A and Richmond A (1981) Photosynthetic and respiratory activity in Anacystis nidulans adapted to osmotic stress. Plant Physiol 68: 504–509

    CAS  Google Scholar 

  • Vonshak A and Richmond A (1988) Mass production of Spirulina — an overview. Biomass 15: 233–241

    Article  Google Scholar 

  • Voronichin NN (1934) Biologie des bassins mineral des steppes Koulondine. Expedition de I’Academie des Sciences ďURSS 1931–1933 I. Leningrad. Trav Soviet pour serv ľétude ressour natur, Sér Siberie 8: 182–183

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler 0, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP & Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J System Bacteriol 37: 463–464

    Google Scholar 

  • Wittrock and Nordstedt (1844) Algae aquae dulcia exiccata, fascicule XIV n° 679. In: Descriptiones systematice dispositae, p 59

    Google Scholar 

  • Zarrouk C (1966) Contribution ⋯ I’étude dune Cyanophycte. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. Ph D Thesis, University of Paris, France

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vonshak, A., Tomaselli, L. (2000). Arthrospira (Spirulina): Systematics and EcophysioIogy. In: Whitton, B.A., Potts, M. (eds) The Ecology of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/0-306-46855-7_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-46855-7_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4735-4

  • Online ISBN: 978-0-306-46855-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics