Skip to main content

Advertisement

Log in

Structure and Enzymatic Functions of Human CD38

  • Proceedings
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

CD38 is a novel multifunctional protein that serves not only as an antigen but also as an enzyme. It catalyzes the metabolism of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate, two structurally and functionally distinct Ca2+ messengers targeting, respectively, the endoplasmic reticulum and lysosomal Ca2+ stores. The protein has recently been crystallized and its three-dimensional structure solved to a resolution of 1.9 Å. The crystal structure of a binary complex reveals critical interactions between residues at the active site and a bound substrate, providing mechanistic insights to its novel multi-functional catalysis. This article reviews the current advances in the understanding of the structural determinants that control the multiple enzymatic reactions catalyzed by CD38.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Reinherz EL, Kung PC, Goldstein G, Levey RH, Schlossman SF. (1980) Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc. Natl. Acad. Sci. 77:1588–92.

    Article  CAS  Google Scholar 

  2. Malavasi F et al. (1992) CD38: a multi-lineage cell activation molecule with a split personality. Int. J. Clin. Lab. Res. 22:73–80.

    Article  CAS  Google Scholar 

  3. Malavasi F et al. (1994) Human CD38: a glycoprotein in search of a function. Immunol. Today. 15:95–97.

    Article  CAS  Google Scholar 

  4. Mehta K, Shahid U, Malavasi F. (1996) Human CD38, a cell-surface protein with multiple functions. FASEB J. 10:1408–17.

    Article  CAS  Google Scholar 

  5. Takasawa S et al. (1993) Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J. Biol. Chem. 268:26052–4.

    CAS  PubMed  Google Scholar 

  6. Fernandez JE et al. (1998) Analysis of the distribution of human CD38 and of its ligand CD31 in normal tissues. J. Biol. Regul. Homeostatic Agents 12:81–91.

    CAS  Google Scholar 

  7. Yamada M, Mizuguchi M, Otsuka N, Ikeda K, Takahashi H. (1997) Ultrastructural localization of CD38 immunoreactivity in rat brain. Brain Res. 756:52–60.

    Article  CAS  Google Scholar 

  8. Sun L et al. (2002) A novel mechanism for coupling cellular intermediary metabolism to cytosolic Ca2+ signaling via CD38/ADP-ribosyl cyclase, a putative intracellular NAD+ sensor. FASEB J. 16:302–14.

    Article  CAS  Google Scholar 

  9. Adebanjo OA, et al. (1999) Anew function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nature Cell Biol. 1:409–14.

    Article  CAS  Google Scholar 

  10. Khoo KM, et al. (2000) Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J. Biol. Chem. 275:24807–17.

    Article  CAS  Google Scholar 

  11. Yalcintepe L et al. (2005) Nuclear CD38 in retinoic acid-induced HL-60 cells. Exper. Cell Res. 303:14–21.

    Article  CAS  Google Scholar 

  12. States DJ, Walseth TF, Lee HC. (1992) Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem. Sci. 17:495.

    Article  CAS  Google Scholar 

  13. Lee HC, Walseth TF, Bratt GT, Hayes RN, Clapper DL. (1989) Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J. Biol. Chem. 264:1608–15.

    CAS  PubMed  Google Scholar 

  14. Lee HC, Aarhus R, Levitt D. (1994) The crystal structure of cyclic ADP-ribose. Nature Struct. Biol. 1:143–4.

    Article  CAS  Google Scholar 

  15. Lee HC, Aarhus R. (1995) Aderivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J. Biol. Chem. 270:2152–7.

    Article  CAS  Google Scholar 

  16. Lee HC. (1997) Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol. Rev. 77:1133–64.

    Article  CAS  Google Scholar 

  17. Lee HC. (2001) Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Ann. Rev. Pharmacol. Toxicol. 41:317–45.

    Article  Google Scholar 

  18. Churchill GC et al. (2002) NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111:703–8.

    Article  CAS  Google Scholar 

  19. Yamasaki M et al. (2004) Organelle selection determines agonist-specific Ca2+ signals in pancreatic acinar and beta cells. J. Biol. Chem. 279:7234–40.

    Article  CAS  Google Scholar 

  20. Lee HC, Aarhus R. (1991) ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul. 2:203–9.

    Article  CAS  Google Scholar 

  21. Lee HC et al. (1993) Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes. Biochem. Biophys. Res. Commun. 191:639–45.

    Article  CAS  Google Scholar 

  22. Howard M et al. (1993) Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 262:1056–9.

    Article  CAS  Google Scholar 

  23. Kim H, Jacobson EL, Jacobson MK. (1993) Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science. 261:1330–3.

    Article  CAS  Google Scholar 

  24. Aarhus R, Graeff RM, Dickey DM, Walseth TF, Lee HC. (1995) ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J. Biol. Chem. 270:30327–33.

    Article  CAS  Google Scholar 

  25. Graeff R, Liu Q Kriksunov IA, Hao Q, Lee HC. (2006) Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine NAADP synthesis and hydrolysis activities. J. Biol. Chem. 21:21.

    Google Scholar 

  26. Lee HC. (2002) Cyclic ADP-ribose and NAADP. Structures, Metabolism and Functions. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  27. Lee HC. (2005) Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling. J. Biol. Chem. 280:33693–6.

    Article  CAS  Google Scholar 

  28. Churchill GC et al. (2003) Sperm deliver a new second messenger: NAADP. Curr. Biol. 13:125–8.

    Article  CAS  Google Scholar 

  29. Lee HC, Aarhus R, Walseth TF. (1993) Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science. 261:352–5.

    Article  CAS  Google Scholar 

  30. Galione A et al. (1993) Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science. 261:348–52.

    Article  CAS  Google Scholar 

  31. Guse AH et al. (1999) Regulation of calcium signaling in Tlymphocytes by the second messenger cyclic ADP-ribose. Nature. 398:70–3.

    Article  CAS  Google Scholar 

  32. Gasser A, Bruhn S, Guse AH. (2006) Second messenger function of nicotinic acid adenine dinucleotide phosphate (NAADP) revealed by an improved enzymatic cycling assay. J. Biol. Chem. 281:16906–13.

    Article  CAS  Google Scholar 

  33. Partida-Sanchez S et al. (2001) Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nature Med. 7:1209–16.

    Article  CAS  Google Scholar 

  34. Zocchi E et al. (2001) Stroma-generated cyclic ADP-ribose stimulates the expansion of early human hemopoietic progenitors by a paracrine interaction. FASEB J. 15:29.

    Article  Google Scholar 

  35. Bruzzone S, De Flora A, Usai C, Graeff R, Lee HC. (2003) Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated proliferation of human peripheral blood mono-nuclear cells. Biochem. J. 375:395–403.

    Article  CAS  Google Scholar 

  36. Okamoto H, Takasawa S. (2002) Recent advances in the Okamoto Model: The CD38-Cyclic ADP-ribose signal system and the regenerating gene protein (Reg)-Reg receptor system in ta-Cells. Diabetes. 51:S462–73.

    Article  CAS  Google Scholar 

  37. Brailoiu E et al. (2006) Messenger-specific role for NAADP in neuronal differentiation. J. Biol. Chem. 281:15923–8.

    Article  CAS  Google Scholar 

  38. Brailoiu E et al. (2005) NAADP potentiates neurite outgrowth. J. Biol. Chem. 280:5646–50.

    Article  CAS  Google Scholar 

  39. Reyes-Harde M, Empson R, Potter BVL, Galione A, Stanton PK. (1999) Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. Proc. Natl. Acad. Sci. 96:4061–6.

    Article  CAS  Google Scholar 

  40. Reyes-Harde M, Potter BVL, Galione A, Stanton PK. (1999) Induction of hippocampal LTD requires nitric-oxide-stimulated PKG activity and Ca2+ release from cyclic ADP-ribose-sensitive stores. J. Neurophysiol. 82:1569–76.

    Article  CAS  Google Scholar 

  41. Wu Y et al. (1997) Abscisic acid signaling through cyclic ADP-ribose in plants. Science. 278:2126–30.

    Article  CAS  Google Scholar 

  42. Hellmich MR, Strumwasser F. (1991) Purification and characterization of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul. 2:193–202.

    Article  CAS  Google Scholar 

  43. Jackson DG, Bell JI. (1990) Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J. Immunol. 144:2811–5.

    CAS  PubMed  Google Scholar 

  44. Itoh M et al. (1994) Molecular cloning of murine BST-1 having homology with CD38 and Aplysia ADP-ribosyl cyclase. Biochem. Biophys. Res. Commun. 203:1309–17.

    Article  CAS  Google Scholar 

  45. Lee HC. (2000) Enzymatic functions and structures of CD38 and homologs. Chem. Immunol. 75:39–59.

    Article  CAS  Google Scholar 

  46. Lee HC, Munshi CB, Graeff R. 2002. ADP-ribosyl cyclase-A family of cADPR and NAADP metabolizing enzymes. In Cyclic ADP-ribose and NAADP. Structures, Metabolism and Functions., ed. H.C. Lee, pp. 23–43. Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  47. Yamamoto-Katayama S et al. (2001) Site-directed removal of N-glycosylation sites in BST-1/CD157: effects on molecular and functional heterogeneity. Biochem. J. 357:385–92.

    Article  CAS  Google Scholar 

  48. Graeff R, Munshi C, Aarhus R, Johns M, Lee HC. (2001) A single residue at the active site of CD38 determines its NAD cyclizing and hydrolyzing activities. J. Biol. Chem. 276:12169–73.

    Article  CAS  Google Scholar 

  49. Goodrich SP et al. (2005) Production of calcium-mobilizing metabolites by a novel member of the ADP-ribosyl cyclase family expressed in Schistosoma mansoni. Biochemistry. 44:11082–97.

    Article  CAS  Google Scholar 

  50. Graeff RM, Mehta K, Lee HC. (1994) GDP-ribosyl cyclase activity as a measure of CD38 induction by retinoic acid in HL-60 cells. Biochem. Biophys. Res. Commun. 205:722–7.

    Article  CAS  Google Scholar 

  51. Graeff RM, Walseth TF, Hill HK, Lee HC. (1996) Fluorescent analogs of cyclic ADP-ribose: synthesis, spectral characterization, and use. Biochemistry. 35:379–86.

    Article  CAS  Google Scholar 

  52. Lee HC, Graeff R, Walseth TF. (1995) Cyclic ADP-ribose and its metabolic enzymes. Biochimie 77:345–55.

    Article  CAS  Google Scholar 

  53. Prasad GS et al. (1996) Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectozyme CD38. Nature Struct. Biol. 3:957–64.

    Article  CAS  Google Scholar 

  54. Munshi C, Baumann C, Levitt D, Bloomfield VA, Lee HC. (1998) The homo-dimeric form of ADP-ribosyl cyclase in solution. Biochim. Biophys. Acta. 1388:428–36.

    Article  CAS  Google Scholar 

  55. Munshi C, Lee HC. (1997) High-level expression of recombinant Aplysia ADP-ribosyl cyclase in Pichia Pastoris by fermentation. Prot. Express. Purif. 11:104–10.

    Article  CAS  Google Scholar 

  56. Munshi C et al. (1999) Characterization of the active site of ADP-ribosyl cyclase. J. Biol. Chem. 274: 30770–7.

    Article  CAS  Google Scholar 

  57. Lee HC. (1999) A unified mechanism for enzymatic synthesis of two calcium messengers, cyclic ADP-ribose and NAADP. Biol. Chem. 380:785–93.

    Article  CAS  Google Scholar 

  58. Yamamoto-Katayama S et al. (2002) Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities. J. Mol. Biol. 316:711–23.

    Article  CAS  Google Scholar 

  59. Liu Q et al. (2005) Crystal structure of human CD38 extracellular domain. Structure. 13:1331–9.

    Article  CAS  Google Scholar 

  60. Munshi CB, Fryxell KB, Lee HC, Branton WD. (1997) Large scale production of human CD38 in yeast by fermentation. Methods Enzymol. 280:318–30.

    Article  CAS  Google Scholar 

  61. Munshi C et al. (2000) Identification of the enzymatic active site of CD38 by site-directed mutagenesis. J. Biol. Chem. 275:21566–71.

    Article  CAS  Google Scholar 

  62. Sauve AA, Deng HT, Angeletti RH, Schramm VL. (2000) A covalent intermediate in CD38 is responsible for ADP-ribosylation and cyclization reactions. J. Am. Chem. Soc. 122:7855–9.

    Article  CAS  Google Scholar 

  63. Graeff R, Lee HC. 2002. Novel cycling assays for cADPR and NAADP. In Cyclic ADP-ribose and NAADP. Structures, Metabolism and Functions., ed. H.C. Lee, pp.101–20. Dordrecht: Kluwer Academic Publishers

    Chapter  Google Scholar 

  64. Ceni C et al. (2003) Evidence for an intracellular ADP-ribosyl cyclase/NAD+-glycohydrolase in brain from CD38 deficient mice. J. Biol. Chem. 278:40670–8.

    Article  CAS  Google Scholar 

  65. Fukushi Y et al. (2001) Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice. J. Biol. Chem. 276:649–55.

    Article  CAS  Google Scholar 

  66. Kato I et al. (1999) CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i and insulin secretion. J. Biol. Chem. 274:1869–72.

    Article  CAS  Google Scholar 

  67. Sun L et al. (2003) Disordered osteoclast formation and function in a CD38 (ADP-ribosyl cyclase)-deficient mouse establishes an essential role for CD38 in bone resorption. FASEB J. 17:369–75.

    Article  CAS  Google Scholar 

  68. Deshpande DA et al. (2005) Altered airway responsiveness in CD38 deficient mice. Am. J. Respir. Cell Mol. Biol. 32:149–56.

    Article  CAS  Google Scholar 

  69. Partida-Sanchez S et al. (2004) Regulation of dendritic cell trafficking by the ADP-ribosyl cyclase CD38; Impact on the development of humoral immunity. Immunity. 20:279–91.

    Article  CAS  Google Scholar 

  70. Mitsui-Saito M, Kato I, Takasawa S, Okamoto H, Yanagisawa T. (2003) CD38 gene disruption inhibits the contraction induced by alpha-adrenoceptor stimulation in mouse aorta. J. Vet. Med. Sci. 65:1325–30.

    Article  CAS  Google Scholar 

  71. Takahashi J et al. (2003) Deficit of CD38/cyclic ADP-ribose is differentially compensated in hearts by gender. Biochem. Biophys. Res. Commun. 312:434–40.

    Article  CAS  Google Scholar 

  72. Graeff R, Lee HC. (2002) A novel cycling assay for nicotinic acid-adenine dinucleotide phosphate with nanomolar sensitivity. Biochem. J. 367:163–8.

    Article  CAS  Google Scholar 

  73. Graeff R, Lee HC. (2002) A novel cycling assay for cellular cyclic ADP-ribose with nanomolar sensitivity. Biochem. J. 361:379–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hon Cheung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.C. Structure and Enzymatic Functions of Human CD38. Mol Med 12, 317–323 (2006). https://doi.org/10.2119/2006-00086.Lee

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2119/2006-00086.Lee

Navigation