Skip to main content

Novel Cycling Assays for cADPR and NAADP

  • Chapter
Cyclic ADP-Ribose and NAADP

Abstract

An important criterion for a second messenger is that its cellular concentrations must be responsive to the first messenger. It is thus crucial that specific and sensitive assays for cADPR and NAADP be widely available for monitoring their endogenous levels under a variety of physiological conditions. The first assay for cADPR was a bioassay based on its Ca2+ releasing activity in sea urchin egg homogenates [1, 2]. Using this assay, it was demonstrated that cADPR was naturally occurring in many mammalian tissues [3]. Since then, a more sensitive radioimmunoassay (RIA) for cADPR has also been developed [4, 5]. With these assays, the cellular levels of cADPR have been shown to be modulated by various surface receptor agonists, including abscisic acid [6], a plant hormone, a T-cell receptor antibody [7] and acetylcholine [8]. Intriguingly, cell permeant first messengers, such as nitric oxide [9, 10] and retinoic acid [4], metabolic factors, such as glucose [11], vitamin B12 [12], and even a physical stimulus, such as heat shock [13], can elevate cADPR levels, indicating cADPR is involved in a very broad spectrum of signaling functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clapper DL, Walseth TF, Dargie PJ and Lee HC. 1987. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem. 262: 9561–9568.

    PubMed  CAS  Google Scholar 

  2. Lee HC, Walseth TF, Bratt GT, Hayes RN and Clapper DL. 1989. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J. Biol. Chem. 264: 1608–1615.

    PubMed  CAS  Google Scholar 

  3. Walseth TF, Aarhus R, Zeleznikar RJ, Jr. and Lee HC. 1991. Determination of endogenous levels of cyclic ADP-ribose in rat tissues. Biochim. Biophys. Acta 1094: 113–120.

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi K, Kukimoto I, Tokita K, Inageda K, Inoue S, Kontani K, Hoshino S, Nishina H, Kanaho Y and Katada T. 1995. Accumulation of cyclic ADP-ribose measured by a specific radioimmunoassay in differentiated human leukemic HL-60 cells with all-trans-retinoic acid. FEBS Lett. 371: 204–208.

    Article  PubMed  CAS  Google Scholar 

  5. Graeff RM, Walseth TF and Lee HC. 1997. A radio-immunoassay for measuring endogenous levels of cyclic ADP-ribose in tissues. Meth. Enzymol. 280: 230–241.

    Article  PubMed  CAS  Google Scholar 

  6. Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R and Chua NH. 1997. Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278: 2126–2130.

    Article  PubMed  CAS  Google Scholar 

  7. Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BVL and Mayr GW. 1999. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398: 70–73.

    Article  PubMed  CAS  Google Scholar 

  8. Fukushi Y, Kato I, Takasawa S, Sasaki T, Ong BH, Sato M, Ohsaga A, Sato K, Shirato K, Okamoto H and Maruyama Y. 2001. Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice. J. Biol. Chem. 276: 649–655.

    Article  PubMed  CAS  Google Scholar 

  9. Willmott N, Sethi JK, Walseth TF, Lee HC, White AM and Galione A. 1996. Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J. Biol. Chem. 271: 3699–3705.

    Article  PubMed  CAS  Google Scholar 

  10. Reyes-Harde M, Empson R, Potter BVL, Galione A and Stanton PK. 1999. Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. Proc. Natl. Acad. Sci. USA 96: 4061–4066.

    Article  PubMed  CAS  Google Scholar 

  11. Takasawa S, Akiyama T, Nata K, Kuroki M, Tohgo A, Noguchi N, Kobayashi S, Kato I, Katada T, Okamoto H, Takasawa S, Akiyama T, Nata K, Kuroki M, Tohgo A, Noguchi N, Kobayashi S, Kato I, Katada Tet al. 1998. Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic beta-cells. J. Biol. Chem. 273: 2497–2500.

    Article  PubMed  CAS  Google Scholar 

  12. Masuda W, Takenaka S, Inageda K, Nishina H, Takahashi K, Katada T, Tsuyama S, Inui H, Miyatake K and Nakano Y. 1997. Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena Gracilis. FEBSLett. 405: 104–106.

    Article  CAS  Google Scholar 

  13. Zocchi E, Carpaneto A, Cerrano C, Bavestrello G, Giovine M, Bruzzone S, Guida L, Franco L and Usai C. 2002. The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 98: 14859–14864.

    Article  Google Scholar 

  14. Graeff R and Lee HC. 2002. A novel cycling assay for cellular cyclic ADP-ribose with nanomolar sensitivity. Biochem. J. 361: 379–384.  

    PubMed  CAS  Google Scholar 

  15. Inageda K, Takahashi K, Tokita K, Nishina H, Kanaho Y, Kukimoto I, Kontani K, Hoshino S and Katada T. 1995. Enzyme properties of Aplysia ADP-ribosyl cyclase -Comparison with NAD glycohydrolase of CD38 antigen. J. Biochem. 117: 125–131.    

    PubMed  CAS  Google Scholar 

  16. Graeff R and Lee HC. 2002. A novel cycling assay for NAADP with nanomolar sensitivity. Biochem. J. (in press).

    Google Scholar 

  17. Lee HC. 1997. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol. Rev. 11: 1133–1164.

    Google Scholar 

  18. Munshi C and Lee HC. 1997. High-level expression of recombinant Aplysia ADP-ribosyl cyclase in Pichia Pastoris by fermentation. Prot. Express. Purif. 11: 104–110.

    Article  CAS  Google Scholar 

  19. Lee HC and Aarhus R. 1991. ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul. 2: 203–209.

    PubMed  CAS  Google Scholar 

  20. Kato T, Berger SJ, Carter JA and Lowry OH. 1973. An enzymatic cycling method for nicotinamide adenine dinucleotide with malic and alcohol dehydrogenases. Anal. Biochem. 53: 86–97.

    Article  PubMed  CAS  Google Scholar 

  21. Khym JX. 1975. An analytical system for rapid separation of tissue nucleotides at low pressures on conventional anion exchangers. Clin. Chem. 21: 1245–1250.

    PubMed  CAS  Google Scholar 

  22. Graeff R, Munshi C, Aarhus R, Johns M and Lee HC. 2001. A single residue at the active site of CD38 determines its NAD cyclizing and hydrolyzing activities. J. Biol. Chem. 276: 12169–12173.

    Article  PubMed  CAS  Google Scholar 

  23. Collins SJ. 1987. The HL-60 promyelocyte leukemia cell line: Proliferation, differentiation, and cellular oncogene expression. Blood 70: 1233–1244.

    PubMed  CAS  Google Scholar 

  24. Jacobson EL, Shieh WM and Huang AC. 1999. Mapping the role of NAD metabolism in prevention and treatment of carcinogenesis. Mol. Cell. Biochem. 193: 69–74.

    Article  PubMed  CAS  Google Scholar 

  25. Kato I, Yamamoto Y, Fujimura M, Noguchi N, Takasawa S and Okamoto H. 1998. CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i and insulin secretion. 1 Biol. Chem. 274: 1869–1872.

    Google Scholar 

  26. Partida-Sanchez S, Cockayne D, Monard S, Jacobson EL, Oppenheimer N, Garvy B, Kusser K, Goodricj S, Howard M, Harmsen A, Randall T and Lund FE. 2001. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nature Med. 7: 1209–1216.

    Article  PubMed  CAS  Google Scholar 

  27. da Silva CP, Potter BVL, Mayr GW and Guse AH. 1998. Quantification of intracellular levels of cyclic ADP-ribose by high-performance liquid chromatography. J. Chromatogr. B 707: 43–50.

    Article  Google Scholar 

  28. Walseth TF, Wong L, Graeff RM and Lee HC. 1997. A bioassay for determining endogenous levels of cyclic ADP-ribose. Meth. Enzymol. 280: 287–294.

    Article  PubMed  CAS  Google Scholar 

  29. Lee HC, Aarhus R, Gee KR and Kestner T. 1997. Caged nicotinic acid adenine dinucleotide phosphate - Synthesis and use. J. Biol. Chem. 272: 4172–4178.

    Article  PubMed  CAS  Google Scholar 

  30. Magni G, Emanuelli M, Amici A, Raffaelli N and Ruggieri S. 1997. Purification of human nicotinamide-mononucleotide adenylyltransferase. Meth. Enzymol. 280: 241–255.

    Article  PubMed  CAS  Google Scholar 

  31. Aarhus R, Graeff RM, Dickey DM, Walseth TF and Lee HC. 1995. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J. Biol. Chem. 270: 30327–30333.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Graeff, R., Lee, H.C. (2002). Novel Cycling Assays for cADPR and NAADP. In: Lee, H.C. (eds) Cyclic ADP-Ribose and NAADP. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0269-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0269-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4996-9

  • Online ISBN: 978-1-4615-0269-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics