Skip to main content
Log in

Structures of Brittle Micas

  • Symposium on Structural Aspects of Layer Silicate
  • Published:
Clays and Clay Minerals

Abstract

The crystal structures of xanthophyllite, CaMg2Al(Al3Si)O10(OH)2(a 1M structure) and margarite CaAl2(Al2Si2)O10(OH)2(a 2M1 structure), have been refined by three-dimensional least squares. Ordering of Mg and Al has been observed in the octahedral layers of xanthophyllite. There is no significant evidence for ordering among cations in the silicate layers of margarite. The tetrahedra are rotated about 23° in xanthophyllite and about 21° in margarite. The configuration of the octahedral layers in margarite has the same features as those in muscovite and dickite.

The mode of deformation of the silicate layer is roughly similar in both structures, but there are important differences. These differences are caused by the different configurations of the octahedral layers and are a common feature among micas. In the aluminum octahedral layer, the oxygen hexagons whose corners are apices of tetrahedra have short edges of 2.81Å and a pair of longer edges of 3.35Å (distances are averages obtained from the structures of margarite, muscovite and dickite). Because of these longer edges, the tetrahedra in the dioctahedral micas are tilted in addition to having rotations caused by the short edges. The z-parameters of the basal oxygen atoms in the tetrahedra thus show maximum deviations of 0.19 ± 0.03Å in margarite and 0.12 ± 0.03Å for muscovite. On the other hand, in trioctahedral micas, the edges of the oxygen hexagons are almost the same length, with a maximum deviation of 0. 05Å. The silicate layers in trioctahedral micas are accordingly almost free from tilting of tetrahedra. The difference in z-parameters in dioctahedral micas causes a corrugation of layers and also causes a shift of interlayer cations.

It is known that in trioctahedral micas, the direction of the OH bond is perpendicular to (001), while in muscovite it is inclined to the b-axis. Taking into account this asymmetrical orientation of the OH bond, together with the above-mentioned interlayer cation shifts, it is possible to show that a layer stacking by the operation of the twofold axis in the space group of the 2M1 structure is no longer identical with that produced by rotations of ± 120° about an axis perpendicular to (001). A more restricted number of operations would therefore be possible in the generation of polytypes.

An index, D, has been defined that is a direct measure of the misfit between octahedral and tetrahedral layers. It will be shown that the layer silicates may be classified into three categories with the aid of this index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod, J. M., and Grimaldi, F. S. (1949) Muscovite with small optic axial angle, Am. Mineralogist 34, 559–72.

    Google Scholar 

  • Bates, T.F., Hildebrand, F. A., and Swineford, A. (1950) Morphology and structure of endeliite and halloysite, Am. Mineralogist 35, 467–84.

    Google Scholar 

  • Bates, T. F. (1959) Morphology and crystal chemistry of 1: 1 layer lattice silicates, Am. Mineralogist 44, 78–114.

    Google Scholar 

  • Belov, N. V. (1963) Crystal Chemistry of Large-Cation Silicates, Consultant Bureau, New York.

    Google Scholar 

  • Bradley, W. F. (1940) Structure of attapulgite, Am. Mineralogist 25, 405–10.

    Google Scholar 

  • Bradley, W. F. (1959) Current progress in silicate structures, Clays and Clay Minerals, 6th Conf. [1957], pp. 18–25, Pergamon Press, New York.

    Google Scholar 

  • Bragg, W. L. (1937) Atomic Structure of Minerals, Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Brown, B. E., and Bailey, S. W. (1963) Chlorite polytypism, II, Crystal structure of a one-layer Cr-chlorite, Am. Mineralogist 48, 42–61.

    Google Scholar 

  • Caillère, S., and Hénin, S. (1961) Palygorskite, X-ray Identification and Crystal Structures of Clay Minerals, (edited by T. Brown), pp. 343–53, Mineralogical Society, London.

    Google Scholar 

  • Chalmers, R. A., Dent, L. S., and Taylor, H. F. W. (1958) Zeophyllite, Mineral. Mag. 31, 726–35.

    Google Scholar 

  • Deer, W. A., Howie, R. A., and Zussman, J. (1962) Rock-Forming Minerals, vol. 3, (Sheet Silicates), Longmans, London.

    Google Scholar 

  • Forman, S. A. (1951) Xanthophyllite, Am. Mineralogist 36, 450–7.

    Google Scholar 

  • Koch, G. (1935) Chemische und physikalisch-optische Zusammenhänge innerhalb der Sprödglimmergruppe, Chem. Erde 9, 453–63.

    Google Scholar 

  • Kunze, G. (1956) Die gewellte Struktur des Antigorites, I, Z.Krist. 108, 82–107.

    Article  Google Scholar 

  • Kunze, G. (1958) Die gewellte Struktur des Antigorites, II, Z. Krist. 110, 282–320.

    Article  Google Scholar 

  • Mathieson, A. McL. (1958) Mg-vermiculite, a refinement and re-examination of crystal structure of the 14.36Å phase, Am. Mineralogist 43, 216–27.

    Google Scholar 

  • Megaw, Helen D. (1934) The crystal structure of hydragillite, Al(OH)3, Z. Krist. 87, 185–204.

    Google Scholar 

  • Morimoto, N., Donnay, G., Takeda, H., and Donnay, J. D. H. (1963) Crystal structure of synthetic iron mica, Acta Cryst. 16, A 14.

    Article  Google Scholar 

  • Newnham, R. E. (1961) A refinement of dickite structure and some remarks on polytypism in kaoline minerals, Mineral, Mag. 32, 683–704.

    Google Scholar 

  • Niggli, E. (1955) Zum Vorkommen von Kalkglimmern (Margarit, Clintonit) in der Schweizer Alpen, Leidse Geol. Mededel. 20, 165–70.

    Google Scholar 

  • Preisinger, A. (1959) X-ray study of the structure of sepiolite, Clays and Clay Minerals, 6th Conf. [1957], pp. 61–7, Pergamon Press, New York.

    Google Scholar 

  • Radloslovich, E. W. (1959) Structural control of polymorphism in micas, Nature 183, 253.

    Article  Google Scholar 

  • Radoslovich, E. W. (1960) The structure of muscovite, KA12 (Si3Al)O10(OH)2, Acta Cryst. 13, 919–32.

    Article  Google Scholar 

  • Radoslovich, E. W., and Norrish, K. (1962) The cell dimensions and symmetry of layer-lattice silicates I. Some structural considerations. Am. Mineralogist 47, 599–616.

    Google Scholar 

  • Sadanaga, R., and Takéuchi, Y. (1961) Polysynthetic twinning of micas, Z. Krist. 116, 406–29.

    Article  Google Scholar 

  • Sanero, E. (1940) La struttura della xantofillite, Periodico Mineral. (Rome) 11, pp. 53–77.

    Google Scholar 

  • Serratosa, J. M., and Bradley, W. F. (1958) Infra-red absorption of OH bonds in micas, Nature 181, 111.

    Article  Google Scholar 

  • Smith, J. V., and Bailey, S. W. (1963) Second review of Al—O and Si—O tetrahedral distances. Acta Cryst, 16, 801–11.

    Article  Google Scholar 

  • Steinfink, H., and Brunton, G. (1956) The crystal structure of amesite, Acta Cryst. 9, 487–92.

    Article  Google Scholar 

  • Steinfink, H. (1962) Crystal structure of a trioctahedral mica, phlogopite, Am. Mineralogist 47, 886–96.

    Google Scholar 

  • Takéuchi, Y. (1958) A detailed investigation of the structure of hexagonal BaAl2Si2O8 with reference to its a-ß inversion, Mineral. J. 2, 311–32.

    Article  Google Scholar 

  • Takéuchi, Y., and Donnay, G. (1959) The crystal structure of hexagonal CaAl2Si2O8Acta Cryst. 12, 465–70.

    Article  Google Scholar 

  • Takuéchi, Y., and Sadanaga, R. (1959) The crystal structure of xanthophyllite, Acta Cryst. 12, 945–6.

    Article  Google Scholar 

  • Takuéchi, Y., Kawada, I., and Sadanaga, R. (1963) The crystal structure and poly-types of manganpyrosmalite, Acta Cryst. 16, A 16.

    Google Scholar 

  • Tsuboi, M. (1950) On the positions of the hydrogen atoms in the crystal structure of muscovite, as revealed by the infra-red absorption study, Bull. Chem. Soc. Japan 23, 83–8.

    Article  Google Scholar 

  • Vedder, W., and McDonald, R. S. (1963) Vibrations of the OH ions in muscovite, J. Chem. Phys. 38, 1583–90.

    Article  Google Scholar 

  • Yoder, H. S. Jr., and Eugster, H. P. (1955) Synthetic and natural muscovite, Geochim. Cosmochim. Acta. 8, 225–80.

    Article  Google Scholar 

  • Woodrow, P. J. (1963) The crystal structure of astrophyllite, Ada Cryst. 16, A 16–17.

    Google Scholar 

  • Zvyagin, B. B. (1960) Electron-diffraction determination of the structure of kaolinite, Soviet Phys.—Cryst. 2, 388–94.

    Google Scholar 

  • Zvyagin, B. B., and Mishchenko, K. S. (1963) Electronographic data on the structure of phlogopite-biotite, Soviet Phys.—Cryst. 7, 502–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takéuchi, Y. Structures of Brittle Micas. Clays Clay Miner. 13, 1–25 (1964). https://doi.org/10.1346/CCMN.1964.0130102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1964.0130102

Navigation