1. Introduction

The present paper is a continuation of [5]. In that paper, a two-parameter family \(\{Y_{d,L}:d,L=1,2,\dots\}\) of algebras was introduced and studied. For the particular value \(L=1\), these algebras are the well-known Yangians \(Y( \mathfrak{gl} (d,\mathbb{C}))\) of the general Lie algebras \( \mathfrak{gl} (d,\mathbb{C})\). For \(L\ge2\), the algebras \(Y_{d,L}\) are new objects.

It is well known that the Yangian \(Y( \mathfrak{gl} (d,\mathbb{C}))\) is a deformation of \(\mathcal{U}( \mathfrak{gl} (d,\mathbb{C}[u]))\), the universal enveloping algebra of the Lie algebra \( \mathfrak{gl} (d,\mathbb{C}[u])= \mathfrak{gl} (d,\mathbb{C})\otimes\mathbb{C}[u]\); the latter is a polynomial current Lie algebra.

As shown in [5], a similar fact holds for the algebra \(Y_{d,L}\): it is a deformation of \(\mathcal{U}( \mathfrak{gl} (d, \mathrm R _L))\), where \( \mathrm R _L\) is a certain \( \mathbb Z _{\ge0}\)-graded associative algebra depending on the parameter \(L\). However, in contrast to the Yangian case, the algebra \( \mathrm R _L\) with \(L\ge2\) is noncommutative. Further, it is much more massive than \(\mathbb{C}[u]\); namely, the dimension of its \(n\)th homogeneous component (\(n=0,1,2,\dots\)) is \(d^2 L^{n+1}\) and hence grows exponentially in \(n\). Nevertheless, the algebras \(Y_{d,L}\) with \(L\ge2\) share a number of properties of the Yangian \(Y( \mathfrak{gl} (d,\mathbb{C}))\). For this reason, these new algebras were called Yangian-type algebras.

The purpose of the present note is to show that the results of [5] in fact hold in greater generality, namely, for a family \(\{Y_d( \Omega )\}\) of Yangian-type algebras, which depend (in addition to the previous parameter \(d=1,2,3,\dots\)) on an arbitrary associative \(\mathbb{C}\)-algebra \( \Omega \). In this picture, the algebras \(Y_{d,L}\) correspond to the particular case of \( \Omega =\mathbb{C}^{\oplus L}\), the direct sum of \(L\) copies of the field \(\mathbb{C}\).

We also establish a connection between the algebras \(Y_d( \Omega )\) and a class of double Poisson brackets (in the sense of Van den Bergh [8]), which was introduced in the work [6] by Pichereau and Van de Weyer.

Note that the correspondence \( \Omega \rightsquigarrow Y_d( \Omega )\) is functorial in the sense that any algebra morphism \( \Omega \to \Omega '\) entails an algebra morphism \(Y_d( \Omega )\to Y_d( \Omega ')\) for each fixed \(d\). On the other hand, for fixed \( \Omega \) and varying \(d\), the algebras form a nested chain:

$$Y_1( \Omega )\subset Y_2( \Omega )\subset Y_3( \Omega )\subset\dots\,.$$

As in [5], the algebra \(Y_d( \Omega )\) is extracted from a larger algebra \(A_d( \Omega )\), which in turn is constructed as a projective limit of filtered algebras: \(A_d( \Omega )=\varprojlim A_d( \Omega ;N)\), where \(A_d( \Omega ;N)\) are certain centralizers in the universal enveloping algebras \(\mathcal{U}( \mathfrak{gl} (N, \Omega ))\). This is a generalization of the so-called centralizer construction (for the old version related to the Yangians, see [4, Sec. 2.1] and [2, Chap. 8]).

The structure of the paper is as follows.

\(\bullet\) In Section 2 we introduce a centralizer construction, which leads to the algebras \(A_d( \Omega )\).

\(\bullet\) In Section 3 we construct some special elements of \(A_d( \Omega )\) (Theorem 3.4).

\(\bullet\) In Section 4 we define the algebra \(Y_d( \Omega )\) as the subalgebra of \(A_d( \Omega )\) generated by these special elements. Then we formulate five theorems, which we consider to be our main results.

— Theorem 4.2 states that, as a vector space, \(A_d( \Omega )\) splits into the tensor product of the subalgebras \(A_0( \Omega )\) and \(Y_d( \Omega )\); this shows to what extent \(Y_d( \Omega )\) differs from \(A_d( \Omega )\). Note that, in the Yangian case, where \( \Omega =\mathbb{C}\), these two subalgebras commute and the first subalgebra, \(A_0(\mathbb{C})\), is commutative. But in the general case, this is no longer true.

— Theorem 4.3 is an analogue of the Poincaré–Birkhoff–Witt theorem for \(Y_d( \Omega )\); it specifies the “size” of the algebra.

— Theorem 4.4 claims that the algebra \(Y_d( \Omega )\) can be defined by quadratic-linear commutation relations for generators.

— Theorem 4.5 provides a one-parameter group of automorphisms of \(Y_d( \Omega )\). In the Yangian case, these automorphisms are a useful tool for constructing representations.

— Theorem 4.7 describes the structure of the graded algebra \( \operatorname{gr} A_0( \Omega )\) associated with \(A_0( \Omega )\).

The rest of the paper is essentially a set of comments on these results.

\(\bullet\) In Section 5 we deal with Poisson brackets. By the very definition of the algebra \(A_d( \Omega )\), it has a canonical filtration such that the associated graded algebra \( \operatorname{gr} A_d( \Omega )\) is commutative and carries a Poisson bracket of degree \(-1\). Consequently, the algebras \( \operatorname{gr} Y_d( \Omega )\) and \( \operatorname{gr} A_0( \Omega )\) are also graded Poisson algebras. Their structure is described in Propositions 5.3 and 5.4, and it turns out that it fits into the general formalism of Van den Bergh [8].

In more detail, recall that a double Poisson bracket \( \{\!\!\{ -,- \}\!\!\} \) on an associative algebra \( \mathcal A \) is a bilinear map \( \mathcal A \times \mathcal A \to \mathcal A \otimes \mathcal A \) subject to three axioms [8] (some versions of the skew-symmetry condition, the Leibniz rule, and the Jacobi identity). The paper [8] contains (among many other things) two general constructions. First, \( \{\!\!\{ -,- \}\!\!\} \) determines a Poisson structure on the space of finite-dimensional representations of the algebra \( \mathcal A \). Second, \( \{\!\!\{ -,- \}\!\!\} \) determines a Lie algebra structure on the vector space \( \mathcal A /[ \mathcal A , \mathcal A ]\).

We observe that the Poisson brackets computed in Propositions 5.3 and 5.4 are linked with these two constructions, and the corresponding double Poisson brackets (we denote them by \( \{\!\!\{ -,- \}\!\!\} _ \Omega \)) are precisely the “linear” double brackets on free associative algebras; a classification of such kind of brackets was given by Pichereau and Van de Weyer [6]. As shown in [6], they are specified by an arbitrary collection of structure constants of an associative algebra; in our context this is the algebra \( \Omega \).

\(\bullet\) In Section 6 to the algebra \( \Omega \) we assign a graded vector space

$$ \mathrm R ( \Omega )=\bigoplus_{m=0}^\infty \mathrm R _m( \Omega ), \qquad \mathrm R _m( \Omega ):= \Omega ^{\otimes (m+1)},$$
(1.1)

and endow it with an associative multiplication

$$ \mathrm R _m( \Omega )\times \mathrm R _n( \Omega )\to \mathrm R _{m+n}( \Omega ), \qquad m,n\in \mathbb Z _{\ge0},$$
(1.2)

which turns \( \mathrm R ( \Omega )\) into a graded associative algebra. Let us emphasize that the operation (1.2) differs from the standard product in the tensor algebra \( \mathrm T ( \Omega )\). For the standard multiplication of tensors on the space \( \Omega \), we do not need the algebra structure on \( \Omega \), whereas the operation (1.2) uses this structure. It is also important that the grading in (1.1) is shifted by \(1\) with respect to the standard grading in \( \mathrm T ( \Omega )\). A lucid interpretation of the algebra \( \mathrm R ( \Omega )\) is given in Proposition 6.2.

In the particular case of \( \Omega =\mathbb{C}^{\oplus L}\), one obtains the algebra \( \mathrm R _L\) mentioned at the beginning of the introduction (note that it is isomorphic to the path algebra of a quiver).

We show (Proposition 6.3) that \(Y_d( \Omega )\) is a deformation of the universal enveloping algebra \(\mathcal{U}( \mathfrak{gl} (d, \mathrm R ( \Omega ))\). This extends the result of [5] (mentioned above) that \(Y_{d,L}\) is a deformation of \(\mathcal{U}( \mathfrak{gl} (d, \mathrm R _L))\). Thus, the algebras \( \mathrm R ( \Omega )\) may be viewed as a noncommutative analogue of the algebra of polynomials in the construction of current algebras.

2. The Centralizer Construction

Throughout the whole paper \( \Omega \) stands for an arbitrary (not necessarily unital) associative algebra of finite or countable dimension over \(\mathbb{C}\).

2.1. The Lie algebra \( \mathfrak{gl} (N, \Omega )\)

Let \( \operatorname{Mat} (N,\mathbb{C})\) denote the associative algebra of \(N\times N\) matrices over \(\mathbb{C}\). Likewise, \( \operatorname{Mat} (N, \Omega )\) is the algebra of \(N\times N\) matrices with entries in \( \Omega \). Equivalently,

$$\operatorname{Mat} (N, \Omega ):= \operatorname{Mat} (N,\mathbb{C})\otimes \Omega .$$

The Lie algebra \( \mathfrak{gl} (N, \Omega )\) coincides with \( \operatorname{Mat} (N, \Omega )\) as a vector space, and the bracket is given by the commutator.

We denote by \(E_{ij}\) the matrix units in \( \operatorname{Mat} (N,\mathbb{C})\) (\(1\le i,j\le N\)). They form a basis of \( \mathfrak{gl} (N,\mathbb{C})\). For \(x\in \Omega \), we set

$$E_{ij}(x):=E_{ij}\otimes x \in \mathfrak{gl} (N, \Omega ).$$

The following relations hold:

$$[E_{ij}(x),E_{kl}(y)]= \delta _{kj}E_{il}(xy)- \delta _{il} E_{kj}(yx), \qquad x,y\in \Omega , \; i,j,k,l\in\{1,\dots,N\}.$$

The elements \(E_{ij}(x)\) with \(i,j\in\{1,\dots,N\}\) and \(x\) ranging over a given basis of \( \Omega \) form a basis in \( \mathfrak{gl} (N, \Omega )\).

2.2. The action of \( \mathfrak{gl} (N,\mathbb{C})\) on \( \mathfrak{gl} (N, \Omega )\)

If \( \Omega \) has a unit \(1\), then \( \mathfrak{gl} (N,\mathbb{C})\) is embedded into \( \mathfrak{gl} (N, \Omega )\) via the map \(E_{ij}\mapsto E_{ij}(1)\). Then we can restrict the adjoint action of \( \mathfrak{gl} (N, \Omega )\) to the subalgebra \( \mathfrak{gl} (N,\mathbb{C})\) and obtain in this way an action of \( \mathfrak{gl} (N,\mathbb{C})\) by derivations of the Lie algebra \( \mathfrak{gl} (N, \Omega )\).

However, this action is well defined even if \( \Omega \) does not have a unit. Indeed, we define the action as \(\operatorname{ad}_{ \mathfrak{gl} (N,\mathbb{C})}\otimes\operatorname{Id}\), where \(\operatorname{ad}_{ \mathfrak{gl} (N,\mathbb{C})}\) denotes the adjoint representation of the Lie algebra \( \mathfrak{gl} (N,\mathbb{C})\), and we identify \( \mathfrak{gl} (N, \Omega )\) with \( \mathfrak{gl} (N,\mathbb{C})\otimes \Omega \).

We agree to denote the action of \(E_{ij}\) as \([E_{ij}, -]\), even if \( \Omega \) does not contain a unit. In this notation, we have

$$[E_{ij}, E_{kl}(y)]= \delta _{kj} E_{il}(y)- \delta _{il}E_{kj}(y), \qquad y\in \Omega .$$

2.3. The subalgebras \( \mathfrak{gl} _d(N,\mathbb{C})\) and centralizers

For \(d=0,1,\dots,N\), we set

$$\mathfrak{gl} _d(N,\mathbb{C}):=\text{linear span of the matrix units $E_{ij}$ with $d+1\le i,j\le N$}.$$

This is a Lie subalgebra of \( \mathfrak{gl} (N,\mathbb{C})\) isomorphic to \( \mathfrak{gl} (N-d,\mathbb{C})\).

Consider the universal enveloping algebra \(\mathcal{U}( \mathfrak{gl} (N, \Omega ))\) of the Lie algebra \( \mathfrak{gl} (N, \Omega )\). We set

$$A_d( \Omega ;N):= \mathcal{U}( \mathfrak{gl} (N, \Omega ))^{ \mathfrak{gl} _d(N,\mathbb{C})}.$$

That is, \(A_d( \Omega ;N)\subset \mathcal{U}( \mathfrak{gl} (N, \Omega ))\) is the subalgebra of invariants with respect to the action of the Lie subalgebra \( \mathfrak{gl} _d(N,\mathbb{C})\subset \mathfrak{gl} (N,\mathbb{C})\).

When \( \Omega \) is unital, \( \mathfrak{gl} _d(N,\mathbb{C})\) becomes a subalgebra of \( \mathfrak{gl} (N, \Omega )\), and then \(A_d( \Omega ;N)\) is the centralizer of this subalgebra. With a slight abuse of terminology, we call \(A_d( \Omega ;N)\) a centralizer even when \( \Omega \) is nonunital.

2.4. The canonical projections \(\pi_{N,N-1}\)

We denote by \(I^+(N)\) the left ideal in \(\mathcal{U}( \mathfrak{gl} (N, \Omega ))\) generated by the elements \(E_{iN}(x)\), where \(i=1,\dots,N\) and \(x\in \Omega \). Likewise, \(I^-(N)\) is the right ideal in \(\mathcal{U}( \mathfrak{gl} (N, \Omega ))\) generated by the elements \(E_{Nj}(x)\), where \(j=1,\dots,N\) and \(x\in \Omega \).

Lemma 2.1.

Let \(\mathcal{U}( \mathfrak{gl} (N, \Omega ))^{E_{NN}}=\mathcal{U}( \mathfrak{gl} (N, \Omega ))^{ \mathfrak{gl} _{N-1}(N,\mathbb{C})}\) be the centralizer of \(E_{NN}\), that is, the subalgebra of elements annihilated by \([E_{NN},-]\).

(i) The following relation holds:

$$\mathcal{U}( \mathfrak{gl} (N, \Omega ))^{E_{NN}}\cap I^+(N)=\mathcal{U}( \mathfrak{gl} (N, \Omega ))^{E_{NN}}\cap I^-(N).$$

(ii) Let \(L(N)\) denote this intersection. This is a two-sided ideal in \(\mathcal{U}( \mathfrak{gl} (N, \Omega ))^{E_{NN}}\), and the following direct sum decomposition holds:

$$ \mathcal{U}( \mathfrak{gl} (N, \Omega ))^{E_{NN}}=\mathcal{U}( \mathfrak{gl} (N-1, \Omega ))\oplus L(N).$$
(2.1)

Let

$$\pi_{N,N-1}\colon\mathcal{U}( \mathfrak{gl} (N, \Omega ))^{E_{NN}}\to \mathcal{U}( \mathfrak{gl} (N-1, \Omega ))$$

be the projection onto the first summand in (2.1). Since \(L(N)\) is a two-sided ideal, it follows that \(\pi_{N,N-1}\) is an algebra homomorphism. It is consistent with the canonical filtration of universal enveloping algebras.

2.5. The algebras \(A_d( \Omega )\) as projective limits

Lemma 2.2.

Let \(d=0,1,2,\dots\) and \(N>d\). Then

$$\pi_{N,N-1}(A_d( \Omega ;N)) \subseteq A_d( \Omega ;N-1).$$

This lemma makes it possible to give the following definition.

Definition 2.3 (the centralizer construction).

For \(d=0,1,2,\dots\), we set

$$A_d( \Omega ):=\varprojlim (A_d( \Omega ;N), \pi_{N,N-1}),$$

where the projective limit is taken in the category of filtered algebras. Thus, the limit algebra \(A_d( \Omega )\) is a filtered algebra, too.

By the very definition, every element \(\mathbf a\in A_d( \Omega )\) is given by a sequence \(\{\mathbf a(N): N\ge d\}\) such that

$$\text{$\mathbf a(N)\in A_d( \Omega ;N)$ for $N\ge d$, $\quad\pi_{N,N-1}(\mathbf a(N))=\mathbf a(N-1)$ for $N>d$},$$

and \(\deg \mathbf a(N)\) is bounded by a constant independent of \(N\).

We denote by \(\pi_{\infty,N}\) the natural projection \(A_d( \Omega )\to A_d( \Omega ;N)\). In this notation, \(\pi_{\infty,N}( \mathbf a )= \mathbf a (N)\).

There are natural embeddings

$$ A_0( \Omega )\subset A_1( \Omega )\subset A_2( \Omega )\subset\dots\,.$$
(2.2)

In particular, \(A_0( \Omega )\) is a subalgebra of \(A_d( \Omega )\) for any \(d\in \mathbb Z _{\ge1}\).

3. Special elements of \(A_d( \Omega )\)

3.1. The elements \(e_{ij}( \mathbf{x} ;N)\)

For \(m=1,2,\dots\), let \( \Omega ^m\) be the \(m\)-fold direct product \(\underbrace{ \Omega \times\dots\times \Omega }_m\). Thus, an element of \( \Omega ^m\) is an ordered \(m\)-tuple \( \mathbf{x} =(x_1,\dots,x_m)\) of elements of \( \Omega \).

Given an element \( \mathbf{x} =(x_1,\dots,x_m)\in \Omega ^m\), a pair of indices \(i,j\), and an integer \(N\ge\max(i,j)\), we define an element \(e_{ij}( \mathbf{x} ;N)\) of \(\mathcal{U}( \mathfrak{gl} (N, \Omega ))\) by

$$ e_{ij}( \mathbf{x} ;N):=\sum_{a_1,\dots,a_{m-1}=1}^N E_{ia_1}(x_1) E_{a_1a_2}(x_2)\cdots E_{a_{m-1}j}(x_m),$$
(3.1)

assuming that

$$e_{ij}( \mathbf{x} ;N)=E_{ij}(x_1),\quad \text{when $m=1$ and $ \mathbf{x} =(x_1)$.}$$

3.2. The coagulation transforms \( \mathbf{x} \mapsto \mathbf{x} \rhd \nu\)

Recall that a composition is an ordered tuple \(\nu=(\nu_1,\dots,\nu_n)\) of positive integers. We set

$$|\nu|:=\nu_1+\dots+\nu_n, \qquad \ell(\nu)=n,$$

and denote by \( \operatorname{Comp} (m)\) the set of compositions \(\nu\) with \(|\nu|=m\).

Definition 3.1.

To an \(m\)-tuple \( \mathbf{x} =(x_1,\dots,x_m)\in \Omega ^m\) and a composition \(\nu\in \operatorname{Comp} (m)\) with \(\ell(\nu)=n\) we assign an \(n\)-tuple

$$y:= \mathbf{x} \rhd \nu=(y_1,\dots,y_n)\in \Omega ^n, \qquad n:=\ell(\nu),$$

as follows:

$$y_1=x_1\cdots x_{\nu_1}, \quad y_2=x_{\nu_1+1}\cdots x_{\nu_1+\nu_2}, \quad\dots,\quad y_n=x_{\nu_1+\cdots+\nu_{n-1}+1}\cdots x_m,$$

where the products are taken in the algebra \( \Omega \). Let us call this transform coagulation.

For instance, for \(m=3\), there are four compositions,

$$\nu=(1,1,1),\,(2,1),\,(1,2),\,(3),$$

and the corresponding coagulations are

$$\mathbf{y} =(x_1,x_2,x_3),\, (x_1x_2, x_3), \,(x_1, x_2x_3),\,x_1x_2x_3.$$

3.3. The elements \(t_{ij}( \mathbf{x} ;N;s)\) and connection coefficients

We set

$$ W( \Omega ):=\bigsqcup_{m=1}^\infty \Omega ^m.$$
(3.2)

For \( \mathbf{x} \in \Omega ^m\subset W( \Omega )\), we set \(\ell( \mathbf{x} ):=m\).

Definition 3.2.

Let \(s\in\mathbb{C}\) be an auxiliary parameter. As before, let \(i\), \(j\), and \(N\) be positive integers, \(1\le i,j\le N\). Next, let \( \mathbf{x} \in W( \Omega )\), and let \(m:=\ell( \mathbf{x} )\). Given these data, we define elements \(t_{ij}( \mathbf{x} ;N;s)\) of the algebra \(\mathcal{U}( \mathfrak{gl} (N, \Omega ))\) as

$$t_{ij}( \mathbf{x} ;N;s):=\sum_{\nu\in \operatorname{Comp} (m)} (-N-s)^{\ell( \mathbf{x} )-\ell( \mathbf{x} \rhd \nu)}e_{ij}( \mathbf{x} \rhd \nu;N).$$

Here we agree that \(0^0:=1\). By virtue of this convention,

$$t_{ij}( \mathbf{x} ;N;s)\big|_{s=-N}=e_{ij}( \mathbf{x} ;N).$$

Note that \( \mathbf{x} \rhd \nu= \mathbf{x} \) for the composition \(\nu=(1,\dots,1)\), while for all other compositions, \(\ell( \mathbf{x} \rhd \nu)<\ell( \mathbf{x} )\). It follows that

$$t_{ij}( \mathbf{x} ;N;s)=e_{ij}( \mathbf{x} ;N)+(\cdots),$$

where the dots stand for a linear combination of elements of the form \(e_{ij}( \mathbf{y} ;N)\) with \(\ell( \mathbf{y} )<\ell( \mathbf{x} )= m\).

The following lemma connects elements corresponding to different values of the parameter \(s\).

Lemma 3.3.

For any \(s,s'\in\mathbb{C}\),

$$t_{ij}( \mathbf{x} ;N;s)=\sum_{\nu\in \operatorname{Comp} (m)}(s'-s)^{\ell( \mathbf{x} )-\ell( \mathbf{x} \rhd \nu)} t_{ij}( \mathbf{x} \rhd \nu;N;s').$$

3.4. The elements \(t_{ij}( \mathbf{x} ;s)\in A_d( \Omega )\)

Theorem 3.4.

For fixed \( \mathbf{x} \in W( \Omega )\) and \(s\in\mathbb{C}\),

$$\pi_{N,N-1}(t_{ij}( \mathbf{x} ;N;s))=t_{ij}( \mathbf{x} ;N-1;s), \qquad N>\max(i,j).$$

Corollary 3.5.

Let \(d\in \mathbb Z _{\ge1}\) be fixed. For any \( \mathbf{x} \in W( \Omega )\), \(s\in\mathbb{C}\), and \(i,j\in\{1,\dots,d\}\), there exists an element \(t_{ij}( \mathbf{x} ;s)\in A_d( \Omega )\) uniquely determined by the property that

$$\pi_{\infty,N}(t_{ij}( \mathbf{x} ;s))=t_{ij}( \mathbf{x} ;N;s)\qquad \textit{for all }\, N\ge d.$$

Together with Lemma 3.3 this in turn implies the following assertion.

Corollary 3.6.

For any \(s,s'\in\mathbb{C}\),

$$t_{ij}( \mathbf{x} ;s)=\sum_{\nu\in \operatorname{Comp} (m)}(s'-s)^{\ell( \mathbf{x} )-\ell( \mathbf{x} \rhd \nu)} t_{ij}( \mathbf{x} \rhd \nu;s').$$

4. Main Results

Definition 4.1.

Given \(d\in \mathbb Z _{\ge1}\), we denote by \(Y_d( \Omega )\) the unital subalgebra of \(A_d( \Omega )\) generated by the elements of the form \(t_{ij}( \mathbf{x} ;s)\), where \(i,j\in\{1,\dots,d\}\), \( \mathbf{x} \in W( \Omega )\), and \(s\in\mathbb{C}\) is an arbitrary fixed number. By Corollary 3.6, the definition does not depend on the choice of \(s\).

We fix a basis \(X\) in \( \Omega \) and set (cf. (3.2))

$$W(X):=\bigsqcup_{m=1}^\infty X^m \subset W( \Omega ).$$

Each element \(t_{ij}( \mathbf{x} ; s)\) with \( \mathbf{x} =(x_1,\dots,x_m)\) depends multilinearly on \(x_1,\dots,x_m\); therefore, this is a linear combination of some elements \(t_{ij}( \mathbf{y} ;s)\) with \( \mathbf{y} \in X^m\). It follows that in the definition above we may assume that \( \mathbf{x} \) ranges over \(W(X)\).

Pick an arbitrary total order \(\prec\) on the set of triples \((i,j, \mathbf{x} )\), where \(i,j\in\{1,\dots,d\}\) and \( \mathbf{x} \in W(X)\). We say that a product

$$ t_{i_1j_1}( \mathbf{x} ^1; s)\cdots t_{i_rj_r}( \mathbf{x} ^r;s), \quad \text{where $ \mathbf{x} ^1,\dots, \mathbf{x} ^r\in W(X)$},$$
(4.1)

is an ordered monomial if the corresponding triples \((i_1,j_1, \mathbf{x} ^1), \dots, (i_r,j_r, \mathbf{x} ^r)\) weakly increase with respect to \(\prec\).

Theorem 4.2 (splitting of \(A_d( \Omega )\)).

Let \(m\colon A_d( \Omega )\times A_d( \Omega )\to A_d( \Omega )\) denote the multiplication map. The subalgebras \(A_0( \Omega )\) and \(Y_d( \Omega )\) split \(A_d( \Omega )\) in the sense that

$$m\colon A_0( \Omega )\otimes Y_d( \Omega )\to A_d( \Omega )$$

is an isomorphism of vector spaces.

Recall that, by the very definition, the algebra \(A_d( \Omega )\) is endowed with a canonical grading coming from the filtration of the prelimit algebras \(\mathcal{U}( \mathfrak{gl} (N, \Omega ))\). Thus, the subalgebra \(Y_d( \Omega )\) is also equipped with a filtration. With respect to it

$$\deg t_{ij}( \mathbf{x} ;N;s) =\ell( \mathbf{x} ).$$

Theorem 4.3 (analogue of the Poincaré–Birkhoff–Witt theorem for \(Y_d( \Omega )\)).

For any choice of a basis \(X\subset \Omega \), a total order \(\prec\), and an \(s\in\mathbb{C}\), the ordered monomials (4.1) together with \(1\) form a basis of the algebra \(Y_d( \Omega )\).

This fact is connected with the following result (cf. [5, Sec. 7]).

Theorem 4.4 (defining commutation relations).

Fix an arbitrary \(s\in\mathbb{C}\). For an arbitrary quadruple of indices \(1\le i,j,k,l\le d\) and arbitrary \( \mathbf{x} , \mathbf{y} \in W( \Omega )\), the commutator \([t_{ij}( \mathbf{x} ;s), t_{kl}( \mathbf{y} ;s)]\) can be represented as a quadratic-linear expression in some generators of the form

$$t_{kj}( \,\boldsymbol\cdot\, ;s),\,t_{il}( \,\boldsymbol\cdot\, ;s),\,t_{ij}( \,\boldsymbol\cdot\, ;s),\,t_{kl}( \,\boldsymbol\cdot\, ;s),$$

and the degree of this expression is strictly less than

$$\deg t_{ij}( \mathbf{x} ;s) + \deg t_{kl}( \mathbf{y} ;s)=\ell( \mathbf{x} )+\ell( \mathbf{y} ).$$

Next, the commutation relations that can be obtained in this way are defining relations of the algebra \(Y_d( \Omega )\).

Theorem 4.5 (shift automorphisms of the algebra \(Y_d( \Omega )\)).

The additive group \(\mathbb{C}\) acts on the algebra \(Y_d( \Omega )\) by automorphisms \( \operatorname{Shift} _c\), \(c\in\mathbb{C}\), such that

$$\operatorname{Shift} _c\colon t_{ij}( \mathbf{x} ;s)\mapsto t_{ij}( \mathbf{x} ;s+c)$$

for any \(i,j\in\{1,\dots,d\}\), \( \mathbf{x} \in W( \Omega )\), and \(s\in\mathbb{C}\).

The adjoint graded algebra \( \operatorname{gr} A_d( \Omega )\) is commutative, because this is so for the prelimit algebras. Therefore, the algebras \( \operatorname{gr} Y_d( \Omega )\) and \( \operatorname{gr} A_0( \Omega )\) are also commutative. Now we describe their structure.

We introduce the following notation:

$$\mathrm T ^+( \Omega ):=\bigoplus_{m=1}^\infty \mathrm T ^m( \Omega ), \quad \mathrm T ^m( \Omega ):= \Omega ^{\otimes m},$$

that is, \( \mathrm T ^+( \Omega )\) is the space of tensors over \( \Omega \) of strictly positive degree;

$$\mathrm M _d( \Omega ):= \operatorname{Mat} (d,\mathbb{C})\otimes \mathrm T ^+( \Omega );$$

\(\mathcal S( \mathrm M _d( \Omega ))\) is the symmetric algebra over the vector space \( \mathrm M _d( \Omega )\). We equip \( \mathrm M _d( \Omega )\) with the grading induced by the grading of the tensor space \( \mathrm T ^+( \Omega )\) and then extend the grading from \( \mathrm M _d( \Omega )\) to the symmetric algebra \(\mathcal S( \mathrm M _d( \Omega ))\).

Theorem 4.3 has the following corollary.

Corollary 4.6.

There is an isomorphism of graded algebras

$$ \operatorname{gr} Y_d( \Omega )\simeq \mathcal S( \mathrm M _d( \Omega )).$$
(4.2)

Now we denote by \( \mathrm T _{ \operatorname {cycl}} ^m( \Omega )\) the space of coinvariants for the action of the group \( \mathbb Z /m \mathbb Z \) by cyclic permutations on the space \( \mathrm T ^m( \Omega )\) (\(m=1,2,\dots\)). Next, we introduce the graded vector space

$$\mathrm T _{ \operatorname {cycl}} ^+( \Omega ):=\bigoplus_{m=1}^\infty \mathrm T _{ \operatorname {cycl}} ^m( \Omega )$$

and denote by \(\mathcal S( \mathrm T _{ \operatorname {cycl}} ^+( \Omega ))\) the symmetric algebra over this space.

Theorem 4.7.

There is an isomorphism of graded algebras

$$ \operatorname{gr} A_0( \Omega )\simeq \mathcal S( \mathrm T _{ \operatorname {cycl}} ^+( \Omega )).$$
(4.3)

5. Relationship with Double Poisson Brackets

Since the algebras \( \operatorname{gr} Y_d( \Omega )\) and \( \operatorname{gr} A_0( \Omega )\) are commutative, they possess canonical Poisson brackets. We will provide an explicit description of these brackets using the isomorphisms (4.2) and (4.3). This will reveal a connection with double Poisson brackets in the sense of Van den Bergh [8].

5.1. Double Poisson brackets [8]

Let \( \mathcal A \) be an arbitrary associative algebra. We need its tensor square, which will be denoted by the symbol \( \mathcal A ^{\boxtimes 2}\). Here we do not use the standard symbol \(\otimes\) for tensor multiplication, because our algebra \( \mathcal A \) will itself consist of tensors later on.

Recall that a double Poisson bracket \( \{\!\!\{ -,- \}\!\!\} \) on \( \mathcal A \) is a bilinear map

$$\mathcal A \times \mathcal A \to \mathcal A ^{\boxtimes2}, \qquad (a,b) \mapsto \{\!\!\{ a,b \}\!\!\} ,$$

subject to three axioms, which are analogues of the skew-symmetry condition, the Leibniz rule, and the Jacobi identity (see Van den Bergh’s paper [8]).

Note that if \( \mathcal A \) contains a unit \(1\), then \( \{\!\!\{ 1,a \}\!\!\} = \{\!\!\{ a,1 \}\!\!\} =0\) for all \(a\in \mathcal A \).

5.2. Linear double Poisson brackets [6]

Assume for a moment that \( \Omega \) is simply a vector space without any additional structure. We denote by \( \mathrm T ( \Omega )\) the tensor algebra over \( \Omega \), or, which is the same thing, the free algebra generated by the vector space \( \Omega \). From now on we set \( \mathcal A := \mathrm T ( \Omega )\).

Let \( \{\!\!\{ -,- \}\!\!\} \) be a double Poisson bracket on \( \mathrm T ( \Omega )\). By one of the axioms (the analogue of the Leibniz rule) \( \{\!\!\{ -,- \}\!\!\} \) is uniquely determined by its values on \( \Omega \times \Omega \), where we identify \( \Omega \) with \( \mathrm T ^1( \Omega )\). Following [6], we say that \( \{\!\!\{ -,- \}\!\!\} \) is linear if its restriction to \( \Omega \times \Omega \) takes values in \(1\boxtimes \Omega + \Omega \boxtimes 1\). Then we necessarily obtain

$$ \{\!\!\{ x,y \}\!\!\} = 1\boxtimes \mu(x,y) - \mu(y,x)\boxtimes 1, \qquad x,y\in \Omega ,$$
(5.1)

for a certain bilinear map \(\mu: \Omega \times \Omega \to \Omega \). However, \(\mu\) cannot be arbitrary (because the analogue of the Jacobi identity must hold).

Proposition 5.1 (Pichereau and Van de Weyer [6, Proposition 10]).

In order that formula (5.1) define a double Poisson bracket, it is necessary and sufficient that \(\mu\) be an associative multiplication on the vector space \( \Omega \).

(See also Odesskii, Rubtsov, and Sokolov’s paper [3, (2.9)].) Thus, for an arbitrary vector space \( \Omega \), there is a one-to-one correspondence between the linear double Poisson brackets on the free algebra \( \mathrm T ( \Omega )\) and the associative algebra structures on \( \Omega \). (The papers [6] and [3] deal with finite-dimensional vector spaces, but in Proposition 5.1 finite dimensionality is not required.)

5.3. The double Poisson bracket \( \{\!\!\{ -,- \}\!\!\} _ \Omega \) on \( \mathrm T ( \Omega )\)

We again assume that \( \Omega \) is an associative algebra. Let \( \{\!\!\{ -,- \}\!\!\} _ \Omega \) denote the double Poisson bracket on \( \mathrm T ( \Omega )\) provided by Proposition 5.1. Below we give an explicit expression for this bracket.

First, we introduce some new notation. Let \( \mathbf{x} =x_1\otimes\dots\otimes x_m\in \mathrm T ^m( \Omega )\) and \( \mathbf{y} =y_1\otimes\dots\otimes y_n\in \mathrm T ^n( \Omega )\) be two nonscalar decomposable tensors. For \(r=1,\dots,m\) and \(s=1,\dots,n\), we set

$$\begin{alignedat}2 \mathbf{x} ^{<r}&=x_1\otimes \dots \otimes x_{r-1},&\quad \mathbf{x} ^{>r}&=x_{r+1}\otimes \dots\otimes x_m, \\ \mathbf{y} ^{<s}&=y_1\otimes\dots \otimes y_{s-1},&\quad \mathbf{y} ^{>s}&=y_{s+1}\otimes \dots\otimes y_n, \end{alignedat}$$

assuming that \( \mathbf{x} ^{<1}\), \( \mathbf{x} ^{>m}\), \( \mathbf{y} ^{<1}\), and \( \mathbf{y} ^{>n}\) are interpreted as the unit of the algebra \( \mathrm T ( \Omega )\).

Proposition 5.2.

The double Poisson bracket \( \{\!\!\{ -,- \}\!\!\} _ \Omega \) on the free algebra \( \mathrm T ( \Omega )\) defined according to the general recipe of Proposition 5.1 is given by the formula

$$\begin{gathered} \, \{\!\!\{ \mathbf{x} , \mathbf{y} \}\!\!\} _ \Omega =\sum_{r=1}^m\sum_{s=1}^n (( \mathbf{y} ^{<s}\otimes \mathbf{x} ^{>r})\boxtimes ( \mathbf{x} ^{<r}\otimes (x_r y_s)\otimes \mathbf{y} ^{>s})) \\ -\sum_{r=1}^m\sum_{s=1}^n (( \mathbf{y} ^{<s}\otimes (y_s x_r)\otimes \mathbf{x} ^{>r})\boxtimes ( \mathbf{x} ^{<r}\otimes \mathbf{y} ^{>s})). \end{gathered}$$
(5.2)

Finally, \( \{\!\!\{ -,- \}\!\!\} _ \Omega \) is equal to \(0\) if at least one of the arguments is in \( \mathrm T ^0( \Omega )=\mathbb{C}\).

5.4. The Poisson bracket on \( \operatorname{gr} Y_d( \Omega )\)

Given \( \mathbf{x} \in \mathrm T ^+( \Omega )\) and a bi-index \(ij\), where \(i,j\in\{1,\dots,d\}\), we set

$$p_{ij}( \mathbf{x} ):= E_{ij}\otimes \mathbf{x} \in \mathrm M _d( \Omega ).$$

On the algebra \(\mathcal S( \mathrm M _d( \Omega ))\) there exists a Poisson bracket \(\{-,-\}_{d, \Omega }\) uniquely determined by the condition that, for decomposable tensors \( \mathbf{x} \in \mathrm T ^m( \Omega )\) and \( \mathbf{y} \in \mathrm T ^n( \Omega )\) (where \(m,n\ge1\)) and indices \(i,j,k,l\in\{1,\dots,d\}\),

$$\begin{gathered} \, \{p_{ij}( \mathbf{x} ), p_{kl}( \mathbf{y} )\}_{d, \Omega }=\sum_{r=1}^m\sum_{s=1}^n p_{kj} ( \mathbf{y} ^{<s}\otimes \mathbf{x} ^{>r})p_{il} ( \mathbf{x} ^{<r}\otimes (x_r y_s)\otimes \mathbf{y} ^{>s}) \\ -\sum_{r=1}^m\sum_{s=1}^n p_{kj}( \mathbf{y} ^{<s}\otimes (y_s x_r)\otimes \mathbf{x} ^{>r})p_{il} ( \mathbf{x} ^{<r}\otimes \mathbf{y} ^{>s}), \end{gathered}$$

where the symbol \(p_{ab}(\cdot)\) corresponding to the empty product is assumed to be the Kronecker delta \( \delta _{ab}\).

Writing the element \( \{\!\!\{ \mathbf{x} , \mathbf{y} \}\!\!\} _ \Omega \in \mathrm T ( \Omega )^{\boxtimes2}\) in Sweedler’s notation as \(\sum \{\!\!\{ \mathbf{x} , \mathbf{y} \}\!\!\} '\boxtimes \{\!\!\{ \mathbf{x} , \mathbf{y} \}\!\!\} ''\), we can rewrite the formula as

$$ \{p_{ij}( \mathbf{x} ), p_{kl}( \mathbf{y} )\}_{d, \Omega }=\sum p_{kj}( \{\!\!\{ \mathbf{x} , \mathbf{y} \}\!\!\} '_ \Omega )p_{il}( \{\!\!\{ \mathbf{x} , \mathbf{y} \}\!\!\} ''_ \Omega ).$$
(5.3)

The transition from the double Poisson bracket \( \{\!\!\{ -,- \}\!\!\} _ \Omega \) on the free algebra \( \mathrm T ( \Omega )\) (formula (5.2)) to the Poisson bracket \(\{-,-\}_{d, \Omega }\) on the symmetric algebra \(\mathcal S( \mathrm M _d( \Omega ))\) (formula (5.3)) “almost” fits into Van den Bergh’s formalism [8, Proposition 7.5.1]. The reservation “almost” is due to the fact that in our situation we do not need to impose the relation \(\sum_q a_{pq}b_{qr}=(ab)_{pr}\), written at the bottom of page 5751 in [8] (about this point see [5, Sec. 5.2]).

Proposition 5.3.

Under the isomorphism (4.2) the canonical Poisson bracket on \( \operatorname{gr} Y_d( \Omega )\) coincides with the bracket \(\{-,-\}_{d, \Omega }\) given by the formula (5.3).

Thus, the algebra \(Y_d( \Omega )\) is a filtered deformation of the Poisson algebra \((\mathcal S( \mathrm M _d( \Omega )), \{-,-\}_{d, \Omega })\).

5.5. The Poisson bracket on \( \operatorname{gr} A_0( \Omega )\)

Assume first that \( \mathcal A \) is an arbitrary associative algebra and let \([ \mathcal A , \mathcal A ]\) be its subspace spanned by the commutators \([a,b]\), where \(a,b\in \mathcal A \). We denote the quotient space \( \mathcal A /[ \mathcal A , \mathcal A ]\) by \( \mathcal N_{ \mathcal A } \). As shown by Van den Bergh [8, Proposition 1.4 and Corollary 2.4.6], a double Poisson bracket \( \{\!\!\{ -,- \}\!\!\} \) on \( \mathcal A \) gives rise to a Lie algebra structure on the space \( \mathcal N_{ \mathcal A } \) and hence to a Poisson algebra structure on the symmetric algebra \(\mathcal S( \mathcal N_{ \mathcal A } )\).

Now consider the case where \( \mathcal A \) is the free algebra \( \mathrm T ( \Omega )\) with the double Poisson bracket \( \{\!\!\{ -,- \}\!\!\} _ \Omega \) (see (5.2)). Then the space \( \mathcal N_{ \mathcal A } \) can be identified with \(\mathbb{C}\oplus \mathrm T _{ \operatorname {cycl}} ^+( \Omega )\). Thus, \(\mathbb{C}\oplus \mathrm T _{ \operatorname {cycl}} ^+( \Omega )\) acquires a Lie algebra structure. This Lie algebra is the direct sum of the trivial one-dimensional Lie algebra \(\mathbb{C}\) and the Lie subalgebra \( \mathrm T _{ \operatorname {cycl}} ^+( \Omega )\); we are interested in the latter subalgebra. The Lie algebra structure on \( \mathrm T _{ \operatorname {cycl}} ^+( \Omega )\) determines a Poisson bracket on \(\mathcal S( \mathrm T _{ \operatorname {cycl}} ^+( \Omega ))\); let us denote it by \(\{-,-\}_ \Omega \).

Proposition 5.4.

As usual, let \( \Omega \) be an arbitrary associative algebra. Under the isomorphism (4.3) the Poisson bracket on \( \operatorname{gr} A_0( \Omega )\) coincides with the Poisson bracket \(\{-,-\}_ \Omega \) on \(\mathcal S( \mathrm T _{ \operatorname {cycl}} ^+( \Omega ))\) coming from the general Van den Bergh construction described above.

Thus, the algebra \(A_0( \Omega )\) serves as a filtered quantization of the Poisson algebra \((\mathcal S( \mathrm T _{ \operatorname {cycl}} ^+( \Omega )), \{-,-\}_ \Omega )\).

In the works [7] of Schedler and [1] of Ginzburg and Schedler the quantization problem for Poisson algebras of the form \(\mathcal S( \mathcal N_{ \mathcal A } )\) was studied in another context, related to quivers.

6. The Degeneration \(Y_d( \Omega )\rightsquigarrow \mathcal{U}( \mathfrak{gl} (d, \mathrm R ( \Omega )))\)

As above, we work with an arbitrary associative algebra \( \Omega \). Let \( \mathrm R ( \Omega )\) denote the vector space \( \mathrm T ^+( \Omega )\) endowed with a new grading starting from zero:

$$\mathrm R ( \Omega ):=\bigoplus_{n=0}^\infty \mathrm R ( \Omega )_n, \qquad \mathrm R ( \Omega )_n:= \mathrm T ^{n+1}( \Omega ).$$

Next, we endow \( \mathrm R ( \Omega )\) with a multiplication denoted by the symbol \(\odot\): given decomposable tensors

$$\mathbf{x} =x_1\otimes\dots\otimes x_{m+1}\in \mathrm R _m( \Omega ), \quad \mathbf{y} =y_1\otimes\dots\otimes y_{n+1}\in \mathrm R _n( \Omega ),$$

where \(m,n\in\{0,1,2,\dots\}\), their product is

$$\mathbf{x} \odot \mathbf{y} :=x_1\otimes\dots\otimes x_{m}\otimes (x_{m+1}y_1)\otimes y_2\otimes \dots\otimes y_{n+1}\in \mathrm R _{m+n}( \Omega ).$$

This operation is associative and consistent with the new grading. Thus, \( \mathrm R ( \Omega )\) is a graded algebra.

Remark 6.1.

(i) The \(0\)th component of \( \mathrm R ( \Omega )\) is the initial algebra \( \Omega \).

(ii) \( \mathrm R ( \Omega )\) has a unit if and only if so does \( \Omega \).

(iii) \( \mathrm R ( \Omega )\) is noncommutative unless either \( \Omega =\mathbb{C}\) or the product in \( \Omega \) is null.

(iv) For \( \Omega =\mathbb{C}\), the corresponding algebra \( \mathrm R (\mathbb{C})\) is isomorphic to the algebra of polynomials \(\mathbb{C}[u]\): the isomorphism is given by the assignment \(1^{\otimes (r+1)}\mapsto u^r\).

(v) More generally, if \( \Omega =\mathbb{C}^{\oplus L}\) (the direct sum of \(L\) copies of \(\mathbb{C}\)), then \( \mathrm R ( \Omega )\) is isomorphic to the path algebra of the quiver \(Q_L\) with \(L\) vertices indexed by \(1,\dots,L\) and \(L^2\) edges \(i\to j\), one for each ordered pair of vertices \((i,j)\), including \(i=j\).

Remark 6.2.

The vector space \(M:= \Omega \otimes_{\mathbb{C}} \Omega \) possesses a natural structure of a \( \Omega \)-bimodule, so that we can built the graded tensor algebra over the bimodule \(M\):

$$\mathrm T _ \Omega (M):= \Omega \oplus M \oplus (M\otimes_ \Omega M) \oplus (M \otimes_ \Omega M\otimes_ \Omega M) \oplus\dots,$$

where all tensor products are taken over \( \Omega \). If \( \Omega \) contains a unit, then the algebra \( \mathrm R ( \Omega )\) is isomorphic to the algebra \( \mathrm T _ \Omega (M)\). We are grateful to Boris Feigin for this remark. It shows that the algebra \( \mathrm R ( \Omega )\) is not something exotic.

Consider now the Lie algebra \( \mathfrak{gl} (d, \mathrm R ( \Omega ))\), where \(d\in\{1,2,3,\dots\}\). As a vector space, it coincides with the associative algebra \( \operatorname{Mat} (d,\mathbb{C})\otimes \mathrm R ( \Omega )\), and the Lie bracket is the commutator \([-,-]\) in this algebra, that is,

$$[X\otimes \mathbf{x} ,Y\otimes \mathbf{y} ]=(XY)\otimes ( \mathbf{x} \odot \mathbf{y} )-(YX)\otimes( \mathbf{y} \odot \mathbf{x} ), \quad X,Y\in \operatorname{Mat} (d,\mathbb{C}), \; \mathbf{x} , \mathbf{y} \in \mathrm R ( \Omega ).$$

The grading of \( \mathrm R ( \Omega )\) induces, in a natural way, a grading of the Lie algebra \( \mathfrak{gl} (d, \mathrm R ( \Omega ))\), from which we obtain a grading of the universal enveloping algebra \(\mathcal{U}( \mathfrak{gl} (d, \mathrm R ( \Omega )))\).

Along with the canonical filtration of \(Y_d( \Omega )\), which we have dealt with so far, the algebra \(Y_d( \Omega )\) also admits another filtration, which we will call the “shifted filtration”: it is defined by the condition that the degree of a generator \(t_{ij}( \mathbf{x} ;s)\), where \( \mathbf{x} \in \Omega ^{\otimes m}\), is set to \(m-1\) rather than to \(m\), as before.

Proposition 6.3.

The graded algebra associated with the shifted filtration of \(Y_d( \Omega )\) is isomorphic to the algebra \(\mathcal{U}( \mathfrak{gl} (d, \mathrm R ( \Omega )))\).