Skip to main content
Log in

Ni-catalysed dicarbofunctionalization for the synthesis of sequence-encoded cyclooctene monomers

  • Article
  • Published:

From Nature Synthesis

View current issue Submit your manuscript

Abstract

The properties of polymeric materials can be modulated by factors such as sequence control or functional group modifications. However, the synthesis of new macromolecular scaffolds is limited by the accessibility of structurally diverse monomers. This work describes a one-step, nickel-catalysed synthesis of 5,6-diaryl cyclooctene monomers from the feedstock chemical 1,5-cyclooctadiene. The reaction proceeds in a modular, regio- and diastereoselective fashion, granting access to both homo- and hetero-diaryl cyclooctene monomers that smoothly undergo ring-opening metathesis polymerization (ROMP). The resulting 1,2-diaryl-substituted polymers possess sequences with head-to-head styrene dyads that have not been previously explored, giving rise to unique and tunable properties. Density functional theory calculations highlight mechanistic aspects of the nickel-catalysed diarylation reaction and the ruthenium-catalysed ROMP process, revealing a previously unappreciated role of the boronic ester in promoting migratory insertion, which was leveraged to provide enantioinduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Overview and concept.
Fig. 2: Reaction optimization and scope for the 5,6-diarylation of COD.
Fig. 3: Mechanistic studies of the Ni-catalysed diarylation of 1,5-cyclooctadiene.
Fig. 4: Ring-opening metathesis polymerization of diaryl cyclooctene.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information files. Experimental procedures, characterization data for all new compounds and details for DFT calculations can be found in the Supplementary Information. Crystallographic data for the structure reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2294340 (2i); copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Ouchi, M., Badi, N., Lutz, J.-F. & Sawamoto, M. Single-chain technology using discrete synthetic macromolecules. Nat. Chem. 3, 917–924 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).

    Article  PubMed  Google Scholar 

  3. Rylski, A. K. et al. Polymeric multimaterials by photochemical patterning of crystallinity. Science 378, 211–215 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Galdi, N., Buonerba, A. & Oliva, L. Olefin–styrene copolymers. Polymers 8, 405 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Luo, Y., Baldamus, J. & Hou, Z. Scandium half-metallocene-catalyzed syndiospecific styrene polymerization and styrene–ethylene copolymerization: unprecedented incorporation of syndiotactic styrene–styrene sequences in styrene–ethylene copolymers. J. Am. Chem. Soc. 126, 13910–13911 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Klosin, J., Fontaine, P. P. & Figueroa, R. Development of group IV molecular catalysts for high temperature ethylene-α-olefin copolymerization reactions. Acc. Chem. Res. 48, 2004–2016 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. McKnight, A. L. & Waymouth, R. M. Group 4 ansa-cyclopentadienyl-amido catalysts for olefin polymerization. Chem. Rev. 98, 2587–2598 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Derosa, J., Tran, V. T., van der Puyl, V. A. & Engle, K. M. Carbon–carbon π-bonds as conjunctive reagents in cross-coupling. Aldrichimica Acta 51, 21–32 (2018).

    Google Scholar 

  9. Wickham, L. M. & Giri, R. Transition metal (Ni, Cu, Pd)-catalyzed alkene dicarbofunctionalization reactions. Acc. Chem. Res. 54, 3415–3437 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qi, X. & Diao, T. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS Catal. 10, 8542–8556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kang, T., Apolinar, O. & Engle, K. M. Ni- and Pd-catalyzed enantioselective 1,2-dicarbofunctionalization of alkenes. Synthesis 56, 1–15 (2024).

    Article  CAS  Google Scholar 

  12. Xi, Y. et al. Catalytic asymmetric diarylation of internal acyclic styrenes and enamides. J. Am. Chem. Soc. 144, 8389–8398 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Derosa, J. et al. Nickel-catalyzed 1,2-diarylation of simple alkenyl amides. J. Am. Chem. Soc. 140, 17878–17883 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Derosa, J. et al. Nickel-catalyzed 1,2-diarylation of alkenyl carboxylates: a gateway to 1,2,3-trifunctionalized building blocks. Angew. Chem. Int. Ed. Engl. 59, 1201–1205 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Apolinar, O. et al. Sulfonamide directivity enables Ni-catalyzed 1,2-diarylation of diverse alkenyl amines. ACS Catal. 10, 14234–14239 (2020).

    Article  CAS  Google Scholar 

  16. Apolinar, O. et al. Three-component asymmetric Ni-catalyzed 1,2-dicarbofunctionalization of unactivated alkenes via stereoselective migratory insertion. J. Am. Chem. Soc. 144, 19337–19343 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Martinez, H., Ren, N., Matta, M. E. & Hillmyer, M. A. Ring-opening metathesis polymerization of 8-membered cyclic olefins. Polym. Chem. 5, 3507–3532 (2014).

    Article  CAS  Google Scholar 

  18. Sutthasupa, S., Shiotsuki, M. & Sanda, F. Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials. Polym. J. 42, 905–915 (2010).

    Article  CAS  Google Scholar 

  19. Cho, I., Jeong, S. W. & Hwang, K. M. Synthesis and ring-opening metathesis polymerization of substituted cyclooctenes: butadiene-based sequence-controlled copolymers. Korea Polym. J. 1, 1–8 (1993). https://www.cheric.org/PDF/KPJ/KP01/KP01-1-0001.pdf.

    CAS  Google Scholar 

  20. You, W. et al. Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes. Chem. Sci. 12, 3898–3910 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bielawski, C. W. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).

    Article  CAS  Google Scholar 

  22. Sathe, D. et al. Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers. Nat. Chem. 13, 743–750 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi, S., Pitet, L. M. & Hillmyer, M. A. Regio- and stereoselective ring-opening metathesis polymerization of 3-substituted cyclooctenes. J. Am. Chem. Soc. 133, 5794–5797 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, J., Matta, M. E. & Hillmyer, M. A. Synthesis of sequence-specific vinyl copolymers by regioselective ROMP of multiply substituted cyclooctenes. ACS Macro Lett. 1, 1383–1387 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Katzbaer, J. N., Torres, V. M., Elacqua, E. & Giri, R. Nickel-catalyzed alkene difunctionalization as a method for polymerization. J. Am. Chem. Soc. 145, 14196–14201 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han, F.-S. Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 42, 5270–5298 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Bhakta, S. & Ghosh, T. Emerging nickel catalysis in Heck reactions: recent developments. Adv. Synth. Catal. 362, 5257–5274 (2020).

    Article  CAS  Google Scholar 

  28. Shu, W. et al. Ni-catalyzed reductive dicarbofunctionalization of nonactivated alkenes: scope and mechanistic insights. J. Am. Chem. Soc. 141, 13812–13821 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Miura, W., Hirano, K. & Miura, M. Nickel-catalyzed directed C6-selective C–H alkylation of 2-pyridones with dienes and activated alkenes. J. Org. Chem. 82, 5337–5344 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Huang, L. et al. Cascade cross-coupling of dienes: photoredox and nickel dual catalysis. Angew. Chem. Int. Ed. Engl. 59, 457–464 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Henry, P. M., Davies, M., Ferguson, G., Phillips, S. & Restivo, R. Conversion of cyclo-octa-1,5-diene into 2,6-diacetoxybicyclo[3,3,0]octane by palladium(II) chloride–lead tetra-acetate in acetic acid. X-ray determination of the structure of the product. J. Chem. Soc., Chem. Commun. 112–113 (1974).

  32. Li, Q. et al. Through-space charge-transfer polynorbornenes with fixed and controllable spatial alignment of donor and acceptor for high-efficiency blue thermally activated delayed fluorescence. Angew. Chem. Int. Ed. Engl. 59, 20174–20182 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Cui, J., Yang, J.-X., Pan, L. & Li, Y.-S. Synthesis of novel cyclic olefin polymer with high glass transition temperature via ring-opening metathesis polymerization. Macromol. Chem. Phys. 217, 2708–2716 (2016).

    Article  CAS  Google Scholar 

  34. Tsuji, J. & Takahashi, H. Organic syntheses by means of noble metal compounds. XII. Reaction of the cyclooctadiene-palladium chloride complex with ethyl malonate. J. Am. Chem. Soc. 87, 3275–3276 (1965).

    Article  CAS  Google Scholar 

  35. Krafft, M. E., Sugiura, M. & Abboud, K. A. Novel use of ring strain to control regioselectivity: alkene-directed, palladium-catalyzed allylation. J. Am. Chem. Soc. 123, 9174–9175 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Ney, J. E. & Wolfe, J. P. Synthesis and reactivity of azapalladacyclobutanes. J. Am. Chem. Soc. 128, 15415–15422 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Gandeepan, P. & Cheng, C.-H. Allylic carbon–carbon double bond directed Pd-catalyzed oxidative ortho-olefination of arenes. J. Am. Chem. Soc. 134, 5738–5741 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Qiu, Y., Yang, B., Zhu, C. & Bäckvall, J.-E. Highly selective olefin-assisted palladium-catalyzed oxidative carbocyclization via remote olefin insertion. Chem. Sci. 8, 616–620 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, X.-W. et al. Mechanistic insight into the selective olefin-directed oxidative carbocyclization and borylation by a palladium catalyst: a theoretical study. RSC Adv. 7, 5013–5018 (2017).

    Article  CAS  Google Scholar 

  40. Johnson, J. B. & Rovis, T. More than bystanders: the effect of olefins on transition-metal-catalyzed cross-coupling reactions. Angew. Chem. Int. Ed. Engl. 47, 840–871 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Tran, V. T. et al. Ni(COD)(DQ): an air-stable 18-electron nickel(0)–olefin precatalyst. Angew. Chem. Int. Ed. Engl. 59, 7409–7413 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Tran, V. T. et al. Structurally diverse bench-stable nickel(0) pre-catalysts: a practical toolkit for in situ ligation protocols. Angew. Chem. Int. Ed. Engl. 62, e202211794 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao, P., Chen, L.-A. & Brown, M. K. Nickel-catalyzed stereoselective diarylation of alkenylarenes. J. Am. Chem. Soc. 140, 10653–10657 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Estrada, J. G., Williams, W. L., Ting, S. I. & Doyle, A. G. Role of electron-deficient olefin ligands in a Ni-catalyzed aziridine cross-coupling to generate quaternary carbons. J. Am. Chem. Soc. 142, 8928–8937 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Allinger, N. L. & Sprague, J. T. Conformational analysis. LXXXIV. A study of the structures and energies of some alkenes and cycloalkenes by the force field method. J. Am. Chem. Soc. 94, 5734–5747 (1972).

    Article  CAS  Google Scholar 

  46. Sanford, M. S., Love, J. A. & Grubbs, R. H. A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics 20, 5314–5318 (2001).

    Article  CAS  Google Scholar 

  47. Martinez, H., Miró, P., Charbonneau, P., Hillmyer, M. A. & Cramer, C. J. Selectivity in ring-opening metathesis polymerization of Z-cyclooctenes catalyzed by a second-generation Grubbs catalyst. ACS Catal. 2, 2547–2556 (2012).

    Article  CAS  Google Scholar 

  48. Nowalk, J. A. et al. Sequence-controlled polymers through entropy-driven ring-opening metathesis polymerization: theory, molecular weight control, and monomer design. J. Am. Chem. Soc. 141, 5741–5752 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, B., Wang, L., Wu, C. & Cui, D. Sequence-controlled ethylene/styrene copolymerization catalyzed by scandium complexes. Polym. Chem. 10, 235–243 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for the experimental work was provided by the Department of Energy (DE-SC0023205). The computational work was supported by the National Science Foundation (CHE-2102550). We thank the Schimmel Family Endowed Scholarship Fund for a Graduate Fellowship (C.Z.R.). We thank the Independent Research Fund Denmark (grant ID 10.46540/3102-00009B) for financial support (A.K.R.). Computational studies were performed at the Center for Research Computing at the University of Pittsburgh and the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program supported by NSF. We acknowledge Dr. M. Gembicky (UCSD) for X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

V.T.T., A.K.R. and C.Z.R. performed optimization and evaluated the scope of the nickel-catalysed 1,2-dicarbofunctionalization reaction. M.X. and E.M.W. carried out polymerization experiments. Y.F. and P.L. carried out computation work. S.R.W. performed kinetic experiments on the nickel-catalysed 1,2-dicarbofunctionalization reaction. V.T.T., P.L., W.R.G. and K.M.E. conceived the project. A.K.R., P.L., W.R.G. and K.M.E. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Peng Liu, Will R. Gutekunst or Keary M. Engle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Yifeng Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, characterization data for all new compounds and details for DFT calculations. Supplementary Figs. 1–132 and Tables 1–16.

Supplementary Data 1

Crystallographic data for 2i, CCDC 2294340.

Supplementary Data 2

Raw NMR spectroscopic data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, V.T., Ravn, A.K., Rubel, C.Z. et al. Ni-catalysed dicarbofunctionalization for the synthesis of sequence-encoded cyclooctene monomers. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00618-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00618-1

  • Springer Nature Limited

This article is cited by

Navigation