Skip to main content

Advertisement

Log in

Functional and structural basis of human parainfluenza virus type 3 neutralization with human monoclonal antibodies

  • Article
  • Published:

From Nature Microbiology

View current issue Submit your manuscript

Abstract

Human parainfluenza virus type 3 (hPIV3) is a respiratory pathogen that can cause severe disease in older people and infants. Currently, vaccines against hPIV3 are in clinical trials but none have been approved yet. The haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Here we describe naturally occurring potently neutralizing human antibodies directed against both surface glycoproteins of hPIV3. We isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. One HN-binding monoclonal antibody (mAb), designated PIV3-23, exhibited functional attributes including haemagglutination and neuraminidase inhibition. We also delineated the structural basis of neutralization for two HN and one F mAbs. MAbs that neutralized hPIV3 in vitro protected against infection and disease in vivo in a cotton rat model of hPIV3 infection, suggesting correlates of protection for hPIV3 and the potential clinical utility of these mAbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Strong binding of hPIV3 mAbs to surface glycoproteins of hPIV3.
Fig. 2: Potent neutralizing activity of PIV3 mAbs against PIV3 clinical isolates.
Fig. 3: HN-reactive mAb rPIV3-23 inhibits hPIV3 virus by diverse mechanisms, competition ELISA of HN-reactive mAbs and rPIV3-18 binding map to the pre-fusion F protein of hPIV3.
Fig. 4: Cryo-EM structure of the rPIV3-18 and hPIV3 F complex.
Fig. 5: Cryo-EM structure of the rPIV3-23 and rPIV3-28 Fabs bound to the hPIV3 HN dimer.
Fig. 6: PIV3 mAbs mediate prophylactic protection in cotton rats challenged with PIV3-CI-24 and synergize for neutralization.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are included in the paper or the Supplementary Information. Sequencing reads and consensus sequences have been deposited in NCBI under BioProject PRJNA992650. The atomic models used to determine and interpret the two protein structures detailed in this manuscript are available in the Protein Data Bank under the following accession codes: PDB 1V2I, PDB 4WEF, PDB 5I19, PDB 7BEL, PDB 3Q6G, PDB 5F9O, PBD 7DPM, PDB 6MJZ, PDB 7DPM. The cryo-EM structures and volume for the hPIV3 HN and hPIV3 F in complex with neutralizing Fabs have been deposited in the Protein Data Bank with the accession codes 8TQI (hPIV3 HN complex) and 8TQK (hPIV3 F complex). The electron density volumes are also available in the Electron Microscopy Data Bank under the codes EMD-41505 (hPIV3 HN complex) and EMD-41506 (hPIV3 F complex). Source data are provided with this paper.

Code availability

No new code was generated in this study. See the source data provided with this study and the deposited data.

References

  1. Chanock, R. M. et al. Newly recognized myxoviruses from children with respiratory disease. N. Engl. J. Med. 258, 207–213 (1958).

    Article  CAS  PubMed  Google Scholar 

  2. Shah, D. P., Shah, P. K., Azzi, J. M. & Chemaly, R. F. Parainfluenza virus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: a systematic review. Cancer Lett. 370, 358–364 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Fontana, L. & Strasfeld, L. Respiratory virus infections of the stem cell transplant recipient and the hematologic malignancy patient. Infect. Dis. Clin. North Am. 33, 523–544 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moscona, A. & Peluso, R. W. Fusion properties of cells persistently infected with human parainfluenza virus type 3: participation of hemagglutinin-neuraminidase in membrane fusion. J. Virol. 65, 2773–2777 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Porotto, M. et al. Regulation of paramyxovirus fusion activation: the hemagglutinin-neuraminidase protein stabilizes the fusion protein in a pretriggered state. J. Virol. 86, 12838–12848 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farzan, S. F. et al. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery. J. Biol. Chem. 286, 37945–37954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bose, S., Jardetzky, T. S. & Lamb, R. A. Timing is everything: fine-tuned molecular machines orchestrate paramyxovirus entry. Virology 479, 518–531 (2015).

    Article  PubMed  Google Scholar 

  8. Porotto, M., Murrell, M., Greengard, O. & Moscona, A. Triggering of human parainfluenza virus 3 fusion protein (F) by the hemagglutinin-neuraminidase (HN) protein: an HN mutation diminishes the rate of F activation and fusion. J. Virol. 77, 3647–3654 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marcink, T. C. et al. Subnanometer structure of an enveloped virus fusion complex on viral surface reveals new entry mechanisms. Sci. Adv. 9, eade2727 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Porotto, M., Murrell, M., Greengard, O., Doctor, L. & Moscona, A. Influence of the human parainfluenza virus 3 attachment protein’s neuraminidase activity on its capacity to activate the fusion protein. J. Virol. 79, 2383–2392 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huberman, K., Peluso, R. W. & Moscona, A. Hemagglutinin-neuraminidase of human parainfluenza-3: role of the neuraminidase in the viral life cycle. Virology 214, 294–300 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Porotto, M., Fornabaio, M., Kellogg, G. E. & Moscona, A. A second receptor binding site on human parainfluenza virus type 3 hemagglutinin-neuraminidase contributes to activation of the fusion mechanism. J. Virol. 81, 3216–3228 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, R. et al. Interaction between the hemagglutinin-neuraminidase and fusion glycoproteins of human parainfluenza virus type III regulates viral growth. mBio 4, e00803-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Greninger, A. L. et al. Human parainfluenza virus evolution during lung infection of immunocompromised individuals promotes viral persistence. J. Clin. Invest. https://doi.org/10.1172/JCI150506 (2021).

  15. Iketani, S. et al. Viral entry properties required for fitness in humans are lost through rapid genomic change during viral isolation. mBio 9, e00898-18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Porotto, M., Palmer, S. G., Palermo, L. M. & Moscona, A. Mechanism of fusion triggering by human parainfluenza virus type III. J. Biol. Chem. 287, 778–793 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Palmer, S. G. et al. Adaptation of human parainfluenza virus to airway epithelium reveals fusion properties required for growth in host tissue. mBio 3, e00137-12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mishin, V. P. et al. N-linked glycan at residue 523 of human parainfluenza virus type 3 hemagglutinin-neuraminidase masks a second receptor-binding site. J. Virol. 84, 3094–3100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lawrence, M. C. et al. Structure of the haemagglutinin-neuraminidase from human parainfluenza virus type III. J. Mol. Biol. 335, 1343–1357 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Streltsov, V. A., Pilling, P., Barrett, S. & McKimm-Breschkin, J. L. Catalytic mechanism and novel receptor binding sites of human parainfluenza virus type 3 hemagglutinin-neuraminidase (hPIV3 HN). Antiviral Res. 123, 216–223 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Dirr, L., El-Deeb, I. M., Chavas, L. M. G., Guillon, P. & Itzstein, M. V. The impact of the butterfly effect on human parainfluenza virus haemagglutinin-neuraminidase inhibitor design. Sci. Rep. 7, 4507 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pascolutti, M. et al. Structural insights into human parainfluenza virus 3 hemagglutinin-neuraminidase using unsaturated 3-substituted sialic acids as probes. ACS Chem. Biol. 13, 1544–1550 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Dirr, L. et al. The catalytic mechanism of human parainfluenza virus type 3 haemagglutinin-neuraminidase revealed. Angew. Chem. Int. Ed. 54, 2936–2940 (2015).

    Article  CAS  Google Scholar 

  24. Yin, H. S., Paterson, R. G., Wen, X., Lamb, R. A. & Jardetzky, T. S. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc. Natl Acad. Sci. USA 102, 9288–9293 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stewart-Jones, G. B. E. et al. Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types 1-4. Proc. Natl Acad. Sci. USA 115, 12265–12270 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Habibi, M. S. et al. Impaired antibody-mediated protection and defective IgA B-cell memory in experimental infection of adults with respiratory syncytial virus. Am. J. Respir. Crit. Care Med. 191, 1040–1049 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ngwuta, J. O. et al. Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera. Sci. Transl. Med. 7, 309ra162 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gilman, M. S. et al. Rapid profiling of RSV antibody repertoires from the memory B cells of naturally infected adult donors. Sci. Immunol. 1, eaaj1879 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. van Wyke Coelingh, K. L. & Tierney, E. L. Identification of amino acids recognized by syncytium-inhibiting and neutralizing monoclonal antibodies to the human parainfluenza type 3 virus fusion protein. J. Virol. 63, 3755–3760 (1989).

    Article  CAS  Google Scholar 

  30. van Wyke Coelingh, K. L., Winter, C. & Murphy, B. R. Antigenic variation in the hemagglutinin-neuraminidase protein of human parainfluenza type 3 virus. Virology 143, 569–582 (1985).

    Article  PubMed  Google Scholar 

  31. van Wyke Coelingh, K. L., Winter, C. C., Jorgensen, E. D. & Murphy, B. R. Antigenic and structural properties of the hemagglutinin-neuraminidase glycoprotein of human parainfluenza virus type-3: sequence analysis of variants selected with monoclonal antibodies which inhibit infectivity, hemagglutination, and neuraminidase activities. J. Virol. 61, 1473–1477 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Henrickson, K. J. & Portner, A. Antibody response in children to antigen sites on human PIV-3 HN: correlation with known epitopes mapped by monoclonal antibodies. Vaccine 8, 75–80 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. van Wyke Coelingh, K. L. & Tierney, E. L. Antigenic and functional organization of human parainfluenza virus type 3 fusion glycoprotein. J. Virol. 63, 375–382 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  34. van Wyke Coelingh, K. L. & Winter, C. C. Naturally occurring human parainfluenza type 3 viruses exhibit divergence in amino acid sequence of their fusion protein neutralization epitopes and cleavage sites. J. Virol. 64, 1329–1334 (1990).

    Article  Google Scholar 

  35. Boonyaratanakornkit, J. et al. Protective antibodies against human parainfluenza virus type 3 infection. MAbs 13, 1912884 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Caban, M. et al. Cross-protective antibodies against common endemic respiratory viruses. Nat. Commun. 14, 798 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Madhi, S. A. et al. Transmissibility, infectivity and immunogenicity of a live human parainfluenza type 3 virus vaccine (HP1V345) among susceptible infants and toddlers. Vaccine 24, 2432–2439 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Bernstein, D. I., Falloon, J. & Yi, T. T. A randomized, double-blind, placebo-controlled, phase 1/2a study of the safety and immunogenicity of a live, attenuated human parainfluenza virus type 3 vaccine in healthy infants. Vaccine 29, 7042–7048 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Karron, R. A. et al. Evaluation of a live attenuated bovine parainfluenza type 3 vaccine in two- to six-month-old infants. Pediatr. Infect. Dis. J. 15, 650–654 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Gomez, M. et al. Phase-I study MEDI-534, of a live, attenuated intranasal vaccine against respiratory syncytial virus and parainfluenza-3 virus in seropositive children. Pediatr. Infect. Dis. J. 28, 655–658 (2009).

    Article  PubMed  Google Scholar 

  41. Greninger, A. L. A decade of RNA virus metagenomics is (not) enough. Virus Res. 244, 218–229 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Palermo, L. M. et al. Features of circulating parainfluenza virus required for growth in human airway. mBio 7, e00235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krammer, F. et al. NAction! How can neuraminidase-based immunity contribute to better influenza virus vaccines? mBio 9, e02332-17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monto, A. S. et al. Antibody to influenza virus neuraminidase: an independent correlate of protection. J. Infect. Dis. 212, 1191–1199 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Yin, H. S., Wen, X., Paterson, R. G., Lamb, R. A. & Jardetzky, T. S. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 439, 38–44 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. White, J. M., Delos, S. E., Brecher, M. & Schornberg, K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit. Rev. Biochem. Mol. Biol. 43, 189–219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Harrison, S. C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690–698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wen, X. et al. Structure of the human metapneumovirus fusion protein with neutralizing antibody identifies a pneumovirus antigenic site. Nat. Struct. Mol. Biol. 19, 461–463 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang, J. J. et al. Functional analysis of amino acids at stalk/head interface of human parainfluenza virus type 3 hemagglutinin-neuraminidase protein in the membrane fusion process. Virus Genes 54, 333–342 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Li, L. et al. AbRSA: a robust tool for antibody numbering. Protein Sci. 28, 1524–1531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pascolutti, M. et al. Structural insights into human parainfluenza virus 3 hemagglutinin-neuraminidase using unsaturated 3- N-substituted sialic acids as probes. ACS Chem. Biol. 13, 1544–1550 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Taylor, G. Sialidases: structures, biological significance and therapeutic potential. Curr. Opin. Struct. Biol. 6, 830–837 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Winger, M. & von Itzstein, M. Exposing the flexibility of human parainfluenza virus hemagglutinin-neuraminidase. J. Am. Chem. Soc. 134, 18447–18452 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Bailly, B. et al. A dual drug regimen synergistically blocks human parainfluenza virus infection. Sci. Rep. 6, 24138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yuan, P., Paterson, R. G., Leser, G. P., Lamb, R. A. & Jardetzky, T. S. Structure of the Ulster strain Newcastle disease virus hemagglutinin-neuraminidase reveals auto-inhibitory interactions associated with low virulence. PLoS Pathog. 8, e1002855 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zaitsev, V. et al. Second sialic acid binding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion. J. Virol. 78, 3733–3741 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Welch, S. R. et al. Inhibition of Nipah virus by defective interfering particles. J. Infect. Dis. 221, S460–S470 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Borisevich, V. et al. Escape from monoclonal antibody neutralization affects henipavirus fitness in vitro and in vivo. J. Infect. Dis. 213, 448–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Chou, T. C. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 70, 440–446 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Ashton, J. C. Drug combination studies and their synergy quantification using the Chou–Talalay method—letter. Cancer Res. 75, 2400 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Gilchuk, P. et al. Analysis of a therapeutic antibody cocktail reveals determinants for cooperative and broad ebolavirus neutralization. Immunity 52, 388–403.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bernstein, D. I. et al. Phase 1 study of the safety and immunogenicity of a live, attenuated respiratory syncytial virus and parainfluenza virus type 3 vaccine in seronegative children. Pediatr. Infect. Dis. J. 31, 109–114 (2012).

    Article  PubMed  Google Scholar 

  63. Madhi, S. A. et al. Transmissibility, infectivity and immunogenicity of a live human parainfluenza type 3 virus vaccine (HP1V3cp45) among susceptible infants and toddlers. Vaccine 24, 2432–2439 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Skiadopoulos, M. H. et al. Evaluation of the replication and immunogenicity of recombinant human parainfluenza virus type 3 vectors expressing up to three foreign glycoproteins. Virology 297, 136–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Karron, R. A. et al. A live human parainfluenza type 3 virus vaccine is attenuated and immunogenic in young infants. Pediatr. Infect. Dis. J. 22, 394–405 (2003).

    Article  PubMed  Google Scholar 

  66. Domachowske, J. et al. Safety of nirsevimab for RSV in infants with heart or lung disease or prematurity. N. Engl. J. Med. 386, 892–894 (2022).

    Article  PubMed  Google Scholar 

  67. Ginsburg, A. S. & Srikantiah, P. Respiratory syncytial virus: promising progress against a leading cause of pneumonia. Lancet Glob. Health 9, e1644–e1645 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fernandez, P. et al. A phase 2, randomized, double-blind safety and pharmacokinetic assessment of respiratory syncytial virus (RSV) prophylaxis with motavizumab and palivizumab administered in the same season. BMC Pediatr. 10, 38 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Edupuganti, S. et al. Feasibility and successful enrollment in a proof-of-concept HIV prevention trial of VRC01, a broadly neutralizing HIV-1 monoclonal antibody. J. Acquir. Immune Defic. Syndr. 87, 671–679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mgodi, N. M. et al. A phase 2b study to evaluate the safety and efficacy of VRC01 broadly neutralizing monoclonal antibody in reducing acquisition of HIV-1 infection in women in sub-saharan Africa: baseline findings. J. Acquir. Immune Defic. Syndr. 87, 680–687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Corey, L. et al. Two randomized trials of neutralizing antibodies to prevent HIV-1 acquisition. N. Engl. J. Med. 384, 1003–1014 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Han, A. et al. Safety and efficacy of CR6261 in an influenza A H1N1 healthy human challenge model. Clin. Infect. Dis. 73, e4260–e4268 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Ali, S. O. et al. Evaluation of MEDI8852, an anti-influenza A monoclonal antibody, in treating acute uncomplicated influenza. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00694-18 (2018).

  74. Johnson, S. et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J. Infect. Dis. 176, 1215–1224 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Guillon, P. et al. Structure-guided discovery of potent and dual-acting human parainfluenza virus haemagglutinin-neuraminidase inhibitors. Nat. Commun. 5, 5268 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Xu, R. et al. A recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutinin. Nat. Struct. Mol. Biol. 20, 363–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hong, M. et al. Antibody recognition of the pandemic H1N1 Influenza virus hemagglutinin receptor binding site. J. Virol. 87, 12471–12480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Palermo, L. M., Porotto, M., Greengard, O. & Moscona, A. Fusion promotion by a paramyxovirus hemagglutinin-neuraminidase protein: pH modulation of receptor avidity of binding sites I and II. J. Virol. 81, 9152–9161 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chng, J. et al. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells. MAbs 7, 403–412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Teplyakov, A. et al. Structural diversity in a human antibody germline library. MAbs 8, 1045–1063 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dejnirattisai, W. et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell 184, 2183–2200.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Spurrier, B. et al. Structural analysis of human and macaque mAbs 2909 and 2.5B: implications for the configuration of the quaternary neutralizing epitope of HIV-1 gp120. Structure 19, 691–699 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bonsignori, M. et al. Maturation pathway from germline to broad HIV-1 neutralizer of a CD4-mimic antibody. Cell 165, 449–463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jiang, W. et al. Characterization of MW06, a human monoclonal antibody with cross-neutralization activity against both SARS-CoV-2 and SARS-CoV. MAbs 13, 1953683 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article  CAS  Google Scholar 

  92. Schiffrin, B., Radford, S. E., Brockwell, D. J. & Calabrese, A. N. PyXlinkViewer: a flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. Protein Sci. 29, 1851–1857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Suryadevara, N. et al. Real-time cell analysis: a high-throughput approach for testing SARS-CoV-2 antibody neutralization and escape. STAR Protoc. 3, 101387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Greninger, A. L. et al. Rapid metagenomic next-generation sequencing during an investigation of hospital-acquired human parainfluenza virus 3 infections. J. Clin. Microbiol. 55, 177–182 (2017).

    Article  PubMed  Google Scholar 

  95. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  96. Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Jardetzky, Moscona and Crowe laboratories. The work was supported by NIAID/NIH grants R01 AI13752 and R01 AI114736. Some of this work was performed at the Stanford-SLAC Cryo-EM Center (S2C2), which is supported by the National Institutes of Health Common Fund Transformative High-Resolution Cryo-Electron Microscopy programme (U24 GM129541). The authors thank H. A. Khant of the S2C2 for invaluable support and assistance. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Special acknowledgements to R. Irving for helping to procure cotton rats and helping with animal studies. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.S.J. and J.E.C. conceived the project. N.S., A.R.O.-C., N.K., Y.-X.H., E.B., R.M.W., A.L.G. and L.S.H. performed laboratory experiments. A.L.G. and A.M. provided reagents. T.S.J., A.M. and J.E.C. obtained funding. R.H.C., T.S.J., A.M. and J.E.C. supervised the research. N.S., A.R.O., J.E.C. and T.S.J. wrote the first drafts of the paper. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Theodore S. Jardetzky or James E. Crowe Jr..

Ethics declarations

Competing interests

J.E.C. has served as a consultant for Luna Labs USA, Merck Sharp & Dohme Corporation, Emergent Biosolutions, and BTG International Inc., is a member of the Scientific Advisory Board of Meissa Vaccines, a former member of the Scientific Advisory Board of Gigagen (Grifols) and is founder of IDBiologics. The laboratory of J.E.C. received unrelated sponsored research agreements from AstraZeneca, Takeda Vaccines, and IDBiologics during the conduct of the study. T.S.J. has served as a consultant for Pfizer. A.L.G reports contract testing from Abbott, Cepheid, Novavax, Pfizer, Janssen and Hologic, and research support from Gilead, outside of the described work. A.M. reports potential future financial interests in Thylacine Biotherapeutics Inc. unrelated to the present study. All other authors declare no competing interests. Vanderbilt University has applied for a patent for some of the antibodies in this paper (2024 International Patent Application No. PCT/US2024/028239 based on US Serial No. 63/504,549).

Peer review

Peer review information

Nature Microbiology thanks Michael Hoffmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Haemagglutination Inhibition assay and Fab neutralization.

1a. Haemagglutination Inhibition assay (Highlighted in Red- IgG, Blue -Fab, Green- RBCs only, Yellow - RBCs + PIV3 virus) 1b. Neutralization assay of PIV-3 virus using equimolar ratio IgG (30µg/mL starting concentration) and Fabs (10µg/mL starting concentration) of the PIV3 mAbs. Error bars indicate mean ± S.D.; data are representative of n = 2 independent experiments performed in technical triplicates.

Source data

Extended Data Fig. 2 Overview of the HPIV3 F and rPIV3-18 structure determination.

A. Comparison of the gel filtration profile for the HPIV3 F and the HPIV3 F: r-PIV3-18 complex. The complex was purified at least three times independently with consistent results. B. Motion corrected micrograph for HPIV3 F:rPIV3-18 complex (n = 11194). Two independent datasets were collected with similar results. C. Representative 2D class averages for HPIV3 F:rPIV3-18. D. FSC curves. E. Cryo-EM image processing flowchart. F. Local resolution map.

Extended Data Fig. 3 Overview of the HPIV3 HN and rPIV3-23:rPIV3-28 structure determination.

A. Comparison of the gel filtration profile for the HPIV3 HN and the HPIV3 HN: r-PIV3-23:rPIV3-28 complex. The complex was purified at least three times independently with consistent results. B. Motion-corrected micrograph for HPIV3 HN:rPIV3-23:rPIV3-28 complex (n = 7242). C. Representative 2D class averages for HPIV3 HN:rPIV3-23:rPIV3-28. D. FSC curves. E. Cryo-EM image processing flowchart. F. Local resolution map.

Extended Data Fig. 4 Overview of the HPIV3 HN and rPIV3-23 structure determination.

A. Gel filtration profile for the HPIV3 HN: r-PIV3-23 complex. The complex was purified at least two times independently with consistent results. B. Motion-corrected micrograph for HPIV3 HN:rPIV3-23 complex (n = 7524). C. Representative 2D class averages for HPIV3 HN:rPIV3-23. D. FSC curves. E. Comparison between the HPIV3 HN:rPIV3-23 density map (blue), the HPIV3 HN:rPIV3-23:rPIV3-28 atomic model (beige) and the HPIV3 HN:rPIV3-23:rPIV3-28 density map (gray).

Extended Data Fig. 5 Superimposition with HPIV3 HN dimer and tetramer structures.

A. Stereoview with superimposition of the HN complex with other paramyxovirus HN dimer structures (PDB IDs: 4WEF, 4MZA, 4MZE, 1V2I, 1V3B, 1V3D, 1V3C, 1V3E, 5KV9, 4XJR, 6C0M, 5KV8, 4XJQ and 1USR). B. Superimposition of the HPIV3 HN (light pink) +rPIV3-23 (purple) +rPIV3-28 (yellow) complex with the ‘4 heads down’ NDV HN tetramer (green) (PDB ID: 3T1E). C. Superimposition of the HPIV3 HN (light pink) +rPIV3-23 (purple) +rPIV3-28 (yellow) complex with the ‘2 heads up 2 heads down’ PIV5 HN tetramer (green) (PDB ID: 4JF7).

Extended Data Fig. 6 Comparison between the HPIV3 HN binding site with rPIV3-23 HCDR3 and the Neu5Ac.

A. Comparison between the HPIV3 HN binding site with rPIV3-23 (purple) HCDR3 and the Neu5Ac (PDB model ID 1V3C) bound. B. Comparison of Ulster strain NDV HN (old rose) with HPIV3 HN (light rose):rPIV3-23 (purple). Relevant residues are displayed as sticks. C. Superimposition of NDV HN dimer with Neu5Acen (yellow) and Neu5Ac (green) displayed as spheres (PDB ID 1USR). Glycan represented as sticks. A single rPIV3-28 Fab (yellow) is shown binding to the HN dimer for clarity.

Supplementary information

Reporting Summary

Supplementary Tables 1–3

Antibody variable gene usage and HCDR3 amino acid sequences. Inhibitory concentration50 (IC50, in ng ml−1) of PIV3 mAbs against clinical isolates. DRI value was estimated by CompuSyn.

Supplementary Table 4

Cryo-EM data collection and model refinement.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryadevara, N., Otrelo-Cardoso, A.R., Kose, N. et al. Functional and structural basis of human parainfluenza virus type 3 neutralization with human monoclonal antibodies. Nat Microbiol 9, 2128–2143 (2024). https://doi.org/10.1038/s41564-024-01722-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01722-w

  • Springer Nature Limited

Navigation