Skip to main content

Advertisement

Log in

Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model

  • Article
  • Published:

From Nature Microbiology

View current issue Submit your manuscript

Abstract

Pseudomonas aeruginosa, a leading cause of severe hospital-acquired pneumonia, causes infections with up to 50% mortality rates in mechanically ventilated patients. Despite some knowledge of virulence factors involved, it remains unclear how P. aeruginosa disseminates on mucosal surfaces and invades the tissue barrier. Using infection of human respiratory epithelium organoids, here we observed that P. aeruginosa colonization of apical surfaces is promoted by cyclic di-GMP-dependent asymmetric division. Infection with mutant strains revealed that Type 6 Secretion System activities promote preferential invasion of goblet cells. Type 3 Secretion System activity by intracellular bacteria induced goblet cell death and expulsion, leading to epithelial rupture which increased bacterial translocation and dissemination to the basolateral epithelium. These findings show that under physiological conditions, P. aeruginosa uses coordinated activity of a specific combination of virulence factors and behaviours to invade goblet cells and breach the epithelial barrier from within, revealing mechanistic insight into lung infection dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Human airway model exposes individual steps of P. aeruginosa lung infection.
Fig. 2: Specific virulence factors promote P. aeruginosa lung tissue colonization and breaching.
Fig. 3: Goblet cells serve as entry gates for P. aeruginosa invasion of lung epithelia.
Fig. 4: Pathogen-mediated local tissue destruction provides access to the basolateral tissue side.

Similar content being viewed by others

Data availability

The microscopy data that support the findings of this study are openly available in the BioImage Archive (https://doi.org/10.6019/S-BIAD1083)93, and all other data types are in Zenodo (https://zenodo.org/records/10650981)94. Unique biological materials are available from the corresponding author on reasonable request.

References

  1. Parker, D. & Prince, A. Innate immunity in the respiratory epithelium. Am. J. Respir. Cell Mol. Biol. 45, 189–201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsang, K. et al. Interaction of Pseudomonas aeruginosa with human respiratory mucosa in vitro. Eur. Respir. J. 7, 1746–1753 (1994).

  3. Schwarzer, C., Fischer, H. & Machen, T. E. Chemotaxis and binding of Pseudomonas aeruginosa to scratch-wounded human cystic fibrosis airway epithelial cells. PLoS ONE 11, e0150109 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Happel, K. I., Nelson, S. & Summer, W. The lung in sepsis: fueling the fire. Am. J. Med. Sci. 328, 230–237 (2004).

    Article  PubMed  Google Scholar 

  5. Giantsou, E. & Manolas, K. I. Superinfections in Pseudomonas aeruginosa ventilator-associated pneumonia. Minerva Anestesiol. 77, 964–970 (2011).

    CAS  PubMed  Google Scholar 

  6. Tramper‐Stranders, G. A. et al. Initial Pseudomonas aeruginosa infection in patients with cystic fibrosis: characteristics of eradicated and persistent isolates. Clin. Microbiol. Infect. 18, 567–574 (2012).

    Article  PubMed  Google Scholar 

  7. Bustamante-Marin, X. M. & Ostrowski, L. E. Cilia and mucociliary clearance. Cold Spring Harb. Perspect. Biol. 9, a028241 (2017).

    Article  Google Scholar 

  8. Carvajal, L. A. & Pérez, C. P. Epidemiology of Respiratory Infections. in Pediatric Respiratory Diseases: A Comprehensive Textbook (eds Bertrand, P. & Sánchez, I.) 263–272 (Springer, 2020).

  9. Hiemstra, P. S., McCray, P. B. & Bals, R. The innate immune function of airway epithelial cells in inflammatory lung disease. Eur. Respir. J. 45, 1150–1162 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Almagro, P. et al. Pseudomonas aeruginosa and mortality after hospital admission for chronic obstructive pulmonary disease. Respiration 84, 36–43 (2012).

    Article  PubMed  Google Scholar 

  11. Gellatly, S. L. & Hancock, R. E. W. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog. Dis. 67, 159–173 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Engel, J. & Balachandran, P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr. Opin. Microbiol. 12, 61–66 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Heiniger, R. W., Winther-Larsen, H. C., Pickles, R. J., Koomey, M. & Wolfgang, M. C. Infection of human mucosal tissue by Pseudomonas aeruginosa requires sequential and mutually dependent virulence factors and a novel pilus-associated adhesin. Cell. Microbiol. 12, 1158–1173 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bucior, I., Mostov, K. & Engel, J. N. Pseudomonas aeruginosa-mediated damage requires distinct receptors at the apical and basolateral surfaces of the polarized epithelium. Infect. Immun. 78, 939–953 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Fleiszig, S. M. et al. Epithelial cell polarity affects susceptibility to Pseudomonas aeruginosa invasion and cytotoxicity. Infect. Immun. 65, 2861–2867 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Engel, J. & Eran, Y. Subversion of mucosal barrier polarity by Pseudomonas aeruginosa. Front. Microbiol. 2, 114 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kazmierczak, B. I., Mostov, K. & Engel, J. N. Epithelial cell polarity alters rho-GTPase responses to Pseudomonas aeruginosa. Mol. Biol. Cell 15, 411–419 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Golovkine, G. et al. Pseudomonas aeruginosa transmigrates at epithelial cell-cell junctions, exploiting sites of cell division and senescent cell extrusion. PLoS Pathog. 12, e1005377 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kierbel, A. et al. Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. J. Cell Biol. 177, 21–27 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kierbel, A., Gassama-Diagne, A., Mostov, K. & Engel, J. N. The phosphoinositol-3-kinase–protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Mol. Biol. Cell 16, 2577–2585 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Plotkowski, M. C. et al. Pseudomonas aeruginosa internalization by human epithelial respiratory cells depends on cell differentiation, polarity, and junctional complex integrity. Am. J. Respir. Cell Mol. Biol. 20, 880–890 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Lopes, S. F. et al. Primary and immortalized human respiratory cells display different patterns of cytotoxicity and cytokine release upon exposure to deoxynivalenol, nivalenol and fusarenon-X. Toxins 9, 337 (2017).

    Article  Google Scholar 

  23. Barron, S. L., Saez, J. & Owens, R. M. In vitro models for studying respiratory host–pathogen interactions. Adv. Biol. 5, 2000624 (2021).

  24. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Worp et al. Can animal models of disease reliably inform human studies? PLoS Med. 7, e1000245 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Uhl, E. W. & Warner, N. J. Mouse models as predictors of human responses: evolutionary medicine. Curr. Pathobiol. Rep. 3, 219–223 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chia, S. P. S., Kong, S. L. Y., Pang, J. K. S. & Soh, B.-S. 3D human organoids: the next “viral” model for the molecular basis of infectious diseases. Biomedicines 10, 1541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Youk, J. et al. Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2. Cell Stem Cell 27, 905–919.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Sachs, N. et al. Long‐term expanding human airway organoids for disease modeling. EMBO J. 38, e100300 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Han, Y. et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 589, 270–275 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Heo, I. et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat. Microbiol. 3, 814–823 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. García, S. R. et al. Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures. Development 146, dev.177428 (2019).

    Article  Google Scholar 

  36. Ozer, E. A., Nnah, E., Didelot, X., Whitaker, R. J. & Hauser, A. R. The population structure of Pseudomonas aeruginosa is characterized by genetic isolation of exoU+ and exoS+ lineages. Genome Biol. Evol. 11, 1780–1796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fahy, J. V. & Dickey, B. F. Airway mucus function and dysfunction. N. Engl. J. Med. 363, 2233–2247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liao, C., Huang, X., Wang, Q., Yao, D. & Lu, W. Virulence factors of Pseudomonas aeruginosa and antivirulence strategies to combat its drug resistance. Front. Cell Infect. Microbiol. 12, 926758 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Williams, P. & Cámara, M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 12, 182–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Jimenez, P. N. et al. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 76, 46–65 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Persat, A., Inclán, Y. F., Engel, J. N., Stone, H. A. & Gitai, Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 112, 7563–7568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klockgether, J. & Tümmler, B. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Research 6, 1261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bleves, S. et al. Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int. J. Med. Microbiol. 300, 534–543 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. O’Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295–304 (1998).

    Article  PubMed  Google Scholar 

  45. Giltner, C. L., Nguyen, Y. & Burrows, L. L. Type IV pilin proteins: versatile molecular modules. Microbiol. Mol. Biol. Rev. 76, 740–772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Laventie, B.-J. et al. A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host Microbe 25, 140–152.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Luo, Y. et al. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. mBio 6, e02456-14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kazmierczak, B. I., Schniederberend, M. & Jain, R. Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence. Curr. Opin. Microbiol. 28, 78–82 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Valentini, M. & Filloux, A. Multiple roles of c-di-GMP signaling in bacterial pathogenesis. Annu. Rev. Microbiol. 73, 387–406 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Laventie, B.-J. & Jenal, U. Surface sensing and adaptation in bacteria. Annu. Rev. Microbiol. 74, 735–760 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Palmer, K. L., Aye, L. M. & Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189, 8079–8087 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuek, L. E. & Lee, R. J. First contact: the role of respiratory cilia in host–pathogen interactions in the airways. Am. J. Physiol. Lung Cell Mol. Physiol. 319, L603–L619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Widdicombe, J. H. & Wine, J. J. Airway gland structure and function. Physiol. Rev. 95, 1241–1319 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Sana, T. G. et al. Internalization of Pseudomonas aeruginosa strain PAO1 into epithelial cells is promoted by interaction of a T6SS effector with the microtubule network. mBio 6, e00712-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sana, T. G. et al. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and fur and modulates internalization in epithelial cells. J. Biol. Chem. 287, 27095–27105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hogan, B. L. M. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rossy, T. et al. Pseudomonas aeruginosa type IV pili actively induce mucus contraction to form biofilms in tissue-engineered human airways. PLoS Biol. 21, e3002209 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiang, F., Waterfield, N. R., Yang, J., Yang, G. & Jin, Q. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe 15, 600–610 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Rajan, S. et al. Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells. Am. J. Respir. Cell Mol. Biol. 23, 304–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Yamaguchi, T. & Yamada, H. Role of mechanical injury on airway surface in the pathogenesis of Pseudomonas aeruginosa. Am. Rev. Respir. Dis. 144, 1147–1152 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Kumar, N. G. et al. Pseudomonas aeruginosa can diversify after host cell invasion to establish multiple intracellular niches. mBio 13, e02742-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chastre, J. et al. Safety, efficacy, and pharmacokinetics of gremubamab (MEDI3902), an anti-Pseudomonas aeruginosa bispecific human monoclonal antibody, in P. aeruginosa-colonised, mechanically ventilated intensive care unit patients: a randomised controlled trial. Crit. Care 26, 355 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hotinger, J. A. & May, A. E. Antibodies inhibiting the type III secretion system of Gram-negative pathogenic bacteria. Antibodies 9, 35 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jain, M. et al. Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J. Clin. Microbiol. 42, 5229–5237 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Huus, K. E. et al. Clinical isolates of Pseudomonas aeruginosa from chronically infected cystic fibrosis patients fail to activate the inflammasome during both stable infection and pulmonary exacerbation. J. Immunol. 196, 3097–3108 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Rossi, E. et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 19, 331–342 (2020).

    Article  PubMed  Google Scholar 

  68. Osan, J. et al. Goblet cell hyperplasia increases SARS-CoV-2 infection in chronic obstructive pulmonary disease. Microbiol. Spectr. 10, e00459-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Adam, D. et al. Cystic fibrosis airway epithelium remodelling: involvement of inflammation. J. Pathol. 235, 408–419 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Jeffery, P. K. Comparison of the structural and inflammatory features of COPD and asthma. Giles F. Filley Lecture. Chest 117, 251S–260S (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Dovey, M. et al. Ultrastructural morphology of the lung in cystic fibrosis. J. Submicrosc. Cytol. Pathol. 21, 521–534 (1989).

    CAS  PubMed  Google Scholar 

  72. Jeffery, P. K. Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 1, 176–183 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Ravindra, N. G. et al. Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biol. 19, e3001143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lukassen, S. et al. SARS‐CoV‐2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 39, e105114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Diard, M. et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494, 353–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Kotte, O., Volkmer, B., Radzikowski, J. L. & Heinemann, M. Phenotypic bistability in Escherichia coli’s central carbon metabolism. Mol. Syst. Biol. 10, 736 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bakshi, S. et al. Tracking bacterial lineages in complex and dynamic environments with applications for growth control and persistence. Nat. Microbiol. 6, 783–791 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Arnoldini, M. et al. Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol. 12, e1001928 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Manina, G., Griego, A., Singh, L. K., McKinney, J. D. & Dhar, N. Preexisting variation in DNA damage response predicts the fate of single mycobacteria under stress. EMBO J. 38, e101876 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Keilberg, D., Zavros, Y., Shepherd, B., Salama, N. R. & Ottemann, K. M. Spatial and temporal shifts in bacterial biogeography and gland occupation during the development of a chronic infection. mBio 7, e01705-16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fung, C. et al. High-resolution mapping reveals that microniches in the gastric glands control Helicobacter pylori colonization of the stomach. PLoS Biol. 17, e3000231 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Garvis, S. et al. Caenorhabditis elegans semi-automated liquid screen reveals a specialized role for the chemotaxis gene cheB2 in Pseudomonas aeruginosa virulence. PLoS Pathog. 5, e1000540 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Laganenka, L. et al. Chemotaxis and autoinducer-2 signalling mediate colonization and contribute to co-existence of Escherichia coli strains in the murine gut. Nat. Microbiol. 8, 204–217 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Cooper, K. G. et al. Regulatory protein HilD stimulates Salmonella Typhimurium invasiveness by promoting smooth swimming via the methyl-accepting chemotaxis protein McpC. Nat. Commun. 12, 348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lane, M. C. et al. Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect. Immun. 73, 7644–7656 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Broder, U. N., Jaeger, T. & Jenal, U. LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa. Nat. Microbiol. 2, 16184 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Haubold, B., Klötzl, F. & Pfaffelhuber, P. andi: fast and accurate estimation of evolutionary distances between closely related genomes. Bioinformatics 31, 1169–1175 (2015).

    Article  PubMed  Google Scholar 

  91. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Swart, A. L. Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model. BioImage Archive https://doi.org/10.6019/S-BIAD1083 (2024).

  94. Swart, A. L. & Laventie, B.-J. Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model. Zenodo https://doi.org/10.5281/zenodo.10650981 (2024).

Download references

Acknowledgements

We thank J. Sollier for critical reading and editing of the paper and L. Boeck for expert input; S. Roig, K. Schleicher, A. Loynton-Ferrand and L. Guerard (Biozentrum - Imaging core facility), J. Bögli (Biozentrum - FACS core facility), C. Alampi, C. Tiberi Schmidt and M. Chami (Biozentrum – BioEM facility) for technical support; A. Kaczmarczyk and Fabienne Hamburger for help with complementation constructs; M. Basler (Biozentrum – University of Basel) for strains; and I. Schuler for help with histology preparations. Schematics were created with BioRender.com. This study was supported by the Swiss National Science Foundation NCCR AntiResist (51NF40_180541 to U.J.) and financial support from the Roche Institute of Human Biology (IHB).

Author information

Authors and Affiliations

Authors

Contributions

A.L.S., B.-J.L., R.O. and U.J. conceptualized the project. A.L.S., B.-J.L., R.S., T.J., L.L., P.M., S.J., X.Y., E.K., R.O. and U.J. developed the methodology. A.L.S., B.-J.L., P.M., R.O. and U.J. conducted formal analysis. A.L.S., B.-J.L., R.S., T.J., L.L., S.J., X.Y. and E.K. conducted investigations. A.L.S., B.-J.L. and U.J. wrote the original paper draft. R.O. and U.J. acquired funding and supervised the project.

Corresponding author

Correspondence to Urs Jenal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Development of in vitro lung tissues.

a. Schematics of the cell culture process to develop fully differentiated (+21 days post airlift) airway epithelium on Transwell inserts and subsequent apical infection. b, c. Development of the lung tissue post airlift (day 0 to 60) visualized by histology (b) or ICC (c). d, e. Quantification of the thickness (d) and total cell numbers (e) of tissues at day 0, 30 or 60 post airlift, inferred from ICC images. For (d) and (e): Statistical significance was calculated using Kruskal–Wallis H-test with Dunnett’s multiple comparison test. ns; not significant. For panels a-c: n = 3 independent experiments (same donor). For d and e.: n = 15 3D images (30 regions/images for d) examined over 3 independent experiments. Data are presented as mean values +/− SD. f, g. Comparison of airway epithelium on Transwell inserts from 3 donors visualized by histology (f) or ICC (g). n = 3 independent experiments (different donors). Histology: hematoxylin and eosin staining. ICC staining: nuclei: DAPI, mucus: Muc5AC, actin: phalloidin-647, cilia: acetylated-α-tubulin.

Extended Data Fig. 2 Cellular composition and functional properties of the bronchial lung epithelium model.

a, b. Visualization (a) and quantification (b) of the major cell types present in the bronchial epithelium by ICC or FACS, respectively. n = 2 independent experiments (same donor). c. Measurements of cilia beating frequencies by microscopy at day 30 or 60 post airlift. n = 36 inserts over 3 independent experiments (same donor); Box plot: center line, median; box limits, upper and lower quartiles; whiskers, min-max. d, e. Assessment of epithelial barrier integrity (TEER) of lung epithelium at day 0, 30 or 60 post airlift (d, n = 3 independent experiments, same donor) and epithelia from 3 different donors (e, n = 5 independent experiments). For (c), (d) and (e): statistical significance was calculated using Kruskal–Wallis H-test with Dunnett’s multiple comparison test. ns; not significant. f. Visualization of tight junctions by ICC of lung epithelium at day 0 or 30 post airlift. g. Assessment of epithelial barrier integrity (Lucifer yellow permeability) of lung epithelium from 3 different donors (n = 6 inserts over 3 independent experiments). h. Wound healing after physical tissue damage (indicated by the white arrow) of the lung epithelium was followed by time-lapse live imaging for 36 hours (see: Supplementary Information Movie 2). For b, c and f: data are presented as mean values +/− SD. For d, e and g: data are presented as mean values +/− SD. Staining: nuclei: DAPI, cycling basal cells: mucus: Muc5AC, cycling basal cells: α-Ki67, basal cells: α-p63, club cells: α-SCG1A1, cilia: acetylated-α-tubulin, actin: phalloidin-647, tight junctions: ZO-1 Alexa Fluor 555, membrane: CellMask.

Extended Data Fig. 3 Taxonomic distribution of virulence factors among 285 Pseudomonas aeruginosa complete genomes.

a. The phylogenetic tree depicts the isolation source of the PAO1 (blue arc) and PA14 (orange arc) clades. Purple: clinical isolates, black dots indicate clinical strains isolated from human airways, teal: environmental isolates, grey: undetermined or other sources. b. The phylogenetic trees depict the presence of an orthologue of the virulence factors (indicated in the center, using PAO1 nomenclature) among these strains. Presence: purple or pink leaflet, absence: uncolored leaflet. For pilA, two types of homologs were identified within the considered taxonomic range. Branches length relate to genetic distance with an arbitrary scale unit.

Extended Data Fig. 4 Human airway model exposes distinct steps of P. aeruginosa tissue colonization.

a. Images of the lung tissue surface before and after washing inserts with HBSS shows efficient mucus removal. Staining: mucus: Jacalin-fluorescein (green), membrane: CellMask DeepRed (purple). b. P. aeruginosa growth on the apical side of the lung tissues (continuous line) and spread to the basal compartment after tissue breaching (dotted line) with (black) and without (blue) apical mucus upon infection. c. Epithelial barrier integrity (TEER, plain lines) and tissue viability (LDH release, dashed lines) during infection in absence (blue) or presence (black) of mucus. d. Stills of live imaging (25×) of apoptotic events upon infection with P. aeruginosa. Staining: apoptotic cells: NucView (caspase-3/7 activity), membrane: CellMask DeepRed. e. Quantification of dead epithelial cells by FACS, using a viability marker (Zombie NIR), upon infection with P. aeruginosa. Unpaired t test (two-tailed) compared to uninfected; ** P = 0.0011. f. P. aeruginosa population on the airway epithelium (continuous line) and in the basal compartment (dashed line) with PneumaCult-ALI culture medium (black) or HBSS buffer (green) in the basolateral compartment. g, h, i. P. aeruginosa population on the apical (g) and basal side (h) of the lung tissues as well as tissue viability (LDH release) (i) upon infection with different inoculum sizes as indicated. For panels a-i: same donor. j, k. Comparison for 3 different donors of P. aeruginosa growth on the apical side of the lung tissues (continuous line) and spread to the basal compartment after tissue breaching (dotted line) with (black) (j) as well as tissue viability (LDH release) (k). For panels a-f, j, k: inoculum = 103. For all panels n = 3 independent experiments. For j and k: data are presented as mean values +/− SD.

Extended Data Fig. 5 Virulence factors promoting P. aeruginosa lung tissue colonization and breaching.

a. Growth of P. aeruginosa wild type and mutant strains in SCFM medium. b, e, f. Complementation of the PAO1 ΔpilA and ΔpscC mutants. Apical replication (b), basolateral invasion (e) and tissue viability (LDH release) (f) of the mutants and respective complemented strains were assessed. c. P. aeruginosa population in the basolateral compartment up to 48 h p.i. Dunnett’s One-Way ANOVA compared to wild type; P = 0.0274 (ΔfliC), <0.0001 (ΔpilA), 0.0003 (ΔpscC), 0.1585 (Δpch) or <0.0001 (ΔcyaAB); ns: not significant. d. tissue viability (LDH release) during infection with P. aeruginosa. g. Percentage actively beating cilia (>3.5Hz) of the airway epithelium during P. aeruginosa infection measured by live microscopy. h. Stills of live imaging (10x) of the tissue integrity during with P. aeruginosa wild type and Δpch mutant over time. Cell membrane staining: CellMask DeepRed. Inoculum = 101, 103 or 106 c.f.u. as indicated on the left. Representative images, quantified in Fig. 2f. i. P. aeruginosa ΔfliC colonization of the airway epithelium. 10x overview of the entire Transwell (upper panel) and 100× details (middle and lower panels) (ICC). Related to Fig. 2c, g. Staining: nuclei: DAPI, actin: phalloidin-647. j. Quantification of the airway epithelium attachment by P. aeruginosa mutants from ICC images. Related to Fig. 2h. Dunnett’s One-Way ANOVA compared to wild type; ** P < 0.01; ns: not significant. For all panels: Inoculum = 103, n = 3 independent experiments (same donor). For j: n = 51 images examined over 3 independent experiments. For b-f: data are presented as mean values +/− SD.

Extended Data Fig. 6 Selective internalization into goblet cells allows P. aeruginosa to invade lung epithelia.

a-d. Representative examples of 100× ICC images of P. aeruginosa attaching to and invading lung epithelial cells at 6 h and 12 h p.i. Attached (a), internalized (b) and replicating bacteria (c) are shown. Goblet cell invasion is illustrated in (d) using an additional stain for mucus, and was consistently observed in all three donors tested (e). For all panels: Inoculum = 103. n = 3 independent experiments. For a-d: same donor, for e: different donors. Staining: bacteria: constitutive chromosomal expression of mNeonGreen (yellow) or mCherry (pink), nuclei: DAPI, mucus: Muc5AC, membrane: CellMask, actin: phalloidin-647, tight junctions: ZO-1 Alexa Fluor 555.

Extended Data Fig. 7 Internalization of P. aeruginosa and sloughing of infected epithelial cells.

a. Quantification of the complemented T6SS mutants ΔH2 (ΔtssL2) and ΔH3 (ΔtssM3) internalized in epithelial cells 12 hours p.i. Unpaired t test (two-tailed) compared to wild type; P = <0.0001 (ΔtssL2), 0.0321 (ΔtssL2+tssL2), 0.0003 (ΔtssM3) or 0.0444 (Δ tssM3+tssM3); n = 51 images examined over 3 independent experiments. Data are presented as mean values +/− SD. b, c. Representative ICC images (100×) depicting sloughing of epithelial cells infected with P. aeruginosa (b) and colonization of sloughed cells by extracellular bacteria (c). For all panels: inoculum = 103. n = 3 independent experiments (same donor). Staining: bacteria: constitutive chromosomal expression of mNeonGreen (yellow) or mCherry (pink), nuclei: DAPI, actin: phalloidin-647.

Extended Data Fig. 8 Intracellular replication and localization of P. aeruginosa T3SS mutants.

a, b. Schematic (a) and 100× ICC images (b) of the intracellular replication of a P. aeruginosa T3SS mutant (ΔpscC) resulting in mechanical cell rupture and release of intracellular bacteria. The progression shown in (b) is a compilation of different stages of breaching sites observed in samples 24 h p.i. Staining: bacteria: constitutive chromosomal expression of mNeonGreen, nuclei: DAPI, membrane: CellMask, tight junctions: ZO-1 Alexa Fluor 555. Inoculum = 103. c. Subcellular localization in lung epithelial cells of P. aeruginosa T3SS mutant (ΔpscC) compared to wild type PAO1 using Transmission Electron Microscopy. The tissue sections were performed on the epithelium apical surface, and the cilia are visible on the left of overview images. Intracellular bacteria are marked with white asterisks. Inoculum = 106 (WT) or 103pscC). For all panels: n = 3 independent experiments (same donor).

Extended Data Fig. 9 P. aeruginosa breaching and basolateral invasion of the lower airway epithelium.

a, b. Schematic (a) and 100× ICC images (b) of P. aeruginosa invasion of the basolateral side of the lung epithelium after successful establishment of a breaching site. c. Progression of lower airway infection by P. aeruginosa PAO1 wild type recorded by SEM. d, e. Immunocytochemistry images of P. aeruginosa breaching sites seen for all three donors tested (d) and for the PAO1 ΔpscC complemented mutants (e). For all panels: Inoculum = 103. n = 3 independent experiments (same donor [a-c and e] or different donors [d]). ICC staining: bacteria: constitutive chromosomal expression of mNeonGreen, nuclei: DAPI, tight junctions: ZO-1 Alexa Fluor 555.

Extended Data Fig. 10 Rapid colonization of breaching sites is driven by chemotaxis.

Breaching site colonization in samples infected with a 1:1 mixture of differentially labeled (pink or yellow) wild type and ΔcheA1/2 mutant strains. a. Wild type + wild type example of co-colonized breach. b. Wild type + ΔcheA1/2 example of co-colonized breach. c. Wild type + ΔcheA1/2 example of a breach solely colonize by wild type. d. ΔcheA1/2 + ΔcheA1/2 example of breaches colonized by only one of the two ΔcheA1/2 strains. For all panels: inoculum = 103, n = 3 independent experiments (same donor). Staining: bacteria: constitutive chromosomal expression of mNeonGreen or mCherry, nuclei: DAPI, actin: phalloidin-647.

Supplementary information

Supplementary Information

Suplementary Fig. 1.

Reporting Summary

Supplementary Video 1

Cilia beating and mucus flow. Real-time recording of beating cilia and mucus flow on the apical surface of the lower airway model. Staining: membrane, CellMask.

Supplementary Video 2

Tissue regeneration and P. aeruginosa infection of injured lung epithelium. Wound healing after physical tissue damage of uninfected lower airway epithelium (top panels) and selective P. aeruginosa invasion of the insured site upon infection (bottom panels). Staining: bacteria, constitutive chromosomal expression of mNeonGreen; membrane, CellMask. Inoculum = 103, n = 3 (same donor).

Supplementary Video 3

Increased frequency of apoptotic lung cell events upon infection with P. aeruginosa. Live imaging (25×) of apoptotic events upon infection with P. aeruginosa. Staining: apoptotic cells, NucView (caspase-3/7 activity); membrane, CellMask. Inoculum = 103, n = 3 (same donor).

Supplementary Video 4

Pseudomonas aeruginosa invades lung cells. Example of immunocytochemistry image (100×) where bacteria are visible both on the lung epithelium surface and internalized in a lung cell (12 h p.i.). P. aeruginosa, mNeonGreen (yellow); actin, phalloidin-647 (purple); nuclei, DAPI (blue). To facilitate the visualization, cells where segmented and rendered in 3D using IMARIS.

Supplementary Tables

Supplementary Table 1. Bacterial strains used in this study. Related to key resources table. Table 2. Key resources used in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swart, A.L., Laventie, BJ., Sütterlin, R. et al. Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model. Nat Microbiol 9, 1725–1737 (2024). https://doi.org/10.1038/s41564-024-01718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-024-01718-6

  • Springer Nature Limited

Navigation