Skip to main content
Log in

Dual storage and release of molecular oxygen in comet 67P/Churyumov–Gerasimenko

  • Article
  • Published:

From Nature Astronomy

View current issue Submit your manuscript

Abstract

One of the biggest surprises of the Rosetta mission was the detection of O2 in the coma of 67P/Churyumov–Gerasimenko in remarkably high abundances. The measured levels of O2 in the coma are generally assumed to reflect the overall abundance and chemical origin of cometary O2 in the nucleus. Along with its strong association with H2O and weak association with CO and CO2, these measurements led to the consensus that the source and release of cometary O2 are linked to H2O. We analysed ROSINA observations and found a previously unrecognized change in the correlations of O2 with H2O, CO2 and CO that contradicts the prevailing notion that the release of O2 is linked to H2O at all times. These findings can be explained by the presence of two distinct reservoirs of O2: a pristine source in the deeper nucleus layers dating back to before nucleus formation, and an H2O-trapped secondary reservoir formed during the thermal evolution of the nucleus. These results imply that O2 must have been incorporated into the nucleus in a solid and distinct phase during accretion in significantly lower abundances than previously assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Correlations of O2 with the major species before the pre-perihelion equinox.
Fig. 2: Correlations of O2 with the major species after the post-perihelion equinox.
Fig. 3: O2 correlations with the major cometary volatile species during low H2O production.
Fig. 4: O2 trapping in and release from the two distinct nucleus reservoirs.

Similar content being viewed by others

Data availability

All data processed as described above are included in the Article and Supplementary Information. The ROSINA/DFMS spectra used to derive count rates are available in the NASA Planetary DataSystem (https://pds-smallbodies.astro.umd.edu/data_sb/missions/rosetta/index.shtml) and ESA Planetary Science Archive (https://archives.esac.esa.int/psa/#!Table%20View/Rosetta=mission). Source data are provided with this paper.

References

  1. Balsiger, H. et al. ROSINA–Rosetta orbiter spectrometer for ion and neutral analysis. Space Sci. Rev. 128, 745–801 (2007).

    Article  ADS  Google Scholar 

  2. Bieler, A. et al. Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko. Nature 526, 678–681 (2015).

    Article  ADS  Google Scholar 

  3. Taquet, V., Ceccarelli, C. & Kahane, C. Multilayer modeling of porous grain surface chemistry–I. The GRAINOBLE model. Astron. Astrophys. 538, A42 (2012).

    Article  ADS  Google Scholar 

  4. Larsson, B. et al. Molecular oxygen in the ρ Ophiuchi cloud. Astron. Astrophys. 466, 999–1003 (2007).

    Article  ADS  Google Scholar 

  5. Liseau, R. et al. O18O and C18O observations of ρ Ophiuchi A. Astron. Astrophys. 510, A98 (2010).

    Article  Google Scholar 

  6. Fougere, N. et al. Direct simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 462, S156–S169 (2016).

    Article  Google Scholar 

  7. Gasc, S. et al. Change of outgassing pattern of 67P/Churyumov–Gerasimenko during the March 2016 equinox as seen by ROSINA. Mon. Not. R. Astron. Soc. 469, S108–S117 (2017).

    Article  Google Scholar 

  8. Combi, M. et al. The surface distributions of the production of the major volatile species, H2O, CO2, CO and O2, from the nucleus of comet 67P/Churyumov-Gerasimenko throughout the Rosetta Mission as measured by the ROSINA double focusing mass spectrometer. Icarus 335, 113421 (2020).

    Article  Google Scholar 

  9. Luspay-Kuti, A. et al. Origin of molecular oxygen in comets: current knowledge and perspectives. Space Sci. Rev. 214, 1–24 (2018).

    Article  Google Scholar 

  10. Hässig, M. et al. Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko. Science 347, 6220 (2015).

    Article  Google Scholar 

  11. Luspay-Kuti, A. et al. Composition-dependent outgassing of comet 67P/Churyumov-Gerasimenko from ROSINA/DFMS-Implications for nucleus heterogeneity? Astron. Astrophys. 583, A4 (2015).

    Article  Google Scholar 

  12. Luspay-Kuti, A. et al. The presence of clathrates in comet 67P/Churyumov-Gerasimenko. Sci. Adv. 2, e1501781 (2016).

    Article  ADS  Google Scholar 

  13. Luspay-Kuti, A. et al. Comparison of neutral outgassing of comet 67P/Churyumov-Gerasimenko inbound and outbound beyond 3 AU from ROSINA/DFMS. Astron. Astrophys. 630, A30 (2019).

    Article  Google Scholar 

  14. Le Roy, L. et al. Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. Astron. Astrophys. 583, A1 (2015).

    Article  Google Scholar 

  15. Biver, N. et al. Long-term monitoring of the outgassing and composition of comet 67P/Churyumov-Gerasimenko with the Rosetta/MIRO instrument. Astron. Astrophys. 630, A19 (2019).

    Article  Google Scholar 

  16. Bockelée-Morvan, D. et al. First observations of H2O and CO2 vapor in comet 67P/Churyumov-Gerasimenko made by VIRTIS onboard Rosetta. Astron. Astrophys. 583, A6 (2015).

    Article  Google Scholar 

  17. Migliorini, A. et al. Water and carbon dioxide distribution in the 67P/Churyumov-Gerasimenko coma from VIRTIS-M infrared observations. Astron. Astrophys. 589, A45 (2016).

    Article  Google Scholar 

  18. Keller, H. U. et al. Seasonal mass transfer on the nucleus of comet 67P/Chuyumov–Gerasimenko. Mon. Not. R. Astron. Soc. 469, S357–S371 (2017).

    Article  Google Scholar 

  19. Prialnik, D., A’Hearn, M. F. & Meech, K. J. A mechanism for short-lived cometary outbursts at sunrise as observed by Deep Impact on 9P/Tempel 1. Mon. Not. R. Astron. Soc. 388, L20–L23 (2008).

    Article  ADS  Google Scholar 

  20. Filacchione, G. I. et al. Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature 529, 368–372 (2016).

    Article  ADS  Google Scholar 

  21. De Sanctis, M. C. et al. The diurnal cycle of water ice on comet 67P/Churyumov-Gerasimenko. Nature 525, 500–503 (2015).

    Article  ADS  Google Scholar 

  22. Sunshine, J. M. et al. Exposed water ice deposits on the surface of comet 9P/Tempel 1. Science 311, 1453–1455 (2006).

    Article  ADS  Google Scholar 

  23. Mousis, O. et al. Origin of molecular oxygen in comet 67P/Churyumov–Gerasimenko. Astrophys. J. Lett. 823, L41 (2016).

    Article  ADS  Google Scholar 

  24. Jorda, L. et al. The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus 277, 257–278 (2016).

    Article  ADS  Google Scholar 

  25. Bockelée-Morvan, D. et al. Evolution of CO2, CH4, and OCS abundances relative to H2O in the coma of comet 67P around perihelion from Rosetta/VIRTIS-H observations. Mon. Not. R. Astron. Soc. 462, S170–S183 (2016).

    Article  Google Scholar 

  26. Benkhoff, J. & Huebner, W. F. Influence of the vapor flux on temperature, density, and abundance distributions in a multicomponent, porous, icy body. Icarus 114, 348–354 (1995).

    Article  ADS  Google Scholar 

  27. Bulak, M. et al. Quantification of O2 formation during UV photolysis of water ice: H2O and H2O:CO2 ices. Astron. Astrophys. 657, A120 (2022).

    Article  Google Scholar 

  28. Altwegg, K. et al. Molecule-dependent oxygen isotopic ratios in the coma of comet 67P/Churyumov–Gerasimenko. Mon. Not. R. Astron. Soc. 498, 5855–5862 (2020).

    Article  ADS  Google Scholar 

  29. Taquet, V., Furuya, K., Walsh, C. & van Dishoeck, E. F. A primordial origin for molecular oxygen in comets: a chemical kinetics study of the formation and survival of O2 ice from clouds to discs. Mon. Not. R. Astron. Soc. 462, S99–S115 (2016).

    Article  Google Scholar 

  30. Mousis, O. et al. Synthesis of molecular oxygen via irradiation of ice grains in the protosolar nebula. Astrophys. J. 858, 66 (2018).

    Article  ADS  Google Scholar 

  31. Rawlings, J. M. C., Wilson, T. G. & Williams, D. A. A gas-phase primordial origin of O2 in comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 486, 10–20 (2019).

    Article  ADS  Google Scholar 

  32. Rubin, M., Altwegg, K., van Dishoeck, E. F. & Schwehm, G. Molecular oxygen in Oort could comet 1P/Halley. Astrophys. J. Lett. 815, L11 (2015).

    Article  ADS  Google Scholar 

  33. Fuselier, S. A. et al. ROSINA/DFMS and IES observations of 67P: ion-neutral chemistry in the coma of a weakly outgassing comet. Astron. Astrophys. 583, A2 (2015).

    Article  Google Scholar 

  34. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Condens. Matter Phys. 6, 8245 (1994).

    Article  ADS  Google Scholar 

  35. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  36. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  37. Willacy, K. et al. The composition of the protosolar disk and the formation conditions for comets. Space Sci. Rev. 197, 151–190 (2015).

    Article  ADS  Google Scholar 

  38. Ellinger, Y. et al. Neutral Na in cometary tails as a remnant of early aqueous alteration. Astrophys. J. Lett. 801, L30 (2015).

    Article  ADS  Google Scholar 

  39. Ozgurel, O. et al. Sodium, potassium, and calcium in Europa: an atomic journey through water ice. Astrophys. J. Lett. 865, L16 (2018).

    Article  ADS  Google Scholar 

  40. Bartolomei, M., Hernandez, M. I., Campos-Martinez, J., Carmona-Novillo, E. & Hernandez-Lamoneda, R. The intermolecular potentials of the O2–O2 dimer: a detailed ab initio study of the energy splittings for the three lowest multiplet states. Phys. Chem. 10, 5374 (2008).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Aeronautics and Space Administration (NASA) through grant number 80NSSC18K1620 (A.L.-K., S.A.F., K.E.M., K.J.T. and S.M.P.), the Excellence Initiative of Aix-Marseille Université–A*Midex, a French ‘Investissements d’Avenir programme’ AMX-21-IET-018 and CNES (O.M.), NASA grant number NNX17AL71A (J.I.L.) and CNRS-INSU national programmes PCMI and PNP (F.P., Y.E. and O.O.).

Author information

Authors and Affiliations

Authors

Contributions

A.L.-K. conceptualized and led the study, performed the data analysis, interpreted the results and wrote the manuscript. O.M. contributed to the conceptualization and methodology of gas trapping, and the implications of the results for cometary origin. F.P., Y.E. and O.O. performed the chemical modelling of gas trapping in H2O ice and assisted in the interpretation. J.l.L. contributed to the interpretation of the results and to the chemistry of ice trapping. S.A.F. supported all steps of the data analysis and assisted in the correlation study. K.E.M. contributed to the data analysis and interpretation. K.J.T. and S.M.P. developed the fitting routine, performed the spectral fits to the ROSINA/DFMS mass spectra and provided the time-series files of the count rates of the analysed species. All authors contributed to the discussion of the results, interpretation and writing of the manuscript.

Corresponding author

Correspondence to Adrienn Luspay-Kuti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Dennis Bodewits, Michael Disanti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Tables 1 and 2 and discussion of data treatment.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luspay-Kuti, A., Mousis, O., Pauzat, F. et al. Dual storage and release of molecular oxygen in comet 67P/Churyumov–Gerasimenko. Nat Astron 6, 724–730 (2022). https://doi.org/10.1038/s41550-022-01614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01614-1

  • Springer Nature Limited

This article is cited by

Navigation