Skip to main content

Advertisement

Log in

Unsupervised Deep Learning for Induction Motor Bearings Monitoring

  • APPLICATION
  • Published:
Data-Enabled Discovery and Applications

Abstract

Induction motors are fundamental components of several modern automation system, and they are one of the central pivot of the developing e-mobility era. The most vulnerable parts of an induction motor are the bearings, the stator winding, and the rotor bars. Consequently, monitoring and maintaining them during operations is vital. In this work, authors propose an induction motor bearings monitoring tool which leverages on stator currents signals processed with a deep learning architecture. Differently from the state-of-the-art approaches which exploit vibration signals, collected by easily damageable and intrusive vibration probes, the stator currents signals are already commonly available, or easily and unintrusively collectable. Moreover, instead of using now-classical data-driven models, authors exploit a deep learning architecture able to extract from the stator current signal a compact and expressive representation of the bearings state, ultimately providing a bearing fault detection system. In order to estimate the effectiveness of the proposal, authors collected a series of data from an inverter-fed motor mounting different artificially damaged bearings. Results show that the proposed approach provides a promising and effective yet simple bearing fault detection system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, in A public domain Ddtaset for human activity recognition using smartphones. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2013)

  2. D. Anguita, A. Ghio, L. Oneto, S. Ridella, In-sample and out-of-sample model selection and error estimation for support vector machines. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1390–1406 (2012)

    Article  Google Scholar 

  3. B. Ayhan, M.Y. Chow, M.H. Song, Multiple discriminant analysis and neural-network-based monolith and partition fault-detection schemes for broken rotor bar in induction motors. IEEE Trans. Ind. Electron. 53(4), 1298–1308 (2006)

    Article  Google Scholar 

  4. M.E.H. Benbouzid, G.B. Kliman, What stator current processing-based technique to use for induction motor rotor faults diagnosis? IEEE Trans. Energy Convers. 18(2), 238–244 (2003)

    Article  Google Scholar 

  5. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  6. J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  7. M. Blodt, P. Granjon, B. Raison, G. Rostaing, Models for bearing damage detection in induction motors using stator current monitoring. IEEE Trans. Ind. Electron. 55(4), 1813–1822 (2008)

    Article  Google Scholar 

  8. F. Chollet, et al., Keras. https://keras.io (2015)

  9. A. Coraddu, L. Oneto, A. Ghio, S. Savio, D. Anguita, M. Figari, Machine learning approaches for improving condition-based maintenance of naval propulsion plants. Proc. Inst. Mech. Eng. B: J. Eng. Marit. Environ. 230(1), 136–153 (2016)

    Article  Google Scholar 

  10. R. Dekker, Applications of maintenance optimization models: a review and analysis. Reliab. Eng. Syst. Saf. 51(3), 229–240 (1996)

    Article  Google Scholar 

  11. B. Efron, R.J. Tibshirani. An Introduction to the Bootstrap (CRC Press, Boca Raton, 1994)

    MATH  Google Scholar 

  12. F. Filippetti, G. Franceschini, C. Tassoni, P. Vas, Recent developments of induction motor drives fault diagnosis using ai techniques. IEEE Trans. Ind. Electron. 47(5), 994–1004 (2000)

    Article  Google Scholar 

  13. L. Frosini, E. Bassi, Stator current and motor efficiency as indicators for different types of bearing faults in induction motors. IEEE Trans. Ind. Electron. 57(1), 244–251 (2010)

    Article  Google Scholar 

  14. A. García-Gamboa, N. Hernández-Gress, M. González-Mendoza, R. Ibarra-Orozco, J. Mora-Vargas, in A comparison of different initialization strategies to reduce the training time of support vector machines. International Conference on Artificial Neural Networks (2005)

  15. N. Gebraeel, M. Lawley, R. Liu, V. Parmeshwaran, Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Trans. Ind. Electron. 51(3), 694–700 (2004)

    Article  Google Scholar 

  16. I. Guyon, A. Elisseeff, An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  17. R.H.R. Hahnloser, R. Sarpeshkar, M.A. Mahowald, R.J. Douglas, H.S. Seung, Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature. 405(6789), 947–951 (2000)

    Article  Google Scholar 

  18. M. Hardt, J. Ullman, in Preventing false discovery in interactive data analysis is Hard. Annual Symposium on Foundations of Computer Science (2014)

  19. G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets. Neural Comput. 18 (7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Immovilli, M. Cocconcelli, A. Bellini, R. Rubini, Detection of generalized-roughness bearing fault by spectral-kurtosis energy of vibration or current signals. IEEE Trans. Ind. Electron. 56(11), 4710–4717 (2009)

    Article  Google Scholar 

  21. Mechanical vibration measurement and evaluation of machine vibration part 1: general guidelines. Standard, International Organization for Standardization, Geneva (2016)

  22. S. Karmakar, S. Chattopadhyay, M. Mitra, S. Sengupta. Induction Motor Fault Diagnosis: Approach Through Current Signature Analysis (Springer, Berlin, 2016)

    Book  Google Scholar 

  23. G.B. Kliman, J. Stein, in Induction motor fault detection via passive current monitoring—a Brief Survey. Meeting of the Mechanical Failures Prevention Group (1990), pp. 49–65

  24. G.B. Kliman, J. Stein, Methods of motor current signature analysis. Electr. Mach. Power Syst. 20(5), 463–474 (1992)

    Article  Google Scholar 

  25. C.T. Kowalski, T. Orlowska-Kowalska, Neural networks application for induction motor faults diagnosis. Math. Comput. Simul. 63(3), 435–448 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proc. IEEE. 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  27. S. Nandi, H.A. Toliyat, X. Li, Condition monitoring and fault diagnosis of electrical motors?a review. IEEE Trans. Energy Convers. 20(4), 719–729 (2005)

    Article  Google Scholar 

  28. J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q.V. Le, A.Y. Ng, in On ptimization methods for deep learning. International Conference on Machine Learning (2011)

  29. I.Y. Önel, K.B. Dalci, I. Senol, Detection of bearing defects in three-phase induction motors using Park’s transform and radial basis function neural networks. Sadhana 31(3) (2006)

  30. K. Pearson, Principal components analysis. London, Edinb. Dublin Philos. Mag. J. 6(2), 566 (1901)

    Google Scholar 

  31. M.D. Prieto, G. Cirrincione, A.G. Espinosa, J.A. Ortega, H. Henao, Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks. IEEE Trans. Ind. Electron. 60(8), 3398–3407 (2013)

    Article  Google Scholar 

  32. F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  33. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Cogn. Model. 5(3), 1 (1988)

    MATH  Google Scholar 

  34. B. Samanta, K.R. Al-Balushi, S.A. Al-Araimi, Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Eng. Appl. Artif. Intell. 16(7), 657–665 (2003)

    Article  Google Scholar 

  35. H. Saruhan, S. Sandemir, A. Çiçek, I. Uygur, Vibration analysis of rolling element bearings defects. J. Appl. Res. Technol. 12(3), 384–395 (2014)

    Article  Google Scholar 

  36. R. Schiltz, Forcing frequency identification of rolling element bearings. Sound Vib. 24(5), 16–19 (1990)

    Google Scholar 

  37. J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  38. R. Schoen, T. Habetler, F. Kamran, R. Bartfield, Motor bearing damage detection using stator current monitoring. IEEE Trans. Ind. Appl. 31(6), 1274–1279 (1995)

    Article  Google Scholar 

  39. R.R. Schoen, B.K. Lin, T.G. Habetler, J.H. Schlag, S. Farag, An unsupervised, on-line system for induction motor fault detection using stator current monitoring. IEEE Trans. Ind. Appl. 31(6), 1280–1286 (1995)

    Article  Google Scholar 

  40. J. Shawe-Taylor, N. Cristianini. Kernel methods for pattern analysis (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  41. N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  42. J. Stack, T. Habetler, R. Harley, Fault classification and fault signature production for rolling element bearings in electric machines. IEEE Trans. Ind. Appl. 40(3), 735–739 (2004)

    Article  Google Scholar 

  43. H. Su, K.T. Chong, Induction machine condition monitoring using neural network modeling. IEEE Trans. Ind. Electron. 54(1), 241–249 (2007)

    Article  Google Scholar 

  44. V. Sugumaran, V. Muralidharan, K.I. Ramachandran, Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing. Mech. Syst. Signal Process. 21(2), 930–942 (2007)

    Article  Google Scholar 

  45. P. Vas. Parameter estimation, condition monitoring, and diagnosis of electrical machines (Clarendon Press, Oxford, 1993)

    Google Scholar 

  46. Z. Wang, C.S. Chang, X. German, W.W. Tan, in Online fault detection of induction motors using independent component analysis and fuzzy neural network. International Conference on Advances in Power System Control, Operation and Management (2009)

  47. H. White, A reality check for data snooping. Econometrica. 68(5), 1097–1126 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. B. Yazici, G.B. Kliman, W.J. Premerlani, R.A. Koegl, G.B. Robinson, A. Abdel-Malek, in An adaptive, on-line, statistical method for bearing fault detection using stator current. Conference Record of the 1997 IEEE, Industry Applications Conference, Thirty-Second IAS Annual Meeting Industry Applications (1997)

  49. W. Zhou, B. Lu, T.G. Habetler, R.G. Harley, Incipient bearing fault detection via motor stator current noise cancellation using wiener filter. IEEE Trans. Ind. Appl. 45(4), 1309–1317 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Oneto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cipollini, F., Oneto, L., Coraddu, A. et al. Unsupervised Deep Learning for Induction Motor Bearings Monitoring. Data-Enabled Discov. Appl. 3, 1 (2019). https://doi.org/10.1007/s41688-018-0025-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41688-018-0025-2

Keywords

Navigation