1 Introduction

The purpose of this work is to establish the results on the well-posedness of the wave equation for the Sturm–Liouville operator with a singular intermediate coefficient and a singular potential.

In [22], very weak solutions of the wave equation for the Landau Hamiltonian with an irregular electromagnetic field were obtained for an unbounded domain in the space. A number of works [1,2,3,4,5,6,7,8,9, 12, 14, 15, 17, 19, 20, 23] are also devoted to this topic. The difference between our results is that we consider the problem in a bounded domain. We have obtained similar results in the work [21], so our current work is a further development of these results, allowing one to include the intermediate term.

It is well known that the wave equation is easily reduced to ordinary linear equations by the “separation of variables" method (see, for example, [13]).

To obtain the main results, we present some information about the Sturm–Liouville operator with singular potentials. Savchuk and Shkalikov in [25] obtained eigenvalues and eigenfunctions of the Sturm–Liouville operator with singular potentials. This method was further developed in the works [18, 24, 26, 27]. We are guided by this method and will develop it with the addition of an intermediate coefficient, and, accordingly, additional conditions will be imposed on the coefficients, and the regularity requirements will be relaxed.

In particular, we consider the problem of constructing eigenvalues and eigenfunctions of the Sturm–Liouville operator \({\mathcal {L}}\) generated on the interval (0,1) by the differential expression

$$\begin{aligned} {\mathcal {L}}y:=-\frac{\textrm{d}^2}{\textrm{d}x^2}y+p(x)\frac{\textrm{d}}{\textrm{d}x}y+q(x)y \end{aligned}$$
(1.1)

with the boundary conditions

$$\begin{aligned} y(0)=y(1)=0. \end{aligned}$$
(1.2)

We first assume that \(p \in W^2_1(0,1)\) (p and its first derivative are in \(L^2\)), and that the potential q is of the form

$$\begin{aligned} q(x)=\nu '(x), \qquad \nu \in L^2(0,1). \end{aligned}$$
(1.3)

We consider the eigenvalue equation \({\mathcal {L}}y=\lambda y\). Introducing the substitution

$$\begin{aligned} y=\exp {\left\{ \frac{1}{2}\int \limits _0^xp(\xi )\textrm{d}\xi \right\} }z, \end{aligned}$$
(1.4)

we get the equation

$$\begin{aligned} -z''+q(x)z+\left( \frac{p^2(x)}{4}-\frac{p'(x)}{2}\right) z=\lambda z, \end{aligned}$$
(1.5)

while the boundary conditions do not change:

$$\begin{aligned} z(0)=z(1)=0. \end{aligned}$$
(1.6)

We introduce the quasi-derivative in the following form

$$\begin{aligned} z^{[1]}(x)=z'(x)-\nu (x)z(x); \end{aligned}$$

then Eq. (1.5) transforms to the equation

$$\begin{aligned} -\left( z^{[1]}\right) '-\nu (x)z^{[1]}+\left( -\nu ^2(x)+\frac{p^2(x)}{4}-\frac{p'(x)}{2}\right) z=\lambda z. \end{aligned}$$
(1.7)

We introduce

$$\begin{aligned} {\textbf{z}}(x)=\left( \begin{array}{c} z(x) \\ z^{[1]}(x) \end{array}\right) =\left( \begin{array}{c} \psi _1(x) \\ \psi _2(x) \end{array}\right) ,\qquad A=\left( \begin{array}{ccc} \nu &{}\quad &{}\quad 1 \\ -\nu ^2+\frac{p^2}{4}-\frac{p'}{2}-\lambda &{}\quad &{}\quad -\nu \end{array}\right) , \end{aligned}$$

then we pass from the (1.7) to the system

$$\begin{aligned} {\textbf{z}}'(x)=A{\textbf{z}}. \end{aligned}$$

We make the substitution

$$\begin{aligned} \psi _1(x)=r(x)\sin \theta (x),\qquad \psi _2(x)=\lambda ^\frac{1}{2}r(x)\cos \theta (x), \end{aligned}$$

which is a modification of the Prufer substitution [16]. Here we have

$$\begin{aligned} \theta '(x,\lambda )= & {} \lambda ^\frac{1}{2}+\nu (x)\sin 2\theta (x,\lambda ) +\lambda ^{-\frac{1}{2}}\left( \nu ^2(x)-\frac{p^2(x)}{4}+\frac{p'(x)}{2}\right) \sin ^2 \theta (x,\lambda ), \nonumber \\ \end{aligned}$$
(1.8)
$$\begin{aligned} r'(x,\lambda )= & {} -r(x,\lambda )\left[ \nu (x)\cos 2\theta (x,\lambda )\right. \nonumber \\{} & {} \quad \left. +\,\frac{\lambda ^{-\frac{1}{2}}}{2}\left( \nu ^2(x)-\frac{p^2(x)}{4}+\frac{p'(x)}{2}\right) \sin 2\theta (x,\lambda )\right] . \end{aligned}$$
(1.9)

The solution of Eq. (1.8) will be sought in the form \(\theta (x,\lambda )=\lambda ^\frac{1}{2} x+\eta (x,\lambda ), \) where

$$\begin{aligned} \eta (x,\lambda )=\int \limits _0^x\nu (s)\sin 2\theta (s,\lambda )\textrm{d}s+\lambda ^{-\frac{1}{2}}\int \limits _0^x\left( \nu ^2(s)-\frac{p^2(s)}{4}+\frac{p'(s)}{2}\right) \sin ^2 \theta (s,\lambda )\textrm{d}s. \end{aligned}$$

Using the method of successive approximations, it is easy to show that this equation has a solution that is uniformly bounded for \(0\le x\le 1\) and \(\lambda \ge 1\), namely,

$$\begin{aligned} \Vert \eta \Vert _{L^\infty (0,1)}\le \Vert \nu \Vert _{L^2(0,1)}+\Vert \nu \Vert ^2_{L^2(0,1)}+\Vert p\Vert ^2_{W^1_2(0,1)}. \end{aligned}$$

Since \(p\in W^1_2(0,1), \, \nu \in L^2(0,1)\) and \(\nu ^2\in L^1(0,1)\), by virtue of the Riemann-Lebesgue lemma \(\eta (x,\lambda )=o(1)\) at \(\lambda \rightarrow \infty \). Therefore, we have

$$\begin{aligned} \theta (x,\lambda )=\lambda ^\frac{1}{2}x+o(1), \end{aligned}$$

moreover \(\theta (0,\lambda )=0.\)

Using the Riemann-Lebesgue lemma again, from Eq. (1.9) we find

$$\begin{aligned} r(x,\lambda )= & {} \exp \left( -\int \limits _0^x\nu (s)\cos 2\theta (s,\lambda )\textrm{d}s\right. \\{} & {} \left. -\,\frac{\lambda ^{-\frac{1}{2}}}{2} \int \limits _0^x\left( \nu ^2(s)-\frac{p^2(s)}{4}+\frac{p'(s)}{2}\right) \sin 2\theta (s,\lambda )\textrm{d}s\right) . \end{aligned}$$

Using the boundary conditions (1.6) we obtain

$$\begin{aligned} \psi _1(1,\lambda )=r(1,\lambda )\sin \theta (1,\lambda )=0,\,\, r(1,\lambda )\ne 0,\,\,\theta (1,\lambda )=\pi n. \end{aligned}$$

Then the eigenvalues of Eq. (1.5) with the boundary conditions (1.6) are given by

$$\begin{aligned} \lambda _n=(\pi n)^2(1+o(n^{-1})),\qquad n=1,2,\ldots , \end{aligned}$$
(1.10)

and the corresponding eigenfunctions are

$$\begin{aligned} {\tilde{\psi }}_n(x)=r_n(x)\sin (\sqrt{\lambda _n}x +\eta _n(x)). \end{aligned}$$
(1.11)

The first derivatives of \(\tilde{\psi _n}\) are then given by the formulas

$$\begin{aligned} {\tilde{\psi }}'_n(x)=\sqrt{\lambda _n}r_n(x)\cos (\theta _n(x))+\nu (x){\tilde{\psi }}_n(x). \end{aligned}$$
(1.12)

Let us estimate \(\Vert {\tilde{\psi }}_n\Vert _{L^2}\) using the formula (1.11) as follows

$$\begin{aligned} \Vert {\tilde{\psi }}_n\Vert ^2_{L^2}= & {} \int \limits _0^1\left| r_n(x)\sin \left( \lambda _n^{\frac{1}{2}}x+\eta _n(x)\right) \right| ^2\textrm{d}x\le \int \limits _0^1\left| r_n(x)\right| ^2\textrm{d}x\nonumber \\{} & {} \le \int \limits _0^1\left| \exp \left( -\int \limits _0^x \nu (s)\cos {2\theta _n(s)}\textrm{d}s\right. \right. \nonumber \\{} & {} -\left. \left. \frac{1}{2}\frac{1}{\sqrt{\lambda _n}}\int \limits _0^ x\left( \nu ^2(s)-\frac{p^2(s)}{4}+\frac{p'(s)}{2}\right) \sin {2\theta _n(s)}\textrm{d}s\right) \right| ^2\textrm{d}x\nonumber \\{} & {} \lesssim \int \limits _0^1\exp \left( 2\int \limits _0^x|\nu (s)|\textrm{d}s+\frac{1}{\sqrt{\lambda _n}} \left( \int \limits _0^x|\nu ^2(s)|\textrm{d}s+\int \limits _0^x|p^2(s)|\textrm{d}s\right. \right. \nonumber \\{} & {} \quad \left. \left. +\int \limits _0^x|p'(s)|\textrm{d}s\right) \right) \textrm{d}x\nonumber \\{} & {} \lesssim \exp {\left( \Vert \nu \Vert _{L^1}+\lambda ^{-\frac{1}{2}}_n\left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert _{L^1}\right) \right) }<\infty , \end{aligned}$$
(1.13)

since \(\nu \in L^2(0,1)\), \(p\in W^2_1(0,1)\) and \(\lambda _n\rightarrow \infty \) at \(n\rightarrow \infty \).

Also, according to Theorem 4 in [25], we have

$$\begin{aligned} {\tilde{\psi }}_n(x)=\sin (\pi nx)+o(1) \end{aligned}$$
(1.14)

for sufficiently large n, it means that there exist some \(C_0>0\), such that \(C_0<\Vert {\tilde{\phi }}_n\Vert _{L^2}<\infty \). Since the eigenfunctions (1.11) form an orthogonal basis in \(L^2(0,1)\), we normalise them for further use

$$\begin{aligned} \psi _n(x)=\frac{{\tilde{\psi }}_n(x)}{\sqrt{\langle {\tilde{\psi }}_n,{\tilde{\psi }}_n\rangle }} =\frac{{\tilde{\psi }}_n(x)}{\Vert {\tilde{\psi }}_n\Vert _{L^2}}. \end{aligned}$$
(1.15)

Returning again to the substitution (1.4), we obtain the eigenfunctions

$$\begin{aligned} \phi _n(x)=\exp {\left\{ \frac{1}{2}\int \limits _0^xp(\xi )\textrm{d}\xi \right\} }\psi _n(x) \end{aligned}$$
(1.16)

of the operator \({\mathcal {L}}\) generated by the differential expression (1.1) with the boundary conditions (1.2). In this case, the eigenvalues remain as in (1.10). It should be noted that the eigenfunctions \(\phi _n\) are orthogonal in the weighted space \(L^2_g(0,1)\) with the norm

$$\begin{aligned} \Vert \phi _n\Vert _{L^2_g}^2=\int \limits _0^1\left| g(x)\phi _n(x)\right| ^2\textrm{d}x, \end{aligned}$$

where

$$\begin{aligned} g(x)=\exp {\left\{ -\frac{1}{2}\int \limits _0^xp(\xi )\textrm{d}\xi \right\} }. \end{aligned}$$

Let us estimate the norm of \(\phi _n\) in \(L^2(0,1)\):

$$\begin{aligned} \Vert \phi _n\Vert ^2_{L^2}= & {} \int \limits _0^1\exp {\left\{ \int \limits _0^xp(\xi )\textrm{d}\xi \right\} }|\psi _n(x)|^2\textrm{d}x\nonumber \\{} & {} \le \exp {\left\{ \int \limits _0^1|p(x)|\textrm{d}x\right\} }\int \limits _0^1|\psi _n(x)|^2\textrm{d}x\le \exp {\left\{ \Vert p\Vert _{L^1}\right\} }<\infty , \end{aligned}$$
(1.17)

since \(p\in W^2_1(0,1)\) and \(\Vert \psi _n\Vert _{L^2}=1\).

2 Main Results

We consider the wave equation

$$\begin{aligned} \partial ^2_t u(t,x)+{\mathcal {L}} u(t,x)=0,\qquad (t,x)\in [0,T]\times (0,1), \end{aligned}$$
(2.1)

with initial conditions

$$\begin{aligned} \left\{ \begin{array}{l}u(0,x)=u_0(x),\,\,\, x\in (0,1), \\ \partial _t u(0,x)=u_1(x), \,\,\, x\in (0,1),\end{array}\right. \end{aligned}$$
(2.2)

and with Dirichlet boundary conditions

$$\begin{aligned} u(t,0)=0=u(t,1),\qquad t\in [0,T], \end{aligned}$$
(2.3)

where \({\mathcal {L}}\) is defined by

$$\begin{aligned} {\mathcal {L}} u(t,x):=-\partial ^2_x u(t,x)+p(x)\partial _xu(t,x)+ q(x)u(t,x),\qquad x\in (0,1), \end{aligned}$$
(2.4)

where \(p\in W^2_1(0,1)\), and q is defined as in (1.3).

In our results below, concerning the initial/boundary problem (2.1)–(2.3), as the preliminary step we first carry out the analysis in the strictly regular case for summable \(q \in L^2(0,1)\). In this case, we obtain the well-posedness in the Sobolev spaces \(W^k_{\mathcal {L}}\) associated to the operator \({\mathcal {L}}\): we define the Sobolev spaces \(W^k_{\mathcal {L}}\) associated to \({\mathcal {L}}\), for any \(k \in {\mathbb {R}}\), as the space

$$\begin{aligned} W^k_{{\mathcal {L}}}:=\left\{ f\in {\mathcal {D}}'_{\mathcal {L}}(0,1):\,{\mathcal {L}}^{k/2}f\in L^2(0,1)\right\} , \end{aligned}$$

with the norm \(\Vert f\Vert _{W^k_{{\mathcal {L}}}}:=\Vert {\mathcal {L}}^{k/2}f\Vert _{L^2}\). The global space of distributions \({\mathcal {D}}'_{\mathcal {L}}(0,1)\) is defined as follows.

The space \(C^\infty _{\mathcal {L}}(0,1):=\textrm{Dom}({\mathcal {L}}^\infty )\) is called the space of test functions for \({\mathcal {L}}\), where we define

$$\begin{aligned} \textrm{Dom}({\mathcal {L}}^\infty ):=\bigcap \limits _{m=1}^\infty \textrm{Dom}({\mathcal {L}}^m), \end{aligned}$$

where \(\textrm{Dom}({\mathcal {L}}^m)\) is the domain of the operator \({\mathcal {L}}^m\), in turn defined as

$$\begin{aligned} \textrm{Dom}({\mathcal {L}}^m):=\left\{ f\in L^2(0,1): {\mathcal {L}}^j f\in \textrm{Dom}({\mathcal {L}}),\,\, j=0,1,2,...,m-1\right\} . \end{aligned}$$

The Fréchet topology of \(C^\infty _{\mathcal {L}}(0,1)\) is given by the family of norms

$$\begin{aligned} \Vert \phi \Vert _{C^m_{\mathcal {L}}}:=\max \limits _{j\le m}\Vert {\mathcal {L}}^j\phi \Vert _{L^2(0,1)},\quad m\in {\mathbb {N}}_0,\,\, \phi \in C^\infty _{\mathcal {L}}(0,1). \end{aligned}$$
(2.5)

The space of \({\mathcal {L}}\)-distributions

$$\begin{aligned} {\mathcal {D}}'_{\mathcal {L}}:={\textbf{L}}\left( C^\infty _{\mathcal {L}}(0,1),{\mathbb {C}}\right) \end{aligned}$$

is the space of all linear continuous functionals on \(C^\infty _{\mathcal {L}}(0,1)\). For \(\omega \in {\mathcal {D}}'_{\mathcal {L}}(0,1)\) and \(\phi \in C^\infty _{\mathcal {L}}(0,1)\), we shall write

$$\begin{aligned} \omega (\phi )=\langle \omega , \phi \rangle . \end{aligned}$$

For any \(\psi \in C^\infty _{\mathcal {L}}(0,1)\), the functional

$$\begin{aligned} C^\infty _{\mathcal {L}}(0,1)\ni \phi \mapsto \int \limits _0^1 \psi (x)\phi (x)\textrm{d}x \end{aligned}$$

is an \({\mathcal {L}}\)-distribution, which gives an embedding \(\psi \in C^\infty _{\mathcal {L}}(0,1)\hookrightarrow {\mathcal {D}}'_{\mathcal {L}}(0,1)\).

We introduce the spaces \(C^j([0,T],W^k_{\mathcal {L}}(0,1))\), given by the family of norms

$$\begin{aligned} \Vert f\Vert _{C^n([0,T],W^k_{\mathcal {L}}(0,1))}=\max \limits _{0\le t\le T}\sum \limits _{j=0}^n\left\| \partial ^j_t f(t,\cdot )\right\| _{W^k_{\mathcal {L}}}, \end{aligned}$$
(2.6)

where \(k\in {\mathbb {R}}, \, f\in C^n([0,T],W^k_{\mathcal {L}}(0,1)).\)

Theorem 2.1

Assume that \(p'\in L^2(0,1)\), \(q=\nu '\), \(\nu \in L^\infty (0,1)\). For any \(k\in {\mathbb {R}}\), if the initial data satisfy \((u_0,\, u_1) \in W^{1+k}_{{\mathcal {L}}}\times W^k_{{\mathcal {L}}}\), then the wave equation (2.1) with the initial/boundary problem (2.2)–(2.3) has unique solution \(u\in C([0,T], W^{1+k}_{{\mathcal {L}}})\cap C^1([0,T], W^{k}_{{\mathcal {L}}})\). It satisfies the estimates

$$\begin{aligned}{} & {} \Vert u(t,\cdot )\Vert ^2_{L^2}\lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) , \end{aligned}$$
(2.7)
$$\begin{aligned}{} & {} \Vert \partial _t u(t,\cdot )\Vert ^2_{L^2}\lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{L^2}\right) , \end{aligned}$$
(2.8)
$$\begin{aligned}{} & {} \Vert \partial _x u(t,\cdot )\Vert ^2_{L^2} \lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left\{ \left( 1+\Vert \nu \Vert ^2_{L^2} \left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}\right. \right. \nonumber \\{} & {} \quad + \left. \Vert gu_1\Vert ^2_{L^2}\Big )+\left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) \right\} , \end{aligned}$$
(2.9)
$$\begin{aligned}{} & {} \left\| \partial ^2_xu(t,\cdot )\right\| ^2_{L^2} \lesssim \exp {\{\Vert p\Vert _{L^1}\}}\left\{ \Vert p\Vert ^2_{L^\infty }\left( \left( 1+\Vert \nu \Vert ^2_{L^2} \left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \right. \right. \nonumber \\{} & {} \quad \times \left. \left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{L^2}\right) +\left( \Vert p\Vert ^2_{L^\infty } +\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) \right) \nonumber \\{} & {} \quad +\left. \Vert q\Vert ^2_{L^\infty }\left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) +\left\| gu_0\right\| ^2_{W^2_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{W^1_{{\mathcal {L}}}}\right\} , \end{aligned}$$
(2.10)
$$\begin{aligned}{} & {} \Vert u(t,\cdot )\Vert ^2_{W^k_{\mathcal {L}}} \lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \left\| gu_0\right\| ^2_ {W^k_{{\mathcal {L}}}}+\left\| gu_1\right\| ^2_{W^{k-1}_{{\mathcal {L}}}}\right) , \end{aligned}$$
(2.11)

where the constants in these inequalities are independent of \(u_0\), \(u_1\), p and q.

We note that \(p'\in L^2(0,1)\) implies that \(\Vert p\Vert _{L^\infty }\le |p(0)|+\Vert p'\Vert _{L^2(0,1)}.\) Indeed, if \(p'\in L^2(0,1)\), then

$$\begin{aligned} |p(x)|=\left| \int \limits _0^xp'(\xi )\textrm{d}\xi +p(0)\right| \le |p(0)|+\Vert p'\Vert _{L^2}<\infty . \end{aligned}$$

Proof

Let us apply the technique of the separation of variables (see, e.g. [13]). This method involves finding a solution of a certain form. In particular, we are looking for a solution of the form

$$\begin{aligned} u(t,x)=T(t)X(x), \end{aligned}$$

for functions T(t), X(x) to be determined. Suppose we can find a solution of (2.1) of this form. Plugging a function \(u(t,x)=T(t)X(x)\) into the wave equation, we arrive at the equation

$$\begin{aligned} T''(t)X(x)-T(t)X''(x)+p(x)T(x)X'(x)+q(x)T(t)X(x)=0. \end{aligned}$$

Dividing this equation by T(t)X(x), we have

$$\begin{aligned} \frac{T''(t)}{T(t)}=\frac{X''(x)-p(x)X'(x)-q(x)X(x)}{X(x)}=-\lambda , \end{aligned}$$
(2.12)

for some constant \(\lambda \). Therefore, if there exists a solution \(u(t,x) = T(t)X(x)\) of the wave equation, then T(t) and X(x) must satisfy the equations

$$\begin{aligned}{} & {} \frac{T''(t)}{T(t)}=-\lambda ,\\{} & {} \quad \frac{X''(x)-p(x)X'(x)-q(x)X(x)}{X(x)}=-\lambda , \end{aligned}$$

for some constant \(\lambda \). In addition, in order for u to satisfy the boundary conditions (2.3), we need our function X to satisfy the boundary conditions (1.2). That is, we need to find a function X and a scalar \(\lambda \), such that

$$\begin{aligned}{} & {} -X''(x)+p(x)X'(x)+q(x)X(x)=\lambda X(x), \end{aligned}$$
(2.13)
$$\begin{aligned}{} & {} X(0)=X(1)=0. \end{aligned}$$
(2.14)

Equation (2.13) with the boundary conditions (2.14) has the eigenvalues of the form (1.10) with the corresponding eigenfunctions of the form (1.16) of the Sturm–Liouville operator \({\mathcal {L}}\) generated by the differential expression (1.1).

Further, we solve the left-hand side of Eq. (2.12) with respect to the independent variable t,

$$\begin{aligned} T''(t)=-\lambda T(t), \qquad t\in [0,T]. \end{aligned}$$
(2.15)

It is well known [13] that the solution of the equation (2.15) with the initial conditions (2.2) is

$$\begin{aligned} T(t)=A_n \cos \sqrt{\lambda _n}t+\frac{1}{\sqrt{\lambda _n}}B_n \sin \left( \sqrt{\lambda _n}t\right) . \end{aligned}$$

Then the solution of Eq. (2.1) is given by

$$\begin{aligned} u(t,x)=\left( A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n \sin \left( \sqrt{\lambda _n}t\right) \right) \phi _n(x). \end{aligned}$$
(2.16)

For each value of n Eq. (2.16) is a solution. By the superposition principle the sum of all these solution is also a solution

$$\begin{aligned} u(t,x)=\sum \limits _{n=1}^\infty \left( A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n \sin \left( \sqrt{\lambda _n}t\right) \right) \phi _n(x). \end{aligned}$$
(2.17)

Applying the initial conditions to Eq. (2.17), we have

$$\begin{aligned} u_0(x)=\sum \limits _{n=1}^\infty A_n\phi _n(x),\qquad u_1(x)=\sum \limits _{n=1}^\infty B_n\phi _n(x), \end{aligned}$$
(2.18)

and multiplying both sides of each equation in (2.18) by \(g(x)\psi _m(x)\), we get

$$\begin{aligned} \begin{array}{l} u_0(x)g(x)\psi _m(x)=\sum \limits _{n=1}^\infty A_n\psi _n(x)\psi _m(x),\\ u_1(x)g(x)\psi _m(x)=\sum \limits _{n=1}^\infty B_n\psi _n(x)\psi _m(x). \end{array} \end{aligned}$$
(2.19)

Note that

$$\begin{aligned} g(x)=\exp {\left\{ -\frac{1}{2}\int \limits _0^xp(\xi )\textrm{d}\xi \right\} },\quad \phi _n(x)g(x)=\psi _n(x). \end{aligned}$$

Integrating over (0, 1) in (2.19), taking into account the orthonormality of \(\psi _n\) in \(L^2(0,1)\), we obtain

$$\begin{aligned} A_n=\int \limits _0^1u_0(x)g(x)\psi _n(x)\textrm{d}x, \quad B_n=\int \limits _0^1 u_1(x)g(x)\psi _n(x)\textrm{d}x. \end{aligned}$$

Further we will prove that \(u\in C^2([0,T],L^2(0,1))\). By using the Cauchy-Schwarz inequality for any fixed t, we can deduce that

$$\begin{aligned} \Vert u(t, \cdot )\Vert ^2_{L^2}= & {} \int \limits _0^1|u(t,x)|^2\textrm{d}x \nonumber \\{} & {} =\int \limits _0^1\left| \sum \limits _{n=1}^\infty \left[ A_n \cos \sqrt{\lambda _n} t+\frac{1}{\sqrt{\lambda _n}} B_n\sin \sqrt{\lambda _n} t\right] \phi _n(x)\right| ^2\textrm{d}x\nonumber \\{} & {} \lesssim \int \limits _0^1\sum \limits _{n=1}^\infty \left| A_n \cos \sqrt{\lambda _n} t+\frac{1}{\sqrt{\lambda _n} }B_n\sin \sqrt{\lambda _n} t\right| ^2|\phi _n(x)|^2\textrm{d}x\nonumber \\{} & {} \lesssim \sum \limits _{n=1}^\infty \left( \int \limits _0^1|A_n|^2|\phi _n(x)|^2\textrm{d}x +\int \limits _0^1\left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2|\phi _n(x)|^2\textrm{d}x\right) . \end{aligned}$$
(2.20)

By using the Parseval identity and taking into account (1.17), we get

$$\begin{aligned} \sum \limits _{n=1}^\infty \int \limits _0^1|A_n|^2|\phi _n(x)|^2\textrm{d}x\le & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\sum \limits _{n=1}^\infty |A_n|^2\nonumber \\= & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\sum \limits _{n=1}^\infty \left| \int \limits _0^1u_0(x)g(x)\psi _n(x)\textrm{d}x\right| ^2\nonumber \\= & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\sum \limits _{n=1}^\infty \left| \langle (g u_0), \psi _n\rangle \right| ^2\le \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\Vert g u_0\Vert ^2_{L^2}\nonumber \\\le & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\Vert g\Vert ^2_{L^\infty }\Vert u_0\Vert ^2_{L^2}. \end{aligned}$$
(2.21)

Now, let us estimate \(\Vert g\Vert _{L^\infty }\), where

$$\begin{aligned} g(x)=\exp {\left\{ -\frac{1}{2}\int \limits _0^xp(\xi )\textrm{d}\xi \right\} }. \end{aligned}$$

If \(p\ge 0\) at \(x\in (0,1)\), then \(\Vert g\Vert _{L^\infty }=1\). Otherwise, when we do not have \(p\ge 0\), then

$$\begin{aligned} \Vert g\Vert ^2_{L^\infty }=\mathop {\mathrm {ess\,sup}}\limits _{x\in (0, 1)}|g(x)|^2\le \exp {\left\{ \int \limits _0^1|p(x)|\textrm{d}x\right\} }=\exp {\left\{ \Vert p\Vert _{L^1}\right\} }. \end{aligned}$$
(2.22)

According to the last expressions, we have

$$\begin{aligned} \sum \limits _{n=1}^\infty \int \limits _0^1|A_n|^2|\phi _n(x)|^2\textrm{d}x\le & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\Vert g\Vert ^2_{L^\infty }\Vert u_0\Vert ^2_{L^2}\nonumber \\\le & {} \exp {\left\{ 2\Vert p\Vert _{L^1}\right\} }\Vert u_0\Vert ^2_{L^2}. \end{aligned}$$
(2.23)

For the second term in (2.20), using (1.17), the properties of the eigenvalues of the operator \({\mathcal {L}}\) and the Parseval’s identity, we obtain the following estimate

$$\begin{aligned} \sum \limits _{n=1}^\infty \int \limits _0^1\left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2|\phi _n(x)|^2\textrm{d}x\le & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\sum \limits _{n=1}^\infty \left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2\\= & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\sum \limits _{n=1}^\infty \left| \int \limits _0^1\frac{1}{\sqrt{\lambda _n}}u_1(x)g(x)\psi _n(x)\textrm{d}x\right| ^2\\= & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\sum \limits _{n=1}^\infty \left| \langle gu_1,{\mathcal {L}}^{-\frac{1}{2}}\psi _n\rangle \right| ^2\\= & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\sum \limits _{n=1}^\infty \left| \langle {\mathcal {L}}^{-\frac{1}{2}}\left( gu_1\right) ,\psi _n\rangle \right| ^2\\= & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left\| {\mathcal {L}}^{-\frac{1}{2}}\left( gu_{1}\right) \right\| ^2_{L^2}\le \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left\| gu_{1}\right\| ^2_{W^{-1}_{{\mathcal {L}}}}. \end{aligned}$$

Therefore

$$\begin{aligned} \Vert u(t,\cdot )\Vert ^2_{L^2}\lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) . \end{aligned}$$

Now, let us estimate

$$\begin{aligned} \Vert \partial _t u(t,\cdot )\Vert ^2= & {} \int \limits _0^1|\partial _tu(t,x)|^2dt\nonumber \\= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \left[ -\sqrt{\lambda _n}A_n\sin \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}\sqrt{\lambda _n}B_n\cos \sqrt{\lambda _n} t\right] \phi _n(x)\right| ^2\textrm{d}x \nonumber \\\lesssim & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \sum \limits _{n=1}^\infty |\sqrt{\lambda _n} A_n |^2+\sum \limits _{n=1}^\infty |B_n|^2\right) . \end{aligned}$$
(2.24)

The second term of (2.24) gives the norm of \(\Vert gu_1\Vert ^2_{L^2}\) by the Parseval identity. Since \(\lambda _n\) are eigenvalues and \(\phi _n\) are eigenfunctions of the operator \({\mathcal {L}}\), we obtain

$$\begin{aligned} \sum \limits _{n=1}^\infty |\sqrt{\lambda _n}A_n|^2= & {} \sum \limits _{n=1}^\infty \left| \sqrt{\lambda _n}\int \limits _0^1 g(x)u_0(x)\psi _n(x)\textrm{d}x\right| ^2 \nonumber \\\le & {} \sum \limits _{n=1}^\infty \left| \int \limits _0^1 {\mathcal {L}}^\frac{1}{2}\left( gu_0\right) \psi _n(x)\textrm{d}x\right| ^2. \end{aligned}$$
(2.25)

It is known by Parseval’s identity that

$$\begin{aligned} \sum \limits _{n=1}^\infty \left| \int \limits _0^1 {\mathcal {L}}^\frac{1}{2}\left( gu_0\right) \psi _n(x)\textrm{d}x\right| ^2=\Vert {\mathcal {L}}^\frac{1}{2} \left( gu_0\right) \Vert ^2_{L^2}=\Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}. \end{aligned}$$

Thus,

$$\begin{aligned} \Vert \partial _t u(t,\cdot )\Vert ^2_{L^2}\lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{L^2}\right) . \end{aligned}$$

We now consider the next estimate for the derivative

$$\begin{aligned} \Vert \partial _x u(t,\cdot )\Vert ^2_{L^2}= & {} \int \limits _0^1|\partial _xu(t,x)|^2dt\\= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \left[ A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] \phi '_n(x)\right| ^2\textrm{d}x, \end{aligned}$$

where \(\phi '(x)\), taking into account (1.11), (1.15) and (1.16), is given by

$$\begin{aligned} \phi '_n(x)= & {} \left( \exp {\left\{ \frac{1}{2}\int \limits _0^xp(\xi )\textrm{d}\xi \right\} }\psi _n(x)\right) ' =\exp {\left\{ \frac{1}{2}\int \limits _0^xp(\xi )\textrm{d}\xi \right\} }\times \nonumber \\{} & {} \times \left( \frac{\sqrt{\lambda _n}r_n(x)}{\Vert {\tilde{\psi }}_n\Vert _{L^2}}\cos {\theta _n(x)} +\left( \frac{p(x)}{2}+\nu (x)\right) \psi _n(x)\right) . \end{aligned}$$
(2.26)

By using formula (2.26) let us estimate

$$\begin{aligned} \Vert \partial _x u(t,\cdot )\Vert ^2_{L^2}= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \left[ A_n\cos \sqrt{\lambda _n}t+\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] \exp {\left\{ \frac{1}{2}\int \limits _0^xp(\xi )\textrm{d}\xi \right\} }\times \right. \nonumber \\\times & {} \left. \left( \frac{\sqrt{\lambda _n}r_n(x)}{\Vert {\tilde{\psi }}_n\Vert _{L^2}}\cos {\theta _n(x)} +\left( \frac{p(x)}{2}+\nu (x)\right) \psi _n(x)\right) \right| ^2\textrm{d}x\nonumber \\\lesssim & {} \sum \limits _{n=1}^\infty \left[ |A_n|^2+\left| \frac{1}{\sqrt{\lambda _n}} B_n\right| ^2\right] \int \limits _0^1\exp {\left\{ \int \limits _0^xp(\xi )\textrm{d}\xi \right\} } \left| \frac{\sqrt{\lambda _n}r_n(x)}{\Vert {\tilde{\psi }}_n\Vert _{L^2}}\right| ^2\textrm{d}x \nonumber \\{} & {} +\sum \limits _{n=1}^\infty \left[ |A_n|^2+\left| \frac{1}{\sqrt{\lambda _n}}B_n\right| ^2\right] \times \\\times & {} \int \limits _0^1\exp {\left\{ \int \limits _0^xp(\xi )\textrm{d}\xi \right\} } \left| \left( \frac{p(x)}{2}+\nu (x)\right) \psi _n(x)\right| ^2\textrm{d}x. \end{aligned}$$

According (1.13) and (1.14), there exist some \(C_0>0\), such that \(C_0<\Vert {\tilde{\psi }}_n\Vert _{L^2}<\infty \), and taking into account (1.17) we get

$$\begin{aligned} \Vert \partial _x u(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\sum \limits _{n=1}^\infty \left[ \sqrt{\lambda _n}A_n|^2+\left| B_n\right| ^2\right] \int \limits _0^1\left| r_n(x)\right| ^2\textrm{d}x+ \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\times \nonumber \\\times & {} \sum \limits _{n=1}^\infty \left[ |A_n|^2+\left| \frac{1}{\sqrt{\lambda _n}}B_n\right| ^2\right] \int \limits _0^1\left| \left( \frac{p(x)}{2}+\nu (x)\right) \psi _n(x)\right| ^2\textrm{d}x. \end{aligned}$$
(2.27)

We follow the proof of Lemma 1 in [24] to obtain

$$\begin{aligned} r_n(x)=1+\rho _n(x),\quad \Vert \rho _n\Vert ^2_{L^2}\lesssim \left( 1+\Vert \nu \Vert ^2_{L^2}\right) \left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) , \end{aligned}$$

where the constant is independent of \(\nu \) and n. Then

$$\begin{aligned} \Vert r_n\Vert ^2_{L^2}\lesssim 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) . \end{aligned}$$
(2.28)

For the second term we obtain

$$\begin{aligned} \int \limits _0^1\left| \left( \frac{p(x)}{2}+\nu (x)\right) \psi _n(x)\right| ^2\textrm{d}x\lesssim \left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \Vert \psi _n\Vert ^2_{L^2}=\Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty },\nonumber \\ \end{aligned}$$
(2.29)

since \(\{\psi _n\}\) is an orthonormal basis in \(L^2\). Using the last relations we can obtain the estimate for \(\Vert \psi '_n\Vert _{L^2}\) in the following form

$$\begin{aligned} \Vert \psi '_n\Vert ^2\lesssim & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \sqrt{\lambda _n}\left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2} +\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \right. \nonumber \\{} & {} +\Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\Big ). \end{aligned}$$
(2.30)

Using (2.27), (2.28), (2.29), (2.25) and (2.21) we obtain

$$\begin{aligned} \Vert \partial _x u(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left[ \left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2} +\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}\right. \right. \nonumber \\{} & {} + \left. \Vert gu_1\Vert ^2_{L^2}\Big )+\left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert gu_0\Vert ^2_{L^2} +\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) \right] . \nonumber \\ \end{aligned}$$
(2.31)

Let us get next estimates by using that \(\phi ''_n(x)=p(x)\phi '_n(x)+(q(x)-\lambda _n)\phi _n(x)\), since \(\phi _n\) is a normalised eigenfunction for \({\mathcal {L}}\) with eigenvalue \(\lambda _n\). We have

$$\begin{aligned} \left\| \partial _x^2u(t, \cdot )\right\| ^2_{L^2}= & {} \int \limits _0^1\left| \partial ^2_xu(t,x)\right| ^2\textrm{d}x\nonumber \\= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \left[ A_n \cos \sqrt{\lambda _n}t+\frac{1}{\sqrt{\lambda _n}} B_n \sin \left( \sqrt{\lambda _n}t\right) \right] \phi ''_n(x)\right| ^2\textrm{d}x\nonumber \\\lesssim & {} \int \limits _0^1\sum \limits _{n=1}^\infty \left[ \left| A_n\right| ^2 +\left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2 \right] \left| p(x)\phi '_n(x)+(q(x)-\lambda _n)\phi _n(x)\right| ^2\textrm{d}x\nonumber \\\lesssim & {} \int \limits _0^1\sum \limits _{n=1}^\infty \left[ \left| A_n\right| ^2 + \left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2 \right] \left| p(x)\phi '_n(x)\right| ^2\textrm{d}x\nonumber \\{} & {} +\int \limits _0^1\sum \limits _{n=1}^\infty \left[ \left| A_n\right| ^2 +\left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2 \right] |(q(x)-\lambda _n)\phi _n(x)|^2\textrm{d}x=J_1+J_2. \nonumber \\ \end{aligned}$$
(2.32)

By using (2.26)–(2.31) we get

$$\begin{aligned} J_1:= & {} \int \limits _0^1\sum \limits _{n=1}^\infty \left[ \left| A_n\right| ^2 +\frac{1}{\lambda _n} \left| B_n\right| ^2 \right] \left| p(x)\phi '_n(x)\right| ^2\textrm{d}x\nonumber \\= & {} \int \limits _0^1|p(x)|^2\sum \limits _{n=1}^\infty \left[ \left| A_n\right| ^2 +\frac{1}{\lambda _n} \left| B_n\right| ^2 \right] \left| \phi '_n(x)\right| ^2\textrm{d}x\nonumber \\\lesssim & {} \exp {\{\Vert p\Vert _{L^1}\}}\Vert p\Vert ^2_{L^\infty }\left[ \left( 1+\Vert \nu \Vert ^2_{L^2} \left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}\right. \right. \nonumber \\{} & {} +\left. \Vert gu_1\Vert ^2_{L^2}\Big )+\left( \Vert p\Vert ^2_{L^\infty } +\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) \right] . \end{aligned}$$
(2.33)

Let us estimate the second term of (2.32),

$$\begin{aligned} J_2:= & {} \int \limits _0^1\sum \limits _{n=1}^\infty \left[ \left| A_n\right| ^2 + \left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2 \right] |(q(x)-\lambda _n)\phi _n(x)|^2\textrm{d}x\nonumber \\\lesssim & {} \exp {\{\Vert p\Vert _{L^1}\}}\sum \limits _{n=1}^\infty \left( |A_n|^2 +\left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2\right) \int \limits _0^1|q(x)\psi _n(x)|^2\textrm{d}x+\nonumber \\{} & {} \quad +\exp {\{\Vert p\Vert _{L^1}\}}\sum \limits _{n=1}^\infty \left( |\lambda _n A_n|^2 +\left| \sqrt{\lambda _n} B_n\right| ^2\right) \int \limits _0^1|\psi _n(x)|^2\textrm{d}x\nonumber \\\le & {} \exp {\{\Vert p\Vert _{L^1}\}}\left( \Vert q\Vert ^2_{L^\infty }\sum \limits _{n=1}^\infty \left( |A_n|^2 +\left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2\right) \right. \nonumber \\{} & {} \quad +\left. \sum \limits _{n=1}^\infty \left| \lambda _n A_n\right| ^2 +\sum \limits _{n=1}^\infty \left| \sqrt{\lambda _n}B_n\right| ^2\right) . \end{aligned}$$
(2.34)

Using the property of the operator \({\mathcal {L}}\) and the Parseval identity for the last expression in (2.34), we obtain

$$\begin{aligned} \sum \limits _{n=1}^\infty \left| \sqrt{\lambda _n}B_n\right| ^2= & {} \sum \limits _{n=1}^\infty \left| \int \limits _0^1\sqrt{\lambda _n}g(x)u_1(x)\psi _n(x)\textrm{d}x\right| ^2 \le \sum \limits _{n=1}^\infty \left| \int \limits _0^1{\mathcal {L}}^\frac{1}{2}\left( gu_1\right) \psi _n(x)\textrm{d}x\right| ^2\\= & {} \left\| {\mathcal {L}}^\frac{1}{2}\left( gu_1\right) \right\| ^2_{L^2}=\Vert gu_1\Vert ^2_{W^1_{{\mathcal {L}}}}. \end{aligned}$$

Taking into account the last expression and (2.33), (2.34) we obtain

$$\begin{aligned} \left\| \partial ^2_xu(t,\cdot )\right\| ^2_{L^2}\lesssim & {} \exp {\{\Vert p\Vert _{L^1}\}}\Vert p\Vert ^2_{L^\infty }\Big [\left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2} +\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \nonumber \\\times & {} \left. \left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{L^2}\right) +\left( \Vert p\Vert ^2_{L^\infty } +\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert gu_0\Vert ^2_{L^2}\right. \right. \\{} & {} \quad \left. \left. +\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) \right] \\{} & {} +\exp {\{\Vert p\Vert _{L^1}\}}\left( \Vert q\Vert ^2_{L^\infty } \left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) +\left\| gu_0\right\| ^2_{W^2_{{\mathcal {L}}}}\right. \\{} & {} \quad \left. +\Vert gu_1\Vert ^2_{W^1_{{\mathcal {L}}}}\right) . \end{aligned}$$

Let us carry out the last estimate (2.11) using that \({\mathcal {L}}^ku=\lambda _n^ku\) and Parseval’s identity,

$$\begin{aligned} \left\| u(t, \cdot )\right\| ^2_{W^k_{\mathcal {L}}}= & {} \left\| {\mathcal {L}}^\frac{k}{2}u(t, \cdot )\right\| ^2_{L^2}=\int \limits _0^1\left| {\mathcal {L}}^\frac{k}{2}u(t,x)\right| ^2\textrm{d}x=\int \limits _0^1\left| \lambda _n^\frac{k}{2}u(t,x)\right| ^2\textrm{d}x\\= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \left[ A_n \cos \sqrt{\lambda _n}t+\frac{1}{\sqrt{\lambda _n}} B_n \sin \left( \sqrt{\lambda _n}t\right) \right] \lambda _n^\frac{k}{2}\phi _n(x)\right| ^2\textrm{d}x\\\lesssim & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\sum \limits _{n=1}^\infty \left( \left| \lambda _n^\frac{k}{2}A_n\right| ^2+ \left| \lambda _n^\frac{k-1}{2}B_n\right| ^2\right) \\\le & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \left\| {\mathcal {L}}^\frac{k}{2} \left( gu_0\right) \right\| ^2_{L^2}+\left\| {\mathcal {L}}^\frac{k-1}{2}\left( gu_1\right) \right\| ^2_{L^2}\right) \\= & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \left\| gu_0\right\| ^2_{W^k_{{\mathcal {L}}}} +\left\| gu_1\right\| ^2_{W^{k-1}_{{\mathcal {L}}}}\right) . \end{aligned}$$

The proof of Theorem 2.1 is complete. \(\square \)

We will now express all the estimates in terms of the coefficients, to be used in the very weak well-posedness in Sect. 4.

Corollary 2.2

Assume that \(p'\in L^2(0,1)\), \(q=\nu '\), \(\nu \in L^\infty (0,1)\). If the initial data satisfy \((u_0,\, u_1) \in L^2(0,1)\times L^2(0,1)\) and \((u_0'', \, u''_1)\in L^2(0,1)\times L^2(0,1)\), then the wave equation (2.1) with the initial/boundary problems (2.2)–(2.3) has unique solution \(u\in C([0,T], L^2(0,1))\) which satisfies the estimates

$$\begin{aligned} \Vert u(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\{2\Vert p\Vert _{L^1}\}}\left( \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}\right) , \end{aligned}$$
(2.35)
$$\begin{aligned} \Vert \partial _t u(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\{2\Vert p\Vert _{L^1}\}}\left( \Vert u''_0\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\Vert u'_0\Vert ^2_{L^2}\right. \nonumber \\{} & {} +\left. \left( \Vert p\Vert ^4_{L^\infty }+\Vert p'\Vert ^2_{L^\infty }+\Vert q\Vert ^2_{L^\infty }\right) \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}\right) , \end{aligned}$$
(2.36)
$$\begin{aligned} \Vert \partial _x u(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\left\{ 2\Vert p\Vert _{L^1}\right\} }\left\{ \left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2} +\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \right. \nonumber \\{} & {} \quad \times \left( \Vert u''_0\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\Vert u'_0\Vert ^2_{L^2} +\left( \Vert p\Vert ^4_{L^\infty }+\Vert p'\Vert ^2_{L^\infty }+\Vert q\Vert ^2_{L^\infty }\right) \Vert u_0\Vert ^2_{L^2}\right. \nonumber \\{} & {} \quad +\left. \Vert u_1\Vert ^2_{L^2}\right) +\left. \left( \Vert p\Vert ^2_{L^\infty } +\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}\right) \right\} , \end{aligned}$$
(2.37)
$$\begin{aligned} \left\| \partial _x^2u(t, \cdot )\right\| ^2_{L^2}\lesssim & {} \exp {\left\{ 2\Vert p\Vert _{L^1}\right\} }\left\{ \left( 1+\Vert \nu \Vert ^2_{L^2} \left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \right. \nonumber \\{} & {} \quad \times \left( \Vert u''_0\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\Vert u'_0\Vert ^2_{L^2}+\left( \Vert p\Vert ^4_{L^\infty } +\Vert p'\Vert ^2_{L^\infty }+\Vert q\Vert ^2_{L^\infty }\right) \Vert u_0\Vert ^2_{L^2}\right. \nonumber \\{} & {} \quad +\left. \Vert u_1\Vert ^2_{L^2}\right) +\left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty } \right) \left( \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}\right) \nonumber \\{} & {} \quad +\Vert u''_0\Vert ^2_{L^2}+\Vert u''_1\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\left( \Vert u'_0\Vert ^2_{L^2}+\Vert u'_1\Vert ^2_{L^2}\right) \nonumber \\{} & {} \quad +\left. \left( \Vert p\Vert ^4_{L^\infty }+\Vert p'\Vert ^2_{L^\infty }+\Vert q\Vert ^2_{L^\infty }\right) \left( \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}\right) \right\} , \end{aligned}$$
(2.38)

where the constants in these inequalities are independent of \(u_0\), \(u_1\), p and q.

Proof

By using inequality (2.20) we obtain

$$\begin{aligned} \Vert u(t, \cdot )\Vert ^2_{L^2}\lesssim & {} \sum \limits _{n=1}^\infty \left( \int \limits _0^1|A_n|^2|\phi _n(x)|^2\textrm{d}x+\int \limits _0^1\left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2|\phi _n(x)|^2\textrm{d}x\right) . \end{aligned}$$
(2.39)

In Theorem 2.1 we obtained estimates with respect to the operator \({\mathcal {L}}\), but here we want to obtain estimates with respect to the initial data \((u_0,\, u_1)\) and functions p and q. Therefore, since \(\lambda _n\ge 1\) we can use the estimate

$$\begin{aligned} \int \limits _0^1\left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2|\phi _n(x)|^2\textrm{d}x\le \int \limits _0^1|B_n|^2|\phi _n(x)|^2\textrm{d}x. \end{aligned}$$
(2.40)

Thus, using (2.23) and the Parseval identity in (2.39), taking into account the last relation, we obtain

$$\begin{aligned} \Vert u(t, \cdot )\Vert ^2_{L^2}\lesssim \exp {\{\Vert p\Vert _{L^1}\}}\left( \sum \limits _{n=1}^\infty \left( |A_n|^2+|B_n|^2\right) \right) \le \exp {\{2\Vert p\Vert _{L^1}\}}\left( \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}\right) . \end{aligned}$$

By (2.24) we have

$$\begin{aligned} \Vert \partial _t u(t,\cdot )\Vert ^2\lesssim & {} \exp {\{\Vert p\Vert _{L^1}\}}\left( \sum \limits _{n=1}^\infty |\sqrt{\lambda _n} A_n |^2+\sum \limits _{n=1}^\infty |B_n|^2\right) . \end{aligned}$$

Since \(\lambda _n\) are eigenvalues of the operator \({\mathcal {L}}\), we obtain

$$\begin{aligned} \sum \limits _{n=1}^\infty |\sqrt{\lambda _n}A_n|^2\lesssim & {} \sum \limits _{n=1}^\infty \left| \int \limits _0^1 \lambda _n gu_0(x)\psi _n(x)\textrm{d}x\right| ^2\nonumber \\= & {} \sum \limits _{n=1}^\infty \left| \int \limits _0^1 \left( -(gu_0)''(x)+p(x)(gu_0)'(x)+q(x)(gu_0)(x)\right) \psi _n(x)\textrm{d}x\right| ^2\\\lesssim & {} \sum \limits _{n=1}^\infty \left| \int \limits _0^1 (gu_0)''(x)\psi _n(x)\textrm{d}x\right| ^2+\sum \limits _{n=1}^\infty \left| \int \limits _0^1p(x)(gu_0)'(x)\psi _n(x)\textrm{d}x\right| ^2\\{} & {} \quad +\sum \limits _{n=1}^\infty \left| \int \limits _0^1q(x)(gu_0)(x)\psi _n(x)\textrm{d}x\right| ^2. \end{aligned}$$

Since \(p,\,q\in L^\infty (0,1)\) and by Parseval’s identity, we get

$$\begin{aligned} \sum \limits _{n=1}^\infty |\sqrt{\lambda _n}A_n|^2\lesssim & {} \sum \limits _{n=1}^\infty |\langle (gu_0)'',\psi _n\rangle |^2+\sum \limits _{n=1}^\infty |\langle p(gu_0)',\psi _n\rangle |^2+\sum \limits _{n=1}^\infty |\langle q(gu_0),\psi _n\rangle |^2\nonumber \\= & {} \Vert (gu_0)''\Vert ^2_{L^2}+\Vert p(gu_0)'\Vert ^2_{L^2}+\Vert q(gu_0)\Vert ^2_{L^2}\nonumber \\\le & {} \Vert (gu_0)''\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\Vert (gu_0)'\Vert ^2_{L^2}+\Vert q\Vert ^2_{L^\infty }\Vert q(gu_0)\Vert ^2_{L^2}, \end{aligned}$$
(2.41)

thus,

$$\begin{aligned}{} & {} \Vert \partial _t u(t,\cdot )\Vert ^2_{L^2}\lesssim \exp {\{\Vert p\Vert _{L^1}\}}\left( \Vert (gu_0)''\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\Vert (gu_0)'\Vert ^2_{L^2}\right. \\{} & {} \quad \left. +\Vert q\Vert ^2_{L^\infty }\Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{L^2}\right) . \end{aligned}$$

To obtain the results of Sect. 4, we need estimates in terms of p, q, and \((u_0,\,u_1)\). Therefore, we proceed to the next estimates. We have

$$\begin{aligned} \Vert (gu_0)'\Vert ^2\lesssim & {} \Vert g'u_0\Vert ^2_{L^2}+\Vert gu'_0\Vert ^2_{L^2}\le \Vert g'\Vert ^2_{L^\infty }\Vert u_0\Vert ^2_{L^2}+\Vert g\Vert ^2_{L^\infty }\Vert u'_0\Vert ^2_{L^2}, \end{aligned}$$

where

$$\begin{aligned} g'(x)=-\frac{1}{2}p(x)\exp {\left\{ -\frac{1}{2}\int \limits _0^xp(\xi )\textrm{d}\xi \right\} }=-\frac{1}{2}p(x)g(x), \end{aligned}$$

and according to (2.22) we obtain

$$\begin{aligned} \Vert (gu_0)'\Vert ^2\lesssim & {} \Vert pg\Vert ^2_{L^\infty }\Vert u_0\Vert ^2_{L^2}+\Vert g\Vert ^2_{L^\infty }\Vert u'_0\Vert ^2_{L^2}\le \Vert g\Vert ^2_{L^\infty }\left( \Vert p\Vert ^2_{L^\infty }\Vert u_0\Vert ^2_{L^2}+\Vert u'_0\Vert ^2_{L^2}\right) \nonumber \\\le & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \Vert p\Vert ^2_{L^\infty }\Vert u_0\Vert ^2_{L^2}+\Vert u'_0\Vert ^2_{L^2}\right) . \end{aligned}$$
(2.42)

For \((gu_0)''\) one obtains

$$\begin{aligned} \Vert (gu_0)''\Vert ^2_{L^2}\lesssim & {} \Vert g''u_0\Vert ^2_{L^2}+\Vert g'u'_0\Vert ^2_{L^2}+\Vert gu''_0\Vert ^2_{L^2}\le \Vert (p^2+p')g\Vert ^2_{L^\infty }\Vert u_0\Vert ^2_{L^2}\nonumber \\{} & {} \quad +\Vert pg\Vert ^2_{L^\infty }\Vert u_0'\Vert ^2_{L^2}+\Vert g\Vert ^2_{L^\infty }\Vert u''_0\Vert ^2_{L^2}\lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\times \nonumber \\{} & {} \quad \times \left( \left( \Vert p\Vert ^4_{L^\infty }+\Vert p'\Vert ^2_{L^\infty }\right) \Vert u_0\Vert ^2_{L^2} +\Vert p\Vert ^2_{L^\infty }\Vert u'_0\Vert ^2_{L^2}+\Vert u''_0\Vert ^2_{L^2}\right) . \nonumber \\ \end{aligned}$$
(2.43)

Given estimates (2.42), (2.43) and (2.22), for \(\Vert \partial _tu(t,\cdot )\Vert _{L^2}\) we get

$$\begin{aligned} \Vert \partial _t u(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\{2\Vert p\Vert _{L^1}\}}\left( \Vert u''_0\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\Vert u'_0\Vert ^2_{L^2}\right. \\{} & {} \quad +\left. \left( \Vert p\Vert ^4_{L^\infty }+\Vert p'\Vert ^2_{L^\infty }+\Vert q\Vert ^2_{L^\infty }\right) \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}\right) . \end{aligned}$$

Taking (2.26), (2.31), (2.40) and (2.41) into account, we make the following estimates

$$\begin{aligned} \Vert \partial _x u(t,\cdot )\Vert ^2_{L^2}= & {} \int \limits _0^1|\partial _xu(t,x)|^2dt\\= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \left[ A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] \phi '_n(x)\right| ^2\textrm{d}x\\\lesssim & {} \exp {\{\Vert p\Vert _{L^1}\}}\left( \sum \limits _{n=1}^\infty \left| \sqrt{\lambda _n}A_n \right| ^2 +\sum \limits _{n=1}^\infty |B_n|^2\right) \int \limits _0^1|r_n(x)|^2\textrm{d}x\\{} & {} +\exp {\{\Vert p\Vert _{L^1}\}}\left( \sum \limits _{n=1}^\infty |A_n|^2+\sum \limits _{n=1}^\infty \left| \frac{1}{\sqrt{\lambda _n}}B_n\right| ^2\right) \times \\\times & {} \int \limits _0^1\left( |p(x)|^2+|\nu (x)|^2\right) |\psi _n(x)|^2\textrm{d}x\\\lesssim & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left\{ \left( 1+\Vert \nu \Vert ^2_{L^2} \left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \right. \nonumber \\\times & {} \left( \Vert (gu_0)''\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\Vert (gu_0)'\Vert ^2_{L^2}+\Vert q\Vert ^2_ {L^\infty }\Vert gu_0\Vert ^2_{L^\infty }+\Vert gu_1\Vert ^2_{L^2}\right) \\{} & {} +\left. \left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{L^2}\right) \right\} . \end{aligned}$$

According to (2.42), (2.43) and (2.22) we get

$$\begin{aligned} \Vert \partial _x u(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\left\{ 2\Vert p\Vert _{L^1}\right\} }\left\{ \left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \right. \nonumber \\{} & {} \quad \times \left( \Vert u''_0\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\Vert u'_0\Vert ^2_{L^2}+\left( \Vert p\Vert ^4_{L^\infty } +\Vert p'\Vert ^2_{L^\infty }+\Vert q\Vert ^2_{L^\infty }\right) \Vert u_0\Vert ^2_{L^2}\right. \\{} & {} \quad +\left. \Vert u_1\Vert ^2_{L^2}\right) +\left. \left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}\right) \right\} . \end{aligned}$$

Let us now get an estimate for

$$\begin{aligned} \left\| \partial _x^2u(t, \cdot )\right\| ^2_{L^2}= & {} \int \limits _0^1\left| \partial ^2_xu(t,x)\right| ^2\textrm{d}x\\= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \left[ A_n \cos \sqrt{\lambda _n}t+\frac{1}{\sqrt{\lambda _n}} B_n \sin \left( \sqrt{\lambda _n}t\right) \right] \phi ''_n(x)\right| ^2\textrm{d}x\\\lesssim & {} \int \limits _0^1\sum \limits _{n=1}^\infty \left( |A_n|^2|\phi ''_n(x)|^2 +\left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2|\phi ''_n(x)|^2\right) \textrm{d}x\\\le & {} \int \limits _0^1\sum \limits _{n=1}^\infty |A_n|^2|p(x)\phi '_n(x)+(q(x)-\lambda _n)\phi _n(x)|^2\textrm{d}x\\{} & {} \quad +\int \limits _0^1\sum \limits _{n=1}^\infty \left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2|p(x)\phi '_n(x)+(q(x)-\lambda _n)\phi _n(x)|^2\textrm{d}x=M_1+M_2. \end{aligned}$$

We have

$$\begin{aligned} M_1:= & {} \int \limits _0^1\sum \limits _{n=1}^\infty |A_n|^2|p(x)\phi '_n(x)+(q(x)-\lambda _n)\phi _n(x)|^2\textrm{d}x\\\lesssim & {} \int \limits _0^1|p(x)|^2\left( \sum \limits _{n=1}^\infty |A_n|^2|\phi '_n(x)|^2\right) \textrm{d}x+\int \limits _0^1|q(x)|^2\left( \sum \limits _{n=1}^\infty |A_n|^2|\phi _n(x)|^2\right) \textrm{d}x\\{} & {} \quad +\int \limits _0^1\sum \limits _{n=1}^\infty |\lambda _nA_n\phi _n(x)|^2\textrm{d}x, \end{aligned}$$

and carrying out estimates as in (2.33) and (2.41), we obtain

$$\begin{aligned} M_1\lesssim & {} \exp {\{\Vert p\Vert _{L^1}\}}\left( \Vert p\Vert ^2_{L^\infty }\left( \left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2} +\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \left( \Vert (gu_0)''\Vert ^2_{L^2}\right. \right. \right. \\{} & {} \quad +\left. \left. \Vert p\Vert ^2_{L^\infty }\Vert (gu_0)'\Vert ^2_{L^2}+\Vert q\Vert ^2_{L^\infty }\Vert gu_0 \Vert ^2_{L^2}\right) +\left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \Vert gu_0\Vert ^2_{L^2}\right) \\{} & {} \quad +\left. \Vert q\Vert ^2_{L^\infty }\Vert gu_0\Vert ^2_{L^2}+\Vert (gu_0)''\Vert ^2_{L^2} +\Vert p\Vert ^2_{L^\infty }\Vert (gu_0)'\Vert ^2_{L^2}+\Vert q\Vert ^2_{L^\infty }\Vert gu_0\Vert ^2_{L^2}\right) . \end{aligned}$$

Similarly, we obtain the following estimate

$$\begin{aligned} M_2:= & {} \int \limits _0^1\sum \limits _{n=1}^\infty \left| \frac{B_n}{\sqrt{\lambda _n}}\right| ^2|p(x)\phi '_n(x)+(q(x)-\lambda _n)\phi _n(x)|^2\textrm{d}x\\\lesssim & {} \exp {\{\Vert p\Vert _{L^1}\}}\left( \Vert p\Vert ^2_{L^\infty }\left( \left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \Vert gu_1\Vert ^2_{L^2}\right. \right. \\{} & {} \quad +\left. \left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \Vert gu_1\Vert ^2_{L^2}\right) +\Vert q\Vert ^2_{L^\infty }\Vert gu_1\Vert ^2_{L^2}+\Vert (gu_1)''\Vert ^2_{L^2}\\{} & {} \quad +\Vert p\Vert ^2_{L^\infty }\Vert (gu_1)'\Vert ^2_{L^2}+\left. \Vert q\Vert ^2_{L^\infty }\Vert gu_1\Vert ^2_{L^2}\right) . \end{aligned}$$

Using (2.42), (2.43) and (2.22), we have

$$\begin{aligned} \left\| \partial _x^2u(t, \cdot )\right\| ^2_{L^2}\lesssim & {} \exp {\left\{ 2\Vert p\Vert _{L^1}\right\} }\left\{ \left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2} +\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \right. \nonumber \\{} & {} \quad \times \left( \Vert u''_0\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\Vert u'_0\Vert ^2_{L^2} +\left( \Vert p\Vert ^4_{L^\infty }+\Vert p'\Vert ^2_{L^\infty }+\Vert q\Vert ^2_{L^\infty }\right) \Vert u_0\Vert ^2_{L^2}\right. \\{} & {} \quad +\left. \Vert u_1\Vert ^2_{L^2}\right) +\left( \Vert p\Vert ^2_{L^\infty } +\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}\right) \\{} & {} \quad +\Vert u''_0\Vert ^2_{L^2}+\Vert u''_1\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\left( \Vert u'_0\Vert ^2_{L^2}+\Vert u'_1\Vert ^2_{L^2}\right) \\{} & {} \quad +\left. \left( \Vert p\Vert ^4_{L^\infty }+\Vert p'\Vert ^2_{L^\infty } +\Vert q\Vert ^2_{L^\infty }\right) \left( \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}\right) \right\} . \end{aligned}$$

The proof of Corollary 2.2 is complete. \(\square \)

3 Non-homogeneous Equation Case

In this section, we are going to give brief ideas for how to deal with the non-homogeneous wave equation with initial/boundary conditions

$$\begin{aligned} \left\{ \begin{array}{l} \partial ^2_t u(t,x)+{\mathcal {L}} u(t,x)=f(t,x),\qquad (t,x)\in [0,T]\times (0,1),\\ u(0,x)=u_0(x),\quad x\in (0,1),\\ \partial _tu(0,x)=u_1(x),\quad x\in (0,1),\\ u(t,0)=0=u(t,1),\quad t\in [0,T], \end{array}\right. \end{aligned}$$
(3.1)

where operator \({\mathcal {L}}\) is defined by

$$\begin{aligned} {\mathcal {L}}=-\frac{\partial ^2}{\partial x^2}+p(x)\frac{\partial }{\partial x}+q(x),\qquad x\in (0,1). \end{aligned}$$

Theorem 3.1

Assume that \(p'\in L^2(0,1)\), \(q=\nu '\), \(\nu \in L^\infty (0,1)\) and \(f=f(t,x)\in C^1([0,T],L^2(0,1))\). For any \(k\in {\mathbb {R}}\), if the initial data satisfy \((u_0,\, u_1) \in W^{1+k}_{\mathcal {L}}\times W^k_{\mathcal {L}}\), then the non-homogeneous wave equation with initial/boundary conditions (3.1) has unique solution \(u\in C([0,T], W^{1+k}_{\mathcal {L}})\cap C^1([0,T], W^{k}_{\mathcal {L}})\) which satisfies the estimates

$$\begin{aligned}{} & {} \Vert u(t,\cdot )\Vert ^2_{L^2}\lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_ {{\mathcal {L}}}}+2T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))}\right) , \nonumber \\ \end{aligned}$$
(3.2)
$$\begin{aligned}{} & {} \Vert \partial _tu(t,\cdot )\Vert ^2_{L^2}\lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}} +\Vert gu_1\Vert ^2_{L^2}+2T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))}\right) , \nonumber \\ \end{aligned}$$
(3.3)
$$\begin{aligned}{} & {} \Vert \partial _xu(t,\cdot )\Vert ^2_{L^2}\lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\Big \{\left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2} +\Vert p'\Vert ^2_{L^1}\right) \right) \times \nonumber \\{} & {} \quad \times \left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{L^2}\right) +\left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) \nonumber \\{} & {} \quad +\left. \left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2} +\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) +\Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \times \right. \nonumber \\{} & {} \quad \times \left. 2T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))}\right\} , \end{aligned}$$
(3.4)
$$\begin{aligned}{} & {} \Vert \partial ^2_xu(t,\cdot )\Vert ^2_{L^2}\lesssim \exp {\{\Vert p\Vert _{L^2}\}}\Vert p\Vert ^2_{L^\infty }\Big \{\left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2} +\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \nonumber \\{} & {} \quad \times \left. \left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{L^2}\right) +\left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert gu_0\Vert ^2_{L^2} +\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) \right. \nonumber \\{} & {} \quad +\Vert q\Vert ^2_{L^\infty } \left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) +\left\| gu_0\right\| ^2_{W^2_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{W^1_{{\mathcal {L}}}}\nonumber \\{} & {} \quad +\left( \Vert p\Vert ^2_{L^\infty }\left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2} +\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) +\Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \right. \times \nonumber \\{} & {} \quad +\left. \left. \Vert q\Vert ^2_{L^\infty }\right) \Vert g\Vert ^2_{L^\infty }\left( 2T^2\Vert f\Vert ^2_{C([0,T], L^2(0,1))}+T^2\Vert f\Vert ^2_{C^1([0,T],L^2(0,1))}\right) \right\} , \end{aligned}$$
(3.5)
$$\begin{aligned}{} & {} \Vert u(t,\cdot )\Vert ^2_{W^k_{\mathcal {L}}} \lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \left\| gu_0\right\| ^2_{W^k_{{\mathcal {L}}}}+\left\| gu_1\right\| ^2_{W^{k-1}_{{\mathcal {L}}}}\right. \nonumber \\{} & {} \quad +\left. 2T^2\left\| gf(\cdot ,\cdot )\right\| ^2_{C([0,T],W^{k-1}_{\mathcal {L}}(0,1))}\right) , \end{aligned}$$
(3.6)

where the constants in these inequalities are independent of \(u_0\), \(u_1\), p, q and f.

Proof

The substitution

$$\begin{aligned} u(t,x)=\exp {\left\{ \frac{1}{2}\int \limits _0^xp(\xi )\textrm{d}\xi \right\} }v(t,x) \end{aligned}$$
(3.7)

brings Eq. (3.1) to the form

$$\begin{aligned} \left\{ \begin{array}{l} \partial ^2_t v(t,x)-\partial ^2_x v(t,x)+\left( \frac{p^2(x)}{4}-\frac{p'(x)}{2}+q(x)\right) v(t,x)=g(x)f(t,x),\\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (t,x)\in [0,T]\times (0,1),\\ v(0,x)=g(x)u_0(x),\quad x\in (0,1),\\ \partial _tv(0,x)=g(x)u_1(x),\quad x\in (0,1),\\ v(t,0)=0=v(t,1),\quad t\in [0,T]. \end{array}\right. \end{aligned}$$
(3.8)

We can use the eigenfunctions (1.15) of the corresponding (homogeneous) eigenvalue problem (1.5)–(1.6), and look for a solution in the series form

$$\begin{aligned} v(t,x)=\sum \limits _{n=1}^\infty v_n(t)\psi _n(x), \end{aligned}$$
(3.9)

where

$$\begin{aligned} v_n(t) =\int \limits _0^1 v(t,x)\psi _n(x)\textrm{d}x. \end{aligned}$$

We can similarly expand the source function,

$$\begin{aligned} g(x)f(t,x)=\sum \limits _{n=1}^\infty (gf)_n(t)\psi _n(x),\qquad (gf)_n(t)=\int \limits _0^1g(x)f(t,x)\psi _n(x)\textrm{d}x.\nonumber \\ \end{aligned}$$
(3.10)

Now, since we are looking for a twice differentiable function v(tx) that satisfies the homogeneous Dirichlet boundary conditions, we can differentiate the Fourier series (3.9) term by term and using that the \(\psi _n(x)\) satisfies the equation (1.5), we obtain

$$\begin{aligned} v_{xx}(t,x) = \sum \limits _{n=1}^\infty v_n(t)\psi ''_n(x)=\sum \limits _{n=1}^\infty v_n(t)\left( \frac{p^2(x)}{4}-\frac{p'(x)}{2}+q(x)-\lambda _n\right) \psi _n(x). \nonumber \\ \end{aligned}$$
(3.11)

We can also twice differentiate the series (3.9) with respect to t to obtain

$$\begin{aligned} v_{tt}(t,x) = \sum \limits _{n=1}^\infty v''_n(t)\psi _n(x), \end{aligned}$$
(3.12)

since the Fourier coefficients of \(v_{tt}(t,x)\) are

$$\begin{aligned} \int \limits _0^1v_{tt}(t,x)\psi _n(x)\textrm{d}x=\frac{\partial ^2}{\partial t^2}\left[ \int \limits _0^1v(t,x)\psi _n(x)\textrm{d}x\right] =v''_n(t). \end{aligned}$$

Differentiation under the above integral is allowed since the resulting integrand is continuous.

Substituting (3.12) and (3.11) into the equation, and using (3.10), we have

$$\begin{aligned}{} & {} \sum \limits _{n=1}^\infty v''_n(t)\psi _n(x)-\sum \limits _{n=1}^\infty v_n(t)\left( \frac{p^2(x)}{4}-\frac{p'(x)}{2}+q(x)-\lambda _n\right) \psi _n(x)\\{} & {} \quad +\left( \frac{p^2(x)}{4}-\frac{p'(x)}{2}+q(x)\right) \sum \limits _{n=1}^\infty v_n(t)\psi _n(x)=\sum \limits _{n=1}^\infty (gf)_n(t)\psi _n(x), \end{aligned}$$

and after a slight rearrangement, we get

$$\begin{aligned} \sum \limits _{n=1}^\infty \left[ v''_n(t)+\lambda _nv_n(t)\right] \psi _n(x)=\sum \limits _{n=1}^\infty (gf)_n(t)\psi _n(x). \end{aligned}$$

But then, due to the completeness,

$$\begin{aligned} v''_n(t)+\lambda _nv_n(t)=(gf)_n(t), \qquad n=1,2,..., \end{aligned}$$

which are ordinary differential equations for the coefficients \(v_n(t)\) of the series (3.9). By the method of variation of constants we get

$$\begin{aligned} v_n(t)= & {} A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n \sin \left( \sqrt{\lambda _n}t\right) \\{} & {} -\frac{1}{\sqrt{\lambda _n}}\cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\\{} & {} + \frac{1}{\sqrt{\lambda _n}}\sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s, \end{aligned}$$

where

$$\begin{aligned} A_n=\int \limits _0^1g(x)u_0(x)\psi _n(x)\textrm{d}x,\qquad B_n=\int \limits _0^1g(x)u_1(x)\psi _n(x)\textrm{d}x. \end{aligned}$$

Thus, we can write a solution of Eq. (3.8) in the form

$$\begin{aligned} v(t,x)= & {} \sum \limits _{n=0}^\infty \left[ A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] \psi _n(x) \nonumber \\{} & {} - \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\psi _n(x)\nonumber \\{} & {} +\sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\psi _n(x). \end{aligned}$$

According to (3.7), we obtain the solution of the equation (3.1) in the following form

$$\begin{aligned} u(t,x)= & {} \sum \limits _{n=0}^\infty \left[ A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] \phi _n(x) \nonumber \\{} & {} - \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi _n(x)\nonumber \\{} & {} +\sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi _n(x). \end{aligned}$$
(3.13)

Let us estimate \(\Vert u(t,\cdot )\Vert _{L^2}\). For this we first use the estimate

$$\begin{aligned} \int \limits _0^1|u(t,x)|^2\textrm{d}x\lesssim & {} \int \limits _0^1\left| \sum \limits _{n=0}^\infty \left[ A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] \phi _n(x)\right| ^2\textrm{d}x \nonumber \\{} & {} \quad + \int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\cos \left( \sqrt{\lambda _n} t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi _n(x)\right| ^2\textrm{d}x\nonumber \\{} & {} \quad +\int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi _n(x)\right| ^2\textrm{d}x\nonumber \\{} & {} \quad =I_1+I_2+I_3. \end{aligned}$$
(3.14)

For \(I_1\) by using (2.7) for the homogeneous case we have that

$$\begin{aligned} I_1:= & {} \int \limits _0^1\left| \sum \limits _{n=0}^\infty \left[ A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] \phi _n(x)\right| ^2\textrm{d}x\\\lesssim & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) . \end{aligned}$$

Now we estimate \(I_2\) in (3.14) as

$$\begin{aligned} I_2:= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}} \cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi _n(x)\right| ^2\textrm{d}x\nonumber \\\lesssim & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\sum \limits _{n=1}^\infty \left[ \int \limits _0^t|(gf)_n(s)|\textrm{d}s\right] ^2. \end{aligned}$$
(3.15)

Using Holder’s inequality and taking into account that \(t\in [0,T]\) we get

$$\begin{aligned} \left[ \int \limits _0^t|(gf)_n(s)|\textrm{d}s\right] ^2\le \left[ \int \limits _0^T 1\cdot | (gf)_n(t)|dt\right] ^2\le T\int \limits _0^T| (gf)_n(t)|^2dt, \end{aligned}$$
(3.16)

since \((gf)_n(t)\) is the Fourier coefficient of the function g(x)f(tx), and by Parseval’s identity we obtain

$$\begin{aligned} \sum \limits _{n=1}^\infty T\int \limits _0^T|(gf)_n(t)|^2dt= & {} T\int \limits _0^T\sum \limits _{n=1}^\infty |(gf)_n(t)|^2dt = T\int \limits _0^T\Vert gf(t,\cdot )\Vert ^2_{L^2}dt\nonumber \\\le & {} T\Vert g\Vert ^2_{L^\infty }\int \limits _0^T\Vert f(t,\cdot )\Vert ^2_{L^2}dt. \end{aligned}$$
(3.17)

Since

$$\begin{aligned} \Vert f\Vert _{C([0,T],L^2(0,1))}=\max \limits _{0\le t\le T}\Vert f(t,\cdot )\Vert _{L^2}, \end{aligned}$$

we arrive at the inequality

$$\begin{aligned} T\int \limits _0^T\Vert f(t,\cdot )\Vert ^2_{L^2}dt\le T^2\Vert f\Vert ^2_{C([0,T],L^2(0,1))}. \end{aligned}$$
(3.18)

Thus,

$$\begin{aligned} I_2= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi _n(x)\right| ^2\textrm{d}x\nonumber \\\lesssim & {} T^2\exp {\left\{ \Vert p\Vert _{L^1}\right\} }\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))}, \end{aligned}$$
(3.19)

and \(I_3\) in (3.14) is evaluated similarly

$$\begin{aligned} I_3:= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi _n(x)\right| ^2\textrm{d}x \nonumber \\\lesssim & {} T^2\exp {\left\{ \Vert p\Vert _{L^1}\right\} }\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))}. \end{aligned}$$
(3.20)

We finally get

$$\begin{aligned} \Vert u(t,\cdot )\Vert ^2_{L^2}\lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \Vert gu_0\Vert ^2_{L^2} +\Vert gu_1\Vert ^2_{W^{-1}_{\mathcal {L}}}+2T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))}\right) . \end{aligned}$$

Let us estimate \(\Vert \partial _tu(t,\cdot )\Vert _{L^2}\). For this we calculate \(\partial _tu(t,x)\) as follows

$$\begin{aligned} \partial _tu(t,x)= & {} \sum \limits _{n=0}^\infty \left[ -\sqrt{\lambda _n}A_n\sin \left( \sqrt{\lambda _n}t\right) +B_n\cos \left( \sqrt{\lambda _n}t\right) \right] \phi _n(x) \\{} & {} + \sum \limits _{n=1}^\infty \sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi _n(x)\\{} & {} + \sum \limits _{n=1}^\infty \cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi _n(x), \end{aligned}$$

then we can estimate

$$\begin{aligned} \Vert \partial _tu(t,\cdot )\Vert ^2_{L^2}= & {} \int \limits _0^1|\partial _tu(t,x)|^2\textrm{d}x\\{} & {} \quad \lesssim \int \limits _0^1\left| \sum \limits _{n=0}^\infty \left[ -\sqrt{\lambda _n}A_n\sin \left( \sqrt{\lambda _n}t\right) +B_n\cos \left( \sqrt{\lambda _n}t\right) \right] \phi _n(x)\right| ^2\textrm{d}x \\{} & {} \quad + \int \limits _0^1\left| \sum \limits _{n=1}^\infty \sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi _n(x)\right| ^2\textrm{d}x\\{} & {} \quad + \int \limits _0^1\left| \sum \limits _{n=1}^\infty \cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi _n(x)\right| ^2\textrm{d}x\\{} & {} \quad \lesssim \sum \limits _{n=0}^\infty \left| -\sqrt{\lambda _n}A_n\sin \left( \sqrt{\lambda _n}t\right) +B_n\cos \left( \sqrt{\lambda _n}t\right) \right| ^2 \\{} & {} \quad + \sum \limits _{n=1}^\infty \left| \sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\right| ^2\\{} & {} \quad +\sum \limits _{n=1}^\infty \left| \cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\right| ^2. \end{aligned}$$

By using (2.8) for the homogeneous case and making estimates as in (3.19), (3.20), we obtain

$$\begin{aligned} \Vert \partial _tu(t,\cdot )\Vert ^2_{L^2}\lesssim \exp {\{\Vert p\Vert _{L^1}\}}\left( \Vert gu_0\Vert ^2_{W^1_{\mathcal {L}}}+\Vert gu_1\Vert ^2_ {L^2}+2T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))}\right) . \end{aligned}$$

For (3.4) we write

$$\begin{aligned} \Vert \partial _x u(t,\cdot )\Vert ^2_{L^2}= & {} \int \limits _0^1|\partial _xu(t,x)|^2dt\nonumber \\{} & {} \lesssim \int \limits _0^1\left| \sum \limits _{n=1}^\infty \left[ A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] \phi '_n(x)\right| ^2\textrm{d}x\nonumber \\{} & {} + \int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi '_n(x)\right| ^2\textrm{d}x\nonumber \\{} & {} +\int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}} \sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi '_n(x)\right| ^2\textrm{d}x\nonumber \\{} & {} =K_1+K_2+K_3. \end{aligned}$$
(3.21)

Taking (2.31) into account, we have that

$$\begin{aligned} K_1:= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \left[ A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] \phi '_n(x)\right| ^2\textrm{d}x\\{} & {} \lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left\{ \left( 1+\Vert \nu \Vert ^2_{L^2} \left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \right. \\{} & {} \left. \left( \Vert gu_0\Vert ^2_{W^1_ {{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{L^2}\right) \right. \nonumber \\{} & {} + \left. \left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) \right\} . \end{aligned}$$

For \(K_2\) in (3.21) using (2.26), (2.27), (2.28) and (2.29) we obtain

$$\begin{aligned} K_2:= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}} \cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\phi '_n(x)\right| ^2\textrm{d}x\nonumber \\{} & {} \lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( 1+\Vert \nu \Vert ^2_{L^2} \left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \nonumber \\{} & {} \times \sum \limits _{n=1}^\infty \left| \cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\right| ^2\nonumber \\{} & {} +\exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \times \nonumber \\{} & {} \times \sum \limits _{n=1}^\infty \left| \frac{1}{\sqrt{\lambda _n}}\cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\right| ^2, \end{aligned}$$
(3.22)

where

$$\begin{aligned} \begin{array}{l} \sum \limits _{n=1}^\infty \left| \frac{1}{\sqrt{\lambda _n}}\cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\right| ^2\\ \le \sum \limits _{n=1}^\infty \left| \cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\right| ^2, \end{array} \end{aligned}$$

since \(\lambda _n\ge 1,\,n=1,2,...,\) according to (3.19). So it is enough to estimate

$$\begin{aligned} \left| \sum \limits _{n=1}^\infty \cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\right| ^2 \lesssim T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))}. \nonumber \\ \end{aligned}$$
(3.23)

Thus,

$$\begin{aligned} K_2\lesssim & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2}+ \Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) +\Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \times \\{} & {} \quad \times T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))}. \end{aligned}$$

For \(K_3\) in (3.21) we similarly get

$$\begin{aligned} K_3\lesssim & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2} +\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) +\Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \times \\{} & {} \quad \times T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))}. \end{aligned}$$

Taking into account the estimates for \(K_1\), \(K_2\) and \(K_3\), we obtain

$$\begin{aligned} \Vert \partial _x u(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left\{ \left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \right. \nonumber \\{} & {} \quad \times \left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{L^2}\right) + \left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \\{} & {} \quad \left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) \\{} & {} \quad +\left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) +\Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \times \\{} & {} \quad \times \left. 2T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))}\right\} . \end{aligned}$$

We have \(\phi _n''(x)=p(x)\phi '_n(x)+(q(x)-\lambda _n)\phi _n(x)\), so that

$$\begin{aligned} \Vert \partial ^2_xu(t,\cdot )\Vert ^2_{L^2}= & {} \int \limits _0^1|\partial ^2_xu(t,x)|^2\textrm{d}x\\{} & {} \lesssim \int \limits _0^1\left| \sum \limits _{n=0}^\infty \left[ A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] \times \right. \\{} & {} \times \left( p(x)\phi '_n(x)+(q(x)-\lambda _n\right) \phi _n(x))\Biggr |^2\textrm{d}x \\{} & {} + \int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\times \right. \\{} & {} \times \left( p(x)\phi '_n(x)+(q(x)-\lambda _n\right) \phi _n(x))\Biggr |^2\textrm{d}x \\{} & {} +\int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\times \right. \\{} & {} \times \left( p(x)\phi '_n(x)+(q(x)-\lambda _n\right) \phi _n(x))\Biggr |^2\textrm{d}x \\{} & {} = E_1+E_2+E_3. \end{aligned}$$

Using (2.10) we get

$$\begin{aligned} E_1:= & {} \int \limits _0^1\left| \sum \limits _{n=0}^\infty \left[ A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] \times \right. \\{} & {} \times (p(x)\phi '_n(x)+(q(x)-\lambda _n)\phi _n(x))\Bigg |^2\textrm{d}x\\ {}\lesssim & {} \exp {\{\Vert p\Vert _{L^2}\}}\Big \{\Vert p\Vert ^2_{L^\infty }\left( \left( 1+\Vert \nu \Vert ^2_{L^2} \left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \right. \nonumber \\{} & {} \times \left. \left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{L^2}\right) +\left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert gu_0\Vert ^2_{L^2} +\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) \right) \nonumber \\{} & {} +\left. \Vert q\Vert ^2_{L^\infty } \left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) +\left\| gu_0\right\| ^2_ {W^2_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{W^1_{{\mathcal {L}}}}\right\} . \end{aligned}$$

Let us estimate \(E_2\) by using (3.22)–(3.23), so that we get

$$\begin{aligned} E_2:= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\cos \left( \sqrt{\lambda _n}t \right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\times \right. \\{} & {} \times (p(x)\phi '_n(x)+(q(x)-\lambda _n)\phi _n(x))\Biggr |^2\textrm{d}x\\{} & {} \lesssim \exp {\{\Vert p\Vert _{L^1}\}}\Big \{\left( \Vert p\Vert ^2_{L^\infty }\left( 1+\Vert \nu \Vert ^2_{L^2} \left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right. \right. \\{} & {} \quad \left. \left. +\Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \right. \\{} & {} +\left. \left. \Vert q\Vert ^2_{L^\infty }\right) T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))} +T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C^1([0,T],L^2(0,1))}\right\} . \end{aligned}$$

We similarly get

$$\begin{aligned} E_3:= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}} \sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\times \right. \\{} & {} \times (p(x)\phi '_n(x)+(q(x)-\lambda _n)\phi _n(x))\Biggr |^2\textrm{d}x\\{} & {} \lesssim \exp {\{\Vert p\Vert _{L^1}\}}\Big \{\left( \Vert p\Vert ^2_{L^\infty }\left( 1+\Vert \nu \Vert ^2_{L^2} \left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right. \right. \\{} & {} \quad \left. \left. +\Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \right. \\{} & {} +\left. \left. \Vert q\Vert ^2_{L^\infty }\right) T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))} +T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C^1([0,T],L^2(0,1))}\right\} . \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert \partial ^2_xu(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\{\Vert p\Vert _{L^2}\}}\Vert p\Vert ^2_{L^\infty }\Big \{\left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2} +\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \nonumber \\{} & {} \quad \times \left( \Vert gu_0\Vert ^2_{W^1_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{L^2}\right) +\left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \nonumber \\{} & {} \quad \left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) \nonumber \\{} & {} \quad +\Vert q\Vert ^2_{L^\infty } \left( \Vert gu_0\Vert ^2_{L^2}+\Vert gu_1\Vert ^2_{W^{-1}_{{\mathcal {L}}}}\right) +\left\| gu_0\right\| ^2_{W^2_{{\mathcal {L}}}}+\Vert gu_1\Vert ^2_{W^1_{{\mathcal {L}}}}\nonumber \\{} & {} \quad + \left( \Vert p\Vert ^2_{L^\infty }\left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2} +\Vert p'\Vert ^2_{L^1}\right) \right. \right. \nonumber \\{} & {} \quad \left. \left. +\Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \right. \nonumber \\{} & {} \quad +\left. \left. \Vert q\Vert ^2_{L^\infty }\right) 2T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C([0,T],L^2(0,1))}\right. \nonumber \\{} & {} \quad \left. +T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert ^2_{C^1([0,T],L^2(0,1))}\right\} . \end{aligned}$$

Let us estimate \(\Vert u(t,\cdot )\Vert ^2_{W^k_{{\mathcal {L}}}}\):

$$\begin{aligned} \Vert u(t,\cdot )\Vert ^2_{W^k_{{\mathcal {L}}}}\lesssim & {} \int \limits _0^1\left| \sum \limits _{n=0}^\infty \left[ A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] {\mathcal {L}}^\frac{k}{2}\phi _n(x)\right| ^2\textrm{d}x \nonumber \\{} & {} \quad + \int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s{\mathcal {L}}^\frac{k}{2}\phi _n(x)\right| ^2\textrm{d}x\nonumber \\{} & {} \quad +\int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s{\mathcal {L}}^\frac{k}{2}\phi _n(x)\right| ^2\textrm{d}x\nonumber \\{} & {} \quad =F_1+F_2+F_3. \end{aligned}$$

By using (2.11) we have

$$\begin{aligned} F_1:= & {} \int \limits _0^1\left| \sum \limits _{n=0}^\infty \left[ A_n\cos \left( \sqrt{\lambda _n}t\right) +\frac{1}{\sqrt{\lambda _n}}B_n\sin \left( \sqrt{\lambda _n}t\right) \right] {\mathcal {L}}^\frac{k}{2}\phi _n(x)\right| ^2\textrm{d}x\\{} & {} \lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} } \left( \left\| gu_0\right\| ^2_{W^k_{{\mathcal {L}}}}+\left\| gu_1\right\| ^2_{W^{k-1}_{{\mathcal {L}}}}\right) . \end{aligned}$$

Using that \({\mathcal {L}}^{\frac{k}{2}}\phi _n(x)=\lambda ^{\frac{k}{2}}\phi _n(x)\), (1.17) and following as in (3.15)–(3.18), we obtain

$$\begin{aligned} F_2:= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\cos \left( \sqrt{\lambda _n}t\right) \int \limits _0^t\sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s {\mathcal {L}}^\frac{k}{2}\phi _n(x)\right| ^2\textrm{d}x\\{} & {} \lesssim \exp {\Vert p\Vert _{L^1}}\int \limits _0^1\left| \sum \limits _{n=1}^\infty \int \limits _0^t \sin \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s\lambda ^\frac{k-1}{2}\psi _n(x)\right| ^2\textrm{d}x\\{} & {} \lesssim T\exp {\Vert p\Vert _{L^1}}\int \limits _0^T\sum \limits _{n=1}^\infty \left| \lambda ^\frac{k-1}{2} (gf)_n(t)\right| ^2dt=T\exp {\Vert p\Vert _{L^1}}\int \limits _0^T\left\| \lambda ^\frac{k-1}{2}gf(t,\cdot )\right\| ^2_{L^2}dt\\{} & {} =T\exp {\Vert p\Vert _{L^1}}\int \limits _0^T\left\| {\mathcal {L}}^\frac{k-1}{2}gf(t,\cdot )\right\| ^2_ {L^2}dt=T\exp {\Vert p\Vert _{L^1}}\int \limits _0^T\left\| gf(t,\cdot )\right\| ^2_{{\mathcal {L}}^{k-1}}dt\\{} & {} \le T^2\exp {\Vert p\Vert _{L^1}}\left\| gf(\cdot ,\cdot )\right\| ^2_{C([0,T],W^{k-1}_{\mathcal {L}}(0,1))}. \end{aligned}$$

We similarly get

$$\begin{aligned} F_3:= & {} \int \limits _0^1\left| \sum \limits _{n=1}^\infty \frac{1}{\sqrt{\lambda _n}}\sin \left( \sqrt{\lambda _n}t\right) \int \limits _0^t \cos \left( \sqrt{\lambda _n}s\right) (gf)_n(s)\textrm{d}s{\mathcal {L}}^\frac{k}{2}\phi _n(x)\right| ^2\textrm{d}x\nonumber \\{} & {} \lesssim T^2\exp {\Vert p\Vert _{L^1}}\left\| gf(\cdot ,\cdot )\right\| ^2_{C([0,T],W^{k-1}_{\mathcal {L}}(0,1))}. \end{aligned}$$

Thus,

$$\begin{aligned} \Vert u(t,\cdot )\Vert ^2_{W^k_{{\mathcal {L}}}}\lesssim \exp {\left\{ \Vert p\Vert _{L^1}\right\} }\left( \left\| gu_0\right\| ^2_{W^k_{{\mathcal {L}}}} +\left\| gu_1\right\| ^2_{W^{k-1}_{{\mathcal {L}}}}+2T^2\left\| gf(\cdot ,\cdot )\right\| ^2_{C([0,T],W^{k-1}_{\mathcal {L}}(0,1))}\right) . \end{aligned}$$

The proof of Theorem 3.1 is complete. \(\square \)

We will now express all the estimates in terms of the coefficients, to be used in the very weak well-posedness in Sect. 4.

Corollary 3.2

Assume that \(p'\in L^2(0,1)\), \(q=\nu '\), \(\nu \in L^\infty (0,1)\) and \(f(t,x)\in C^1([0,T],L^2(0,1))\). If the initial data satisfy \((u_0,\, u_1) \in L^2(0,1)\) and \((u_0'',\, u''_1)\in L^2(0,1)\), then the non-homogeneous wave equation with initial/boundary conditions (3.1) has unique solution \(u\in C([0,T], L^2(0,1))\) such that

$$\begin{aligned} \Vert u(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\{2\Vert p\Vert _{L^2}\}}\left( \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}+2T^2\Vert f\Vert _{C([0,1],L^2(0,1))}\right) , \end{aligned}$$
(3.24)
$$\begin{aligned} \Vert \partial _t u(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\{2\Vert p\Vert _{L^1}\}}\left\{ \Vert u''_0\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\Vert u'_0\Vert ^2_{L^2}+\left( \Vert p\Vert ^4_{L^\infty }+\Vert p'\Vert ^2_{L^\infty }\right. \right. \nonumber \\{} & {} \quad +\left. \left. \Vert q\Vert ^2_{L^\infty }\right) \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}+2T^2\Vert g\Vert ^2_{L^\infty }\Vert f\Vert _{C([0,1],L^2(0,1))}\right\} , \end{aligned}$$
(3.25)
$$\begin{aligned} \Vert \partial _xu(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\left\{ 2\Vert p\Vert _{L^1}\right\} }\left\{ \left( 1+\Vert \nu \Vert ^2_{L^2} \left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \right. \nonumber \\{} & {} \quad \times \left( \Vert u''_0\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\Vert u'_0\Vert ^2_{L^2} +\left( \Vert p\Vert ^4_{L^\infty }+\Vert p'\Vert ^2_{L^\infty }+\Vert q\Vert ^2_{L^\infty }\right) \Vert u_0\Vert ^2_{L^2}\right. \nonumber \\{} & {} \quad +\left. \Vert u_1\Vert ^2_{L^2}\right) +\left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}\right) \nonumber \\{} & {} \quad +\left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) +\Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \times \nonumber \\{} & {} \quad \times \left. 2T^2\Vert f\Vert ^2_{C([0,T],L^2(0,1))}\right\} , \end{aligned}$$
(3.26)
$$\begin{aligned} \Vert \partial ^2_xu(t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\left\{ 2\Vert p\Vert _{L^1}\right\} }\Big \{\left( 1+\Vert \nu \Vert ^2_ {L^2}\left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) \right) \times \nonumber \\{} & {} \quad \times \left( \Vert u''_0\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\Vert u'_0\Vert ^2_{L^2}+\left( \Vert p\Vert ^4_{L^\infty } +\Vert p'\Vert ^2_{L^\infty }+\Vert q\Vert ^2_{L^\infty }\right) \Vert u_0\Vert ^2_{L^2}\right. \nonumber \\{} & {} \quad +\left. \Vert u_1\Vert ^2_{L^2}\right) +\left( \Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \left( \Vert u_0\Vert ^2_{L^2}+\Vert u_1\Vert ^2_{L^2}\right) \nonumber \\{} & {} \quad +\Vert u''_0\Vert ^2_{L^2}+\Vert u''_1\Vert ^2_{L^2}+\Vert p\Vert ^2_{L^\infty }\left( \Vert u'_0\Vert ^2_{L^2}+\Vert u'_1\Vert ^2_{L^2}\right) \nonumber \\{} & {} \quad +\left( \Vert p\Vert ^4_{L^\infty }+\Vert p'\Vert ^2_{L^\infty }+\Vert q\Vert ^2_{L^\infty }\right) \left( \Vert u_0\Vert ^2_{L^2} +\Vert u_1\Vert ^2_{L^2}\right) \nonumber \\{} & {} \quad +\left( \Vert p\Vert ^2_{L^\infty }\left( 1+\Vert \nu \Vert ^2_{L^2}\left( \Vert \nu \Vert ^2_{L^2}+\Vert p\Vert ^2_{L^2}+\Vert p'\Vert ^2_{L^1}\right) +\Vert p\Vert ^2_{L^\infty }+\Vert \nu \Vert ^2_{L^\infty }\right) \right. \nonumber \\{} & {} \quad +\left. \left. \Vert q\Vert ^2_{L^\infty }\right) 2T^2\Vert f\Vert ^2_{C([0,T],L^2(0,1))}+T^2\Vert f\Vert ^2_{C^1([0,T],L^2(0,1))}\right\} , \end{aligned}$$
(3.27)

where the constants in these inequalities are independent of \(u_0\), \(u_1\), p, q and f.

The proof of Corollary 3.2 immediately follows from Corollary 2.2 and Theorem 3.1.

4 Very Weak Solutions

In this section we will analyse the solutions for less regular potentials q and p. For this we will be using the notion of very weak solutions.

Assume that the coefficients q, p and initial data \((u_0,\, u_1)\) are the distributions on (0, 1).

Definition 4.1

(i) A net of functions \(\left( u_\varepsilon =u_\varepsilon (t,x)\right) \) is said to be \(L^2\)-moderate if there exist \(N\in {\mathbb {N}}_0\) and \(C>0\) such that

$$\begin{aligned} \Vert u_\varepsilon (t,\cdot )\Vert _{L^2}\le C \varepsilon ^{-N}, \quad \text {for all } t\in [0,T]. \end{aligned}$$

(ii) Moderateness of data: a net of functions \((u_{0,\varepsilon }=u_{0,\varepsilon }(x))\) is said to be \(H^2\)-moderate if there exist \(N\in {\mathbb {N}}_0\) and \(C>0\) such that

$$\begin{aligned} \Vert u'_{0,\varepsilon }\Vert _{L^2}\le C\varepsilon ^{-N}, \quad \Vert u''_{0,\varepsilon }\Vert _{L^2}\le C\varepsilon ^{-N}. \end{aligned}$$

Definition 4.2

(i) A net of functions \(\left( \nu _\varepsilon =\nu _\varepsilon (x)\right) \) is said to be \(L^\infty _1\)-moderate if there exist \(N\in {\mathbb {N}}_0\) and \(C>0\) such that

$$\begin{aligned} \Vert \nu _\varepsilon \Vert _{L^\infty }\le C \varepsilon ^{-N}, \qquad \Vert \nu '_\varepsilon \Vert _{L^\infty }\le C \varepsilon ^{-N}. \end{aligned}$$
(4.1)

(ii) A net of functions \((p_\varepsilon )\) is said to be \(\log \)-\(L^\infty _1\)-moderate if there exist \(N\in {\mathbb {N}}_0\) and \(C>0\) such that

$$\begin{aligned} \Vert p_\varepsilon \Vert _{L^\infty }\le C |\log \varepsilon |^N, \qquad \Vert p'_\varepsilon \Vert _{L^\infty }\le C \varepsilon ^{-N}. \end{aligned}$$

Remark 4.3

We note that for the clarity of expression, we put two condition in (4.1) explicitly. However, we note that the first one follows from the second:

$$\begin{aligned} \left| \nu _\varepsilon (x)\right| =\left| \int \limits _0^x \nu '_\varepsilon (\xi )\textrm{d}\xi \right| \le C\Vert \nu '_\varepsilon \Vert _{L^\infty (0,1)}. \end{aligned}$$

The same remark applies to other conditions.

Remark 4.4

We note that such assumptions are natural for distributional coefficients in the sense that regularisations of distributions are moderate. Precisely, by the structure theorems for distributions (see, e.g. [10, 12]), we know that distributions

$$\begin{aligned} {\mathcal {D}}'(0,1) \subset \{L^\infty (0,1)\,\text {-moderate families} \}, \end{aligned}$$
(4.2)

and we see from (4.2), that a solution to an initial/boundary problem may not exist in the sense of distributions, while it may exist in the set of \(L^\infty \)-moderate functions.

To give an example, at least for \(1\le p<\infty \), let us take \(f\in L^2(0,1)\), \(f:(0,1)\rightarrow {\mathbb {C}}\). We introduce the function

$$\begin{aligned} {\tilde{f}}=\left\{ \begin{array}{l} f, \text { on }(0,1), \\ 0, \text { on }{\mathbb {R}} \setminus (0,1), \end{array}\right. \end{aligned}$$

then \({\tilde{f}}:{\mathbb {R}}\rightarrow {\mathbb {C}}\), and \({\tilde{f}}\in {\mathcal {E}}'({\mathbb {R}}).\)

Let \({\tilde{f}}_\varepsilon ={\tilde{f}}*\psi _\varepsilon \) be obtained as the convolution of \({\tilde{f}}\) with a Friedrich mollifier \(\psi _\varepsilon \), where

$$\begin{aligned} \psi _\varepsilon (x)=\frac{1}{\varepsilon }\psi \left( \frac{x}{\varepsilon }\right) ,\quad \text {for}\,\, \psi \in C^\infty _0({\mathbb {R}}),\, \int \psi =1. \end{aligned}$$

Then the regularising net \(({\tilde{f}}_\varepsilon )\) is \(L^p\)-moderate for any \(p \in [1,\infty )\), and it approximates f on (0, 1):

$$\begin{aligned} 0\leftarrow \Vert {\tilde{f}}_\varepsilon -{\tilde{f}}\Vert ^p_{L^p({\mathbb {R}})}\approx \Vert {\tilde{f}}_\varepsilon -f\Vert ^p_{L^p(0,1)}+\Vert {\tilde{f}}_\varepsilon \Vert ^p_{L^p({\mathbb {R}}\setminus (0,1))}. \end{aligned}$$

Now, let us introduce the notion of a very weak solution to the initial/boundary problem (2.1)–(2.3).

Definition 4.5

Let \(p, \, \nu \in {\mathcal {D}}'(0,1)\). The net \((u_\varepsilon )_{\varepsilon >0}\) is said to be a very weak solution to the initial/boundary problem (2.1)–(2.3) if there exist a \(\log \)-\(L^\infty _1\)-moderate regularisation \(p_\varepsilon \) of p, \(L^\infty _1\)-moderate regularisation \(\nu _\varepsilon \) of \(\nu \) with \(q_\varepsilon =\nu '_\varepsilon \), \(H^2\)-moderate regularisation \(u_{0,\varepsilon }\) of \(u_0,\) and \(L^2\)-moderate regularisation \(u_{1,\varepsilon }\) of \(u_1\), such that

$$\begin{aligned} \left\{ \begin{array}{l}\partial ^2_t u_\varepsilon (t,x)-\partial ^2_x u_\varepsilon (t,x)+p_\varepsilon (x)\partial _xu_\varepsilon (t,x)\\ +q_\varepsilon (x) u_\varepsilon (t,x)=0,\,\, (t,x)\in [0,T]\times (0,1),\\ u_\varepsilon (0,x)=u_{0,\varepsilon }(x),\,\,\, x\in (0,1), \\ \partial _t u_\varepsilon (0,x)=u_{1,\varepsilon }(x), \,\,\, x\in (0,1),\\ u_\varepsilon (t,0)=0=u_\varepsilon (t,1), \quad t\in [0,T], \end{array}\right. \end{aligned}$$
(4.3)

and \((u_\varepsilon )\), \((\partial _x u_\varepsilon )\) are \(L^{2}\)-moderate.

Describing the uniqueness of the very weak solutions amounts to “measuring” the changes on involved associated nets: negligibility conditions for nets of functions/distributions read as follows:

Definition 4.6

(Negligibility) (i) Let \((u_\varepsilon )\), \(({\tilde{u}}_\varepsilon )\) be two nets in \(L^2(0,1)\). Then, the net \((u_\varepsilon -{\tilde{u}}_\varepsilon )\) is called \(L^2\)-negligible, if for every \(N\in {\mathbb {N}}\), there exists \(C>0\) such that the following condition is satisfied

$$\begin{aligned} \Vert u_\varepsilon -{\tilde{u}}_\varepsilon \Vert _{L^2}\le C \varepsilon ^N, \end{aligned}$$

for all \(\varepsilon \in (0,1]\). In the case where \(u_\varepsilon =u_\varepsilon (t,x)\) is a net depending on \(t\in [0,T]\), then the negligibility condition can be introduced as

$$\begin{aligned} \Vert u_\varepsilon (t,\cdot )-{\tilde{u}}_\varepsilon (t,\cdot )\Vert _{L^2}\le C \varepsilon ^N, \end{aligned}$$

uniformly in \(t\in [0,T]\). The constant C can depend on N but not on \(\varepsilon \).

(ii) Let \((p_\varepsilon )\), \(({\tilde{p}}_\varepsilon )\) be two nets in \(L^\infty (0,1)\). Then, the net \((p_\varepsilon -{\tilde{p}}_\varepsilon )\) is called \(L^\infty \)-negligible, if for every \(N\in {\mathbb {N}}\), there exists \(C>0\) such that the following condition is satisfied

$$\begin{aligned} \Vert p_\varepsilon -{\tilde{p}}_\varepsilon \Vert _{L^2}\le C \varepsilon ^N, \end{aligned}$$

for all \(\varepsilon \in (0,1]\).

Let us state the “\(\varepsilon \)-parameterised problems" to be considered:

$$\begin{aligned} \left\{ \begin{array}{l}\partial ^2_t u_\varepsilon (t,x)-\partial ^2_x u_\varepsilon (t,x)+p_\varepsilon (x)\partial _xu_\varepsilon (t,x)\\ + q_\varepsilon (x) u_\varepsilon (t,x)=0,\,\,\, (t,x)\in [0,T]\times (0,1),\\ u_\varepsilon (0,x)=u_{0,\varepsilon }(x),\,\,\, x\in (0,1), \\ \partial _t u_\varepsilon (0,x)=u_{1,\varepsilon }(x), \,\, x\in (0,1),\\ u_\varepsilon (t,0)=0=u_\varepsilon (t,1),\,\, t\in [0,T], \end{array}\right. \end{aligned}$$
(4.4)

and

$$\begin{aligned} \left\{ \begin{array}{l}\partial ^2_t {\tilde{u}}_\varepsilon (t,x)-\partial ^2_x {\tilde{u}}_\varepsilon (t,x)+{\tilde{p}}_\varepsilon (x)\partial _x{\tilde{u}}_\varepsilon (t,x)\\ +{\tilde{q}}_\varepsilon (x) {\tilde{u}}_\varepsilon (t,x)=0,\quad (t,x)\in [0,T]\times (0,1),\\ {\tilde{u}}_\varepsilon (0,x)={\tilde{u}}_{0,\varepsilon }(x),\,\,\, x\in (0,1), \\ \partial _t {\tilde{u}}_\varepsilon (0,x)={\tilde{u}}_{1,\varepsilon }(x), \,\,\, x\in (0,1),\\ {\tilde{u}}_\varepsilon (t,0)=0={\tilde{u}}_\varepsilon (t,1), \quad t\in [0,T]. \end{array}\right. \end{aligned}$$
(4.5)

Definition 4.7

(Uniqueness of the very weak solution) We say that initial/boundary problem (2.1)–(2.3) has a unique very weak solution, if for all \(\log \)-\(L^\infty _1\)-moderate nets \(p_\varepsilon \), \({\tilde{p}}_\varepsilon \), such that \((p_\varepsilon -{\tilde{p}}_\varepsilon )\) is \(L^\infty \)-negligible; \(L^\infty _1\)-moderate nets \(\nu _\varepsilon \), \({\tilde{\nu }}_\varepsilon \) with \(q_\varepsilon =\nu '_\varepsilon \), \({\tilde{q}}_\varepsilon ={\tilde{\nu }}'_\varepsilon \) such that \((q_\varepsilon -{\tilde{q}}_\varepsilon )\) is \(L^\infty \)-negligible; for all \(H^2\)-moderate regularisations \(u_{0,\varepsilon },\,{\tilde{u}}_{0,\varepsilon }\), such that \((u_{0,\varepsilon }-{\tilde{u}}_{0,\varepsilon })\) are \(L^2\)-negligible and for all \(L^2\)-moderate regularisations \(u_{1,\varepsilon },\,{\tilde{u}}_{1,\varepsilon }\), such that \((u_{1,\varepsilon }-{\tilde{u}}_{1,\varepsilon })\) are \(L^2\)-negligible, we have that \(u_\varepsilon -{\tilde{u}}_\varepsilon \) is \(L^2\)-negligible.

Then we have the following properties of very weak solutions.

Theorem 4.8

(Existence) Let the coefficients p, q and initial data \((u_0,\, u_1)\) be distributions in (0, 1). Then the initial/boundary problem (2.1)–(2.3) has a very weak solution.

Proof

Since the formulation of (2.1)–(2.3) in this case might be impossible in the distributional sense due to issues related to the product of distributions, we replace (2.1)–(2.3) with a regularised equation. In other words, we regularise p, \(p'\), \(\nu \), q, \(u_0\), \(u_1\), \(u'_0\) and \(u''_0\) by some corresponding sets \(p_\varepsilon \), \(p'_\varepsilon \), \(\nu _\varepsilon \), \(q_\varepsilon \), \(u_{0,\varepsilon }\), \(u_{1,\varepsilon }\), \(u'_{0,\varepsilon }\) and \(u''_{0,\varepsilon }\) of smooth functions from \(L^ \infty (0,1)\) and \(L^2(0,1)\), respectively.

Hence, \(p_\varepsilon \) is \(\log \)-\(L^\infty _1\)-moderate regularisation of the coefficient p, and \(\nu _\varepsilon \) with \(q_\varepsilon =\nu '_\varepsilon \) is \(L^\infty _1\)-moderate regularisation of \(\nu \), \(u_{0,\varepsilon }\) is \(H^2\)-moderate regularisation of \(u_0\) and \(u_{1,\varepsilon }\) is \(L^2\)-moderate regularisation of \(u_1\). So by Definition 4.1 there exist \(N\in {\mathbb {N}}_0\) and \(C_1>0\), \(C_2>0\), \(C_3>0\), \(C_4>0\), \(C_5>0\), \(C_6>0\), \(C_7>0\), \(C_8>0\) such that

$$\begin{aligned}{} & {} \Vert p_\varepsilon \Vert _{L^\infty }\le C_1|\log {\varepsilon }|^N,\quad \Vert p'_\varepsilon \Vert _{L^\infty }\le C_2\varepsilon ^{-N},\quad \Vert \nu _\varepsilon \Vert _{L^\infty }\le C_3\varepsilon ^{-N}\quad \Vert q_\varepsilon \Vert _{L^\infty }\le C_4\varepsilon ^{-N}, \\{} & {} \Vert u_{0,\varepsilon }\Vert _{L^2}\le C_5\varepsilon ^{-N}, \quad \Vert u_{1,\varepsilon }\Vert _{L^2}\le C_6\varepsilon ^{-N}, \quad \Vert u'_{0,\varepsilon }\Vert _{L^2}\le C_7\varepsilon ^{-N}, \quad \Vert u''_{0,\varepsilon }\Vert _{L^2}\le C_8\varepsilon ^{-N}. \end{aligned}$$

Now we fix \(\varepsilon \in (0,1]\), and consider the regularised problem (4.3). Then all discussions and calculations of Theorem 2.1 are valid. Thus, by Theorem 2.1, the Eq. (4.3) has unique solution \(u_\varepsilon (t,x)\) in the space \(C^0([0,T]; H^1(0,1))\cap C^1([0,T];L^2(0,1))\).

By Corollary 2.2 there exist \(N\in {\mathbb {N}}_0\) and \(C>0\), such that

$$\begin{aligned} \Vert u_\varepsilon (t,\cdot )\Vert _{L^2}\lesssim & {} \exp {\{2\Vert p_\varepsilon \Vert _{L^2}\}}\left( \Vert u_{0,\varepsilon }\Vert _{L^2}+\Vert u_{1,\varepsilon }\Vert _{L^2}\right) \le C\varepsilon ^{-N},\\ \Vert \partial _x u_\varepsilon (t,\cdot )\Vert ^2_{L^2}{} & {} \quad \lesssim \exp {\left\{ 2\Vert p_\varepsilon \Vert _{L^1}\right\} }\left\{ \left( 1+\Vert \nu _\varepsilon \Vert ^2_{L^2}\left( \Vert \nu _\varepsilon \Vert ^2_{L^2}+\Vert p_\varepsilon \Vert ^2_{L^2}+\Vert p'_\varepsilon \Vert ^2_{L^1}\right) \right) \times \right. \nonumber \\{} & {} \quad \times \left( \Vert u''_{0,\varepsilon }\Vert ^2_{L^2}+\Vert p_\varepsilon \Vert ^2_{L^\infty }\Vert u'_{0, \varepsilon }\Vert ^2_{L^2}+\left( \Vert p^2_\varepsilon \Vert ^2_{L^\infty }\right. \right. \nonumber \\{} & {} \quad \left. \left. +\Vert p'_\varepsilon \Vert ^2_{L^\infty } +\Vert q_\varepsilon \Vert ^2_{L^\infty }\right) \Vert u_{0,\varepsilon }\Vert ^2_{L^2}\right. \nonumber \\{} & {} \quad +\left. \Vert u_{1,\varepsilon }\Vert ^2_{L^2}\right) +\left. \left( \Vert p_\varepsilon \Vert ^2_{L^\infty } +\Vert \nu _\varepsilon \Vert ^2_{L^\infty }\right) \left( \Vert u_{0,\varepsilon }\Vert ^2_{L^2}+\Vert u_{1,\varepsilon }\Vert ^2_{L^2}\right) \right\} \le C\varepsilon ^{-N}, \end{aligned}$$

where the constants in these inequalities are independent of p, \(p'\), \(\nu \), q, \(u_0\), \(u_1\), \(u'_0\) and \(u''_0\). Hence, \((u_\varepsilon )\) is \(L^2\)-moderate, and the proof of Theorem 4.8 is complete. \(\square \)

Remark 4.9

By

$$\begin{aligned} \Vert \partial _t u_\varepsilon (t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\{2\Vert p_\varepsilon \Vert _{L^1}\}}\left( \Vert u''_{0,\varepsilon }\Vert ^2_{L^2}+\Vert p_\varepsilon \Vert ^2_{L^\infty }\Vert u'_{0,\varepsilon }\Vert ^2_{L^2}\right. \nonumber \\{} & {} \quad +\left. \left( \Vert p^2_\varepsilon \Vert ^2_{L^\infty }+\Vert p'_\varepsilon \Vert ^2_{L^\infty } +\Vert q_\varepsilon \Vert ^2_{L^\infty }\right) \Vert u_{0,\varepsilon }\Vert ^2_{L^2}+\Vert u_{1,\varepsilon }\Vert ^2_{L^2}\right) \le C\varepsilon ^{-N}, \end{aligned}$$

we note that the net \(\partial _tu_\varepsilon \) is also \(L^2\)-moderate.

Theorem 4.10

(Uniqueness of the very weak solution) Let the coefficients p, \(q=\nu '\) and initial data \((u_0,\, u_1)\) be distributions in (0, 1). Then the very weak solution to the initial/boundary problem (2.1)–(2.3) is unique.

Proof

We denote by \(u_\varepsilon \) and \({\tilde{u}}_\varepsilon \) the families of solutions to the initial/boundary problems (4.4) and (4.5) respectively. Setting \(U_\varepsilon \) to be the difference of these nets \(U_\varepsilon :=u_\varepsilon (t,\cdot )-{\tilde{u}}_\varepsilon (t,\cdot )\), then \(U_\varepsilon \) solves

$$\begin{aligned} \left\{ \begin{array}{l}\partial ^2_t U_\varepsilon (t,x)-\partial ^2_x U_\varepsilon (t,x)+p_\varepsilon (x)\partial _xU_\varepsilon (t,x)+q_\varepsilon (x) U_\varepsilon (t,x)=f_\varepsilon (t,x),\\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad (t,x)\in [0,T]\times (0,1),\\ U_\varepsilon (0,x)=(u_{0,\varepsilon }-{\tilde{u}}_{0,\varepsilon })(x),\,\,\, x\in (0,1), \\ \partial _t U_\varepsilon (0,x)=(u_{1,\varepsilon }-{\tilde{u}}_{1,\varepsilon })(x), \,\,\, x\in (0,1),\\ U_\varepsilon (t,0)=0=U_\varepsilon (t,1), \end{array}\right. \end{aligned}$$
(4.6)

where we set \(f_\varepsilon (t,x):=({\tilde{p}}_\varepsilon (x)-p_\varepsilon (x))\partial _x{\tilde{u}}_\varepsilon (t,x) +({\tilde{q}}_\varepsilon (x)-q_\varepsilon (x)){\tilde{u}}_\varepsilon (t,x)\) for the forcing term to the non-homogeneous initial/boundary problem (4.6).

Passing to the \(L^2\)-norm of the \(U_\varepsilon \), by using (3.24) we obtain

$$\begin{aligned} \Vert U_\varepsilon (t,\cdot )\Vert ^2_{L^2}\lesssim & {} \exp {\{2\Vert p_\varepsilon \Vert _{L^2}\}}\left( \Vert U_\varepsilon (0,\cdot )\Vert ^2_{L^2} +\Vert \partial _tU_\varepsilon (0,\cdot )\Vert ^2_{L^2}\right. \\{} & {} \quad \left. +2T^2\Vert f_\varepsilon \Vert ^2_{C([0,T],L^2(0,1))}\right) . \end{aligned}$$

Since

$$\begin{aligned}{} & {} \Vert f_\varepsilon \Vert ^2_{C([0,T],L^2(0,1))}\le \Vert p_\varepsilon -{\tilde{p}}_\varepsilon \Vert ^2_ {L^\infty }\Vert \partial _x{\tilde{u}}_\varepsilon \Vert ^2_{C([0,T],L^2(0,1))}\\{} & {} \qquad + \Vert q_\varepsilon -{\tilde{q}}_\varepsilon \Vert ^2_{L^\infty }\Vert {\tilde{u}}_\varepsilon \Vert ^2_{C([0,T],L^2(0,1))} \end{aligned}$$

and using the initial data of (4.6), we get

$$\begin{aligned} \Vert U_\varepsilon (t,\cdot )\Vert ^2_{L^2}\lesssim & {} C\varepsilon ^{-N_0}\Big ( \Vert u_{0,\varepsilon }-{\tilde{u}}_{0,\varepsilon }\Vert ^2_{L^2}+\Vert u_{1,\varepsilon }-{\tilde{u}}_{1,\varepsilon }\Vert ^2_{L^2}\\{} & {} \quad +\left. 2T^2\Vert p_\varepsilon -{\tilde{p}}_\varepsilon \Vert ^2_{L^\infty }\Vert \partial _x{\tilde{u}}_ \varepsilon \Vert ^2_{C([0,T],L^2(0,1))}\right. \\{} & {} \quad \left. +2T^2\Vert q_\varepsilon -{\tilde{q}}_\varepsilon \Vert ^2_{L^\infty }\Vert {\tilde{u}}_\varepsilon \Vert ^2_{C([0,T],L^2(0,1))}\right) , \end{aligned}$$

for some \(N_0>0\). Taking into account the negligibility of the nets \(u_{0,\varepsilon }-{\tilde{u}}_{0,\varepsilon }\), \(u_{1,\varepsilon }-{\tilde{u}}_{1,\varepsilon }\), \(p_\varepsilon -{\tilde{p}}_\varepsilon \) and \(q_\varepsilon -{\tilde{q}}_\varepsilon \) we get

$$\begin{aligned} \Vert U_\varepsilon (t,\cdot )\Vert ^2_{L^2}\le C_1\varepsilon ^{-N_0}\left( C_2\varepsilon ^{N_1}+C_3\varepsilon ^{N_2}+C_4\varepsilon ^{N_3}\varepsilon ^{-N_4} +C_5\varepsilon ^{N_5}\varepsilon ^{-N_6}\right) \end{aligned}$$

for some \(C_1>0,\,C_2>0,\,C_3>0,\,C_4>0,\,C_5>0,\,N_0,\, N_4,\,N_6\in {\mathbb {N}}\) and all \(N_1,\,N_2,\,N_3,\,N_5\in {\mathbb {N}}\), since \({\tilde{u}}_\varepsilon \) is moderate. Then, for all \(M\in {\mathbb {N}}\) we have

$$\begin{aligned} \Vert U_\varepsilon (t,\cdot )\Vert ^2_{L^2}\le C_M \varepsilon ^M. \end{aligned}$$

The last estimate holds true uniformly in t, and this completes the proof of Theorem 4.10. \(\square \)

Theorem 4.11

(Consistency) Assume that \(p'\in L^2(0,1)\), \(q=\nu '\), \(\nu \in L^\infty (0,1)\), and let \(p_\varepsilon \) be any \(\log \)-\(L^\infty _1\)-moderate regularisation of p, \(\nu _\varepsilon \) be any \(L^\infty _1\)-moderate regularisation of \(\nu \) with \(q_\varepsilon =\nu '_\varepsilon \). Let the initial data satisfy \((u_0,\, u_1) \in L^2(0,1)\times L^2(0,1)\). Let u be a very weak solution of the initial/boundary problem (2.1)–(2.3). Then for any families \(p_\varepsilon \), \(q_\varepsilon \), \(u_{0,\varepsilon }\), \(u_{1,\varepsilon }\) such that \(\Vert u_{0}-u_{0,\varepsilon }\Vert _{L^2}\rightarrow 0\), \(\Vert u_{1}-u_{1,\varepsilon }\Vert _{L^2}\rightarrow 0\), \(\Vert p-p_{\varepsilon }\Vert _{L^\infty }\rightarrow 0\) \(\Vert q-q_{\varepsilon }\Vert _{L^\infty }\rightarrow 0\) as \(\varepsilon \rightarrow 0\), any representative \((u_\varepsilon )\) of u converges as

$$\begin{aligned} \sup \limits _{0\le t\le T}\Vert u(t,\cdot )-u_\varepsilon (t,\cdot )\Vert _{L^2(0,1)}\rightarrow 0 \end{aligned}$$

for \(\varepsilon \rightarrow 0\) to the unique classical solution in \(C([0,T];L^2(0,1))\) of the initial/boundary problem (2.1)–(2.3) given by Theorem 2.1.

Proof

For u and for \(u_\varepsilon \), as in our assumption, we introduce an auxiliary notation \(V_\varepsilon (t, x):= u(t,x)-u_\varepsilon (t,x)\). Then the net \(V_\varepsilon \) is a solution to the initial/boundary problem

$$\begin{aligned} \left\{ \begin{array}{l} \partial ^2_tV_\varepsilon (t,x)-\partial ^2_xV_\varepsilon (t,x)+p_\varepsilon (x)\partial _x V_\varepsilon (t,x)+q_\varepsilon (x)V_\varepsilon (t,x)=f_\varepsilon (t,x),\\ V_\varepsilon (0,x)=(u_0-u_{0,\varepsilon })(x),\quad x\in (0,1),\\ \partial _tV_\varepsilon (0,x)=(u_1-u_{1,\varepsilon })(x),\quad x\in (0,1),\\ V_\varepsilon (t,0)=0=V_\varepsilon (t,1), \quad t\in [0,T], \end{array}\right. \end{aligned}$$
(4.7)

where \(f_\varepsilon (t,x)=(p_\varepsilon (x)-p(x))\partial _xu(t,x)+(q_\varepsilon (x)-q(x))u(t,x)\). Analogously to Theorem 4.10 we have that

$$\begin{aligned} \Vert V_\varepsilon (t,\cdot )\Vert ^2_{L^2}\lesssim & {} C\Vert p_\varepsilon \Vert _{L^\infty }\Big ( \Vert u_{0}-{u}_{0,\varepsilon }\Vert ^2_{L^2}+\Vert u_{1}-{u}_{1,\varepsilon }\Vert ^2_{L^2}\\{} & {} \quad +\left. 2T^2\Vert p_\varepsilon -p\Vert ^2_{L^\infty }\Vert \partial _xu\Vert ^2_{C([0,T],L^2(0,1))}\right. \\{} & {} \quad \left. +2T^2\Vert q_\varepsilon -q\Vert ^2_{L^\infty }\Vert u\Vert ^2_{C([0,T],L^2(0,1))}\right) . \end{aligned}$$

Since

$$\begin{aligned} \Vert u_{0}-{u}_{0,\varepsilon }\Vert _{L^2}\rightarrow 0,\quad \Vert u_{1}-{u}_{1,\varepsilon }\Vert _{L^2}\rightarrow 0,\quad \Vert p_\varepsilon -p\Vert _{L^\infty }\rightarrow 0,\quad \Vert q_\varepsilon -q\Vert _{L^\infty }\rightarrow 0 \end{aligned}$$

for \(\varepsilon \rightarrow 0\) and u is a very weak solution of the initial/boundary problem (2.1)–(2.3) we get

$$\begin{aligned} \Vert V_\varepsilon (t,\cdot )\Vert _{L^2}\rightarrow 0 \end{aligned}$$

for \(\varepsilon \rightarrow 0\). This proves Theorem 4.11. \(\square \)