1 Introduction

Let \(G=(V(G),E(G))\) be a simple graph, and we simply write \(|V(G)|=|G|\) and \(|E(G)|=||G||\). For any nonnegative integer k and a vertex u, the kth closed neighborhood of u, denoted by \(N_k[u]\), is the set of vertices whose distance from u is at most k; we denote \(N_1[u]\) simply by N[u], and \(d(u)=|N(u)|\) is the degree of u. Let \(\Delta (G)=\max \{d(u):u\in V(G)\}\). A vertex of degree k is called a k-vertex. For two vertices u and v in G, the distance between u and v, denoted by \(d_G(u,v)\), and simply write d(uv), is the number of edges in a shortest path joining u and v. The eccentricity of a vertex v is the greatest distance from v to any other vertices.

A tree is a connected acyclic graph. A caterpillar is a tree where deleting all vertices of degree 1 leaves a path. Let \(SP_s (x) (s\ge 3) \) be a generalized star which is a tree with exactly one s-vertex x of degree more than 2, and a path can be seen as an \(SP_2(x)\). A rooted tree T(x) is a tree with one vertex x designated as the root. The height of a rooted tree T(x) is the eccentricity of x. A rooted tree partition of G is a collection of rooted trees that are subgraphs of G, with the property that the vertex sets of the trees partition V(G).

A unicyclic graph G is a connected graph with \(||G||=|G|\). A t-unicyclic graph \(U_t(x)\) (\(t\ge 1\)) is a unicyclic graph in which there exists exactly one \((t+2)\)-vertex x of degree more than 2. A cycle can be seen as a 0-unicyclic graph. We denote a path of order n and a cycle of order n by \( P_n \) and \( C_n \), respectively.

Let \(G_1,G_2,\ldots ,G_k\) be k vertex disjoint graphs. The union of graphs \( G_i ~(1\le i\le k) \), denoted by \( G_1 +\cdots +G_k \) , is the graph with vertex set \(\bigcup _{i=1}^{k}V (G_i) \) and edge set \(\bigcup _{i=1}^{k}E(G_i)\). For any positive integer k, let [k] denote the set \(\{0,1,2,\ldots ,k-1\}\).

Bonato, Janssen, and Roshanbin [6] defined graph burning involving a graph process as follows. Initially, at time round \(t=0\) all vertices are unburned. During each time round \(t\ge 1\), one new unburned vertex is chosen to burn (if such a vertex exists): burned vertex remains burned until the end of the process and its unburned neighbors becomes burned. The process ends when all vertices are burned. A graph is called k-burnable if it can be burned by at most k rounds. The burning number of a graph G, denoted by b(G), is the smallest integer k such that G is k-burnable. The vertices that are chosen to be burned are referred to as a burning sequence, and a shortest such sequence is called optimal. Note that any optimal burning sequences have length b(G). Figure 1 illustrates an optimal burning sequence the path \(C_4\) (resp., \(C_5\)) with vertices \(\{v_1, v_2, v_3, v_4\}\) (resp., \(\{v_1, v_2, v_3, v_4,v_5\}\)).

Fig. 1
figure 1

Burning \(C_4\) and \(C_5\) (the open circles represent burned vertices)

Burning can be viewed as a simplified model for the spread of social influence in a social network such as Facebook or Twitter [15], which is motivated by two other well-known models: the competitive diffusion game [1] and Firefighting [10]. It turned out that graph burning is related to several other graph theory problems such as graph bootstrap percolation [2] and graph domination [12]. Recently, the graph burning problem attracted the attention of many researchers and some results are achieved, see [11, 14, 16, 18, 20,21,22, 24]). For more on graph burning and graph searching, see [5, 9]. The graph burning problem is NP-complete, even for trees with maximum degree three, or linear forests (i.e., a disjoint union of paths), see [3, 4, 23]. So it is interesting to compute the burning number of some special classes of graphs.

Roshanbin [23] gave the following criterion for a graph to have burning number 2.

Theorem 1.1

[23] A graph G of order n satisfies \(b(G) =2\) if and only if \(|G|\ge 2\) and \(n-2\le \Delta (G)\le n-1\).

Bonato at al. in [6] studied the burning number of paths and cycles.

Theorem 1.2

[6] For a path \(P_n\) or a cycle \(C_n\), we have that \(b(P_n)=b(C_n) =\lceil \sqrt{n}\rceil \). Moreover, if a graph G has a Hamiltonian path, then \(b(G) \le \lceil \sqrt{|G|}\rceil \).

A graph G of order n is well-burnable if \(b(G)\le \lceil \sqrt{n}\rceil \). Bonato at al. [6] conjectured that all connected graphs are well-burnable, and they showed that \(P_n\) and \(C_n\) are well-burnable. As shown in [17] and independently in [13], the caterpillar is well-burnable. Bonato and Lidbetter [8] proved that the generalized star is also well-burnable. Moreover, Tan and Teh [25] showed that the bound \( \lceil \sqrt{n}\rceil \) is tight for generalized stars.

Theorem 1.3

[8, 25] Let G be a generalized star of order n, then \(b(G)\le \lceil \sqrt{n}\rceil \).

Recently, Liu et al. [19] determined the burning numbers of linear forests with at most three components.

Theorem 1.4

[19] Let \(G=P_{a_1}+P_{a_2}\) with \(a_1\ge a_2\ge 1\), and let \(J(t)=\{(t^2-2,2):t\ge 2\) is an integer\(\}\), then

$$\begin{aligned} b(G)= \left\{ \begin{array}{ll} \left\lceil \sqrt{a_1+a_2}\right\rceil +1, &{} \quad \hbox {if } (a_1,a_2)\in J(t) ;\\ \lceil \sqrt{a_1+a_2}\rceil , &{} \quad \hbox {otherwise}. \end{array}\right. \end{aligned}$$

Let

$$\begin{aligned} J^{1}= & {} \{(a_1,a_2,a_3):(a_2,a_3)\in D_1, \sum _{i=1}^3a_i= t^2-3\hbox { for some }t\},\\ J^{2}= & {} \{(a_1,a_2,a_3):(a_2,a_3)\in D_1\cup D_2, \sum _{i=1}^3a_i= t^2-2\hbox { for some }t\},\\ J^{3}= & {} \{(a_1,a_2,a_3):(a_2,a_3)\in \cup _{i=1}^3D_i\hbox { and }\sum _{i=1}^3a_i= t^2-1\hbox { for some }t\}\cup \{(11,11,2)\},\\ J^{4}= & {} \{(a_1,a_2,a_3):a_3=2 or (a_2,a_3)\in \cup _{i=1}^{4}D_i, \sum _{i=1}^3a_i= t^2\hbox { for some }t\}.\\ J^{5}= & {} \{(13,11,1),(11,11,3),(22,13,1),(19,13,4),(17,13,6),(15,13,8),\\&\quad (13,13,10),(17,15,4),(15,15,6),(30,15,4),(28,15,6),(26,15,8),\\&\quad (19,15,15),(28,17,4),(26,17,6),(17,17,15),(26,19,4),(43,17,4),\\&\quad (41,17,6),(30,17,17),(41,19,4),(30,30,4),(58,19,4)\}, \end{aligned}$$

where \(D_1=\{(2,2)\}\), \(D_2=\{(3,2)\}\), \(D_3=\{(1,1),(3,3),(4,2),(5,5)\}\) and \(D_4=\) \(\{(2,1),(4,1),(4,3),(4,4),(6,1),(6,4),(6,5),(6,6),(7,7),(8,4),(8,6),(10,4)\}\).

Theorem 1.5

[19] Let \(G=P_{a_1}+P_{a_2}+P_{a_3}\) with \(a_1\ge a_2\ge a_3\ge 1\). Then

$$\begin{aligned} b(G)= \left\{ \begin{array}{ll} \lceil \sqrt{a_1+a_2+a_3}\rceil +1, &{} \quad \hbox {if } (a_1,a_2,a_3)\in J^{1}\cup J^{2}\cup J^{3}\cup J^{4}\cup J^{5};\\ \lceil \sqrt{a_1+a_2+a_3}\rceil , &{} \quad \hbox {otherwise}. \end{array}\right. \end{aligned}$$

Let \(U_{g}^{a_1,\ldots , a_t}\) be a unicyclic graph of order n obtained from a cycle \(C_{g}=v_1v_2\cdots v_gv_1\) by attaching t paths of lengths \(a_{1},a_{2},\ldots ,a_{t} \) at the vertex \(v_g\), where \(a_1\ge a_2\ge \cdots \ge a_{t}\ge 1\) (see Fig. 2). Then \(P_{a_i}\) (\(1\le i\le t\)) are called the arms. Denote \({\mathcal {U}}_{n,g}^{(t)}=\{U_{g}^{a_1,\ldots , a_t}:n=g+\sum _{i=1}^ta_i\}\) for \(1\le t\le n-g\).

Fig. 2
figure 2

\(U_{g}^{a_{1},\ldots ,a_{t}}\)

In this paper, we show that the burning number of all unicyclic graphs in \({\mathcal {U}}_{n,g}^{(t)}\) of order \(n=q^2+r\) with \(1\le t\le 2\) is either q or \(q+1\), where \(1\le r\le 2q+1\). Furthermore, we find all the sufficient conditions for all unicyclic graphs in \({\mathcal {U}}_{n,g}^{(t)}\) (\(1\le t\le 2\)) to have burning number q or \(q+1\), respectively.

2 Preliminaries

We first cite the following results about graph burning.

Theorem 2.1

[6, 7, 23] In a graph G, the sequence \((x_1, x_2, \ldots , x_k)\) forms a burning sequence if and only if, for each pair i and j, with \(1 \le i <j \le k\), \(d(x_i, x_j)\ge j -i\), and the following set equation holds: \(N_{k-1}[x_1]\cup N_{k-2}[x_2]\cup \cdots \cup N_{1}[x_{k-1}]\cup N_{0}[x_k]=V(G)\).

Theorem 2.2

[7] Burning a graph G in k steps is equivalent to finding a rooted tree partition \(\{T_1,T_2,\ldots , T_k\}\), with heights at most \((k-1), (k-2),\ldots , 0\), respectively, such that for every \(1 \le i, j\le k\), the distance between the roots of \(T_i\) and \(T_j\) is at least \(|i-j|\).

Lemma 2.3

[7] For a graph G, we have \(b(G)=\min \{b(T): T~{\textit{is}}~a~{\textit{spanning}}~{\textit{tree}}~ {\textit{of}}~\;G\}\).

A subgraph H of a graph G is called an isometric subgraph if for every pair of vertices u and v in H, we have that \(d_H(u, v) = d_G(u, v)\).

Lemma 2.4

[7, 23] For any isometric subtree H of a graph G, we have \(b(H)\le b(G)\).

The following assertions will be used in the proof of our main results.

Proposition 2.5

Let \(w\in V(SP_s(x))\) (\(s\ge 3\)) with \(d(x,w)=t\). If the height of \(SP_s(x)\) with w as the root is at most i, then \(|SP_s(x)|\le 2i+1+(s-2)(i-t)\). Moreover,

  1. (i)

    if \(|SP_s(x)|=si+1\), then \(x=w\) and \(SP_s(x)-x=sP_i\);

  2. (ii)

    if \(|SP_s(x)|=si\), then \(x=w\) and \(SP_s(x)-x=(s-1)P_i+P_{i-1}\), or \(d(x,w)=1\), \(s=3\) and \(SP_s(x)-\{x,w\}=P_i+2P_{i-1}\);

  3. (iii)

    if \(|SP_s(x)|=si-1\), then either \(x=w\) and \(SP_s(x)-x\in \{(s-1)P_{i}+P_{i-2},(s-2)P_i+2P_{i-1}\}\), or \(d(x,w)=2\), \(s=3\) and \(SP_s(x)-\{x,y,w\}=P_i+2P_{i-2}\) where xyw is a path of length 2, or \(d(x,w)=1\), \(s=4\) and \(SP_s(x)-\{x,w\}=P_i+3P_{i-1}\), or \(d(x,w)=1\), \(s=3\) and \(SP_s(x)-\{x,w\}\in \{P_i+P_{i-1}+P_{i-2}, 3P_{i-1}\}\).

Proof

Let \(x_j\) be a vertex of degree 1 of \(SP_s(x)\), where \(1\le j\le s\). Note that \(d(w,z)\le i\) for any \(z\in V(SP_s(x))\). Hence,

$$\begin{aligned} |SP_s(x)|\le i+t+1+(s-1)(i-t)=2i+1+(s-2)(i-t). \end{aligned}$$
(*)
  1. (i)

    If \(|SP_s(x)|=si+1\), then by (\(*\)), \(t=0\), and then \(d(w,x_j)=i\) for \(1\le j\le s\), that is, \(x=w\) and \(SP_s(x)-x= sP_i\).

  2. (ii)

    If \(|SP_s(x)|=si\), then by (\(*\)), \((s-2)t\le 1\) which implies \(t\le 1\) as \(s\ge 3\), moreover, if \(t=1\), then \(s=3\), that is \(d(x,w)=1\), and then \(SP_s(x)-\{x,w\}=P_i+2P_{i-1}\). If \(t=0\), that is \(x=w\), then there exists some \(j_0\) with \(1\le j_0\le s\) such that \(d(w,x_{j_0})= i-1\) and \(d(w,x_j)= i\) for \(1\le j\le s\) and \(j\not =j_0\), thus \(SP_s(x)-x=(s-1)P_{i}+P_{i-1}\).

  3. (iii)

    If \(|SP_s(x)|=si-1\), then by (\(*\)), \((s-2)t\le 2\) which implies \(t\le 2\) as \(s\ge 3\). If \(t=2\), then \(s=3\), and then \(d(x,w)=2\) and \(SP_s(x)-\{x,y,w\}=P_i+2P_{i-2}\), where xyw is a path of length 2. If \(t=1\), then \(3\le s\le 4\), that is \(d(x,w)=1\), and then \(SP_s(x)-\{x,w\}=P_i+3P_{i-1}\) for \(s=4\), and \(SP_s(x)-\{x,w\}\in \{P_i+P_{i-1}+P_{i-2}, 3P_{i-1}\}\) for \(s=3\). If \(t=0\), then \(x=w\) and \(SP_s(x)-x\in \{(s-1)P_{i}+P_{i-2},(s-2)P_i+2P_{i-1}\}\).

\(\square \)

For any \(G\in {\mathcal {U}}_{n,g}^{(t)}\) with \(\Delta (G)=d(v_g)=t+2\) and \(d(v)\le 2\) for any \(v\ne v_g\), we always suppose that \((x_1, x_2,\ldots , x_k)\) is an optimal burning sequence for G. By Theorem 2.2, there exists a rooted tree partition \(\{T_1(x_1), T_2(x_2), \ldots , T_k(x_k)\}\) of G with heights at most \((k-1), (k -2), \ldots , 0\), respectively. Then \(T_i(x_i)= P_{l_i}\) with \(l_i\le 2(k-i)+1\), or \(T_i(x_i)= SP_s(v_g)\) with \(3\le s\le t+2\). Assume \(v_g\in V(T_{k-i_0}(x_{k-i_0}))\) for some \( i_0\in [k]\). Then by Proposition 2.5, \(|T_{k-i_0}(x_{k-i_0})|\le 2i_0+1+(s-2)(i_0-p_{i_0})\) with \(s\le t+2\) and \(d(v_g,x_{k-i_0})=p_{i_0}\ge 0\), and then \(|T_{k-i}(x_{k-i})|\le 2i+1\) for \(i\in [k]\backslash \{i_0\}\). Hence,

$$\begin{aligned} n= & {} \sum _{i=1}^k|T_i(x_i)|\le \sum _{i=0}^{k-1}(2i+1)-(2i_0+1)+2i_0+1+(s-2)(i_0-p_{i_0})\nonumber \\= & {} k^2+(s-2)(i_0-p_{i_0})\le k^2+t(k-1), \end{aligned}$$
(1)

where the last inequality follows from \(p_{i_0}\ge 0\), \(s\le t+2\) and \(i_0\le k-1\).

Note that \(C_g\) is the unique cycle of G, and hence \(H:=G-e\) is a generalized star for any \(e\in E(C_g)\). By Lemma 2.3 and Theorem 1.3, \(b(G)\le b(H)\le \left\lceil \sqrt{n}\right\rceil \). So, by (1), we have the following result.

Theorem 2.6

For any \(G\in {\mathcal {U}}_{n,g}^{(t)}\), we have

$$\begin{aligned} \left\lceil \sqrt{n+\frac{t^2+4t}{4}}-\frac{t}{2}\right\rceil \le b(G)\le \lceil \sqrt{n}\rceil . \end{aligned}$$
(2)

If \(t\le 2\), then by (1), \(b(G)\ge \left\lceil \sqrt{n+3}\right\rceil -1\ge \left\lceil \sqrt{n}\right\rceil -1.\) Therefore, we have the following result.

Corollary 2.7

Let \(G\in {\mathcal {U}}_{n,g}^{(t)}\) with \(n=q^2+r\) (\(1\le r\le 2q+1\)). If \(1\le t\le 2\), then \(q\le b(G)\le q+1\).

3 Burning Number of Unicyclic Graphs in \({\mathcal {U}}_{n,g}^{(1)}\)

In this section, \({\mathcal {U}}_{n,g}^{(1)}=\{U_{g}^{n-g}\}\). Let \(V(U_{g}^{n-g})=\{v_1,\ldots , v_g, w_1,\ldots w_{n-g}\}\) with \(w_0=v_g\) and \(d(v_g,w_i)=i\) for \(0\le i\le n-g\). By Theorem 1.1, if \( 4\le n\le 5 \), \( b(G)=2 \) for any \( G\in \mathcal {U}_{n,g}^{(1)} \). So we can assume \(n\ge 6\). Then \(b(G)\ge 3\) for \( G\in {\mathcal {U}}_{n,g}^{(1)} \).

3.1 Unicyclic Graphs in \({\mathcal {U}}_{n,g}^{(1)}\) with Burning Number q

In this subsection, we will give some sufficient conditions for the unicyclic graphs in \({\mathcal {U}}_{n,g}^{(1)}\) to have burning number \(q\ge 3\). Recall that \(d(v_g) =3\) and \(n=q^2+r\) with \(1\le r\le 2q+1\). Denote \({\mathcal {A}}=\{(2q+1,q^{2}-q-2),(q^{2}-2,q+1)\}\).

Lemma 3.1

Suppose that \(1\le r\le q-1\). If \(2r+1\le g\le q^{2}\) and \((g,n-g)\notin {\mathcal {A}}\), then \(b(U_{g}^{n-g})\le q\).

Proof

Let \(G_w:=U_{g}^{n-g}-N_{q-1}[w]\) for \(w\in V(U_{g}^{n-g})\). If \(b(G_w)\le q-1\), then \(b(U_{g}^{n-g})\le q\) by Theorem 2.1. Hence, we can assume \(b(G_w)\ge q\) for any \(w\in V(U_{g}^{n-g})\).

Let \(g':=\lfloor \frac{g-1}{2}\rfloor \). Then \(r\le g'\) as \(g\ge 2r+1\). If \(g\le 2q-1\), then we can assume \(n-g'\ge 2q\). Otherwise, \(V(U_{g}^{n-g})\subseteq N_{q-1}[w_{q-g+g'}]\), then \(b(U_{g}^{n-g})\le q\) by Theorem 2.1. So \(G_{w_{q-g+g'}}= P_{n-g'-2q+1}\) with \(n-g'-2q+1= q^2+r-g'-2q+1\le (q-1)^2\) as \(r\le g'\), and thus, by Theorem 1.2, \(b(G_{w_{q-g+g'}})\le q-1\), a contradiction. Therefore, \(g\ge 2q\).

If \(n-g\le q-1\), then \(G_{v_g}= P_{g-2q+1}\) and \(|G_{v_g}|\le (q-1)^2\) as \(g\le q^2\), and then by Theorem 1.2, \(b(G_{v_g})\le q-1\), a contradiction. So \(n-g\ge q\), and then \(G_{v_g}= P_{g-2q+1}+ P_{n-g-q+1}\) with \(|G_{v_g}|= q^2+r-3q+2\le (q-1)^2\) as \(r\le q-1\). Note that \((g,n-g)\notin {\mathcal {A}}\), and hence \(2\notin \{n-g-q+1,g-2q+1\}\). By Theorem 1.4, \(b(G_{v_g})=q-1\), a contradiction. \(\square \)

By Corollary 2.7 and Lemma 3.1, we have the following result.

Theorem 3.2

Suppose that \(U_{g}^{n-g}\) is a unicyclic graph of order \(n=q^2+r\) with \(1\le r\le q-1\). If \(2r+1\le g\le q^{2}\) and \((g,n-g)\notin {\mathcal {A}}\), then \(b(U_{g}^{n-g})= \left\lceil \sqrt{n}\right\rceil -1=q\).

3.2 Unicyclic Graphs in \({\mathcal {U}}_{n,g}^{(1)}\) with Burning Number \(q+1\)

In this subsection, we will characterize the graphs in \({\mathcal {U}}_{n,g}^{(1)}\) with burning number \(q+1\). Recall that \({\mathcal {U}}_{n,g}^{(1)}=\{U_{g}^{n-g}\}\) and \((x_1, x_2,\ldots , x_k)\) is an optimal burning sequence for \(U_{g}^{n-g}\). By Corollary 2.7, we only need to give some sufficient conditions for \(U_{g}^{n-g}\) to satisfy \(k\ge q+1\).

Lemma 3.3

If \( r\ge q\), then \(k\ge q+1\).

Proof

Since \( r\ge q\), we have

$$\begin{aligned} n+\frac{5}{4}=q^2+r+\frac{5}{4}\ge q^2+q+\frac{5}{4}=(q+\frac{1}{2})^2+1. \end{aligned}$$

Then \(\sqrt{n+\frac{5}{4}}>q +\frac{1}{2}\), i.e., \(\left\lceil \sqrt{n+\frac{5}{4}}-\frac{1}{2}\right\rceil \ge q+1\), and so, by (2), \(k\ge q+1\).

Lemma 3.4

If \(g\le 2r\), then \(k\ge q+1\).

Proof

Note that \(H:=P_{n-\lfloor \frac{g-1}{2}\rfloor }\) is an isometric subtree of \(U_{g}^{n-g}\). Since \(g\le 2r\), we have \(\lfloor \frac{g-1}{2}\rfloor \le r-1\). Then \(|H|=q^2+r-\lfloor \frac{g-1}{2}\rfloor \ge q^2+1\), and hence, by Theorem 1.2, \(b(H)\ge q+1\). By Lemma 2.4, we have \(k\ge b(H)\ge q+1\). \(\square \)

Lemma 3.5

If \(g\ge q^{2}+1\), then \(k\ge q+1\).

Proof

Since \(g\ge q^{2}+1\), \(n-g=q^2+r-g\le r-1\). Recall that \(v_g\in V(T_{k-i_0}(x_{k-i_0}))\). If \(x_{k-i_0}\in V(C_g)\), then \(|T_{k-i_0}(x_{k-i_0})|\le 2i_{0}+1+(n-g)\); and if \(x_{k-i_0}\notin V(C_g)\), then \(|T_{k-i_0}(x_{k-i_0})|\le 2(i_{0}-p_{i_{0}})+1+(n-g)\le 2i_{0}+1+(n-g)\). Hence, by (1), \( n=q^2+r\le k^2+n-g\le k^2+r-1, \) that is \(k^{2}\ge q^2+1\). Thus, \(k\ge q+1\). \(\square \)

Lemma 3.6

If \((g,n-g)\in {\mathcal {A}}\), then \(k\ge q+1\).

Proof

Since \((g,n-g)\in {\mathcal {A}}\), \(g\in \{2q+1,q^2-2\}\) and \(n=q^2+q-1\). If \(n\le k^2+k-2\), then \(k\ge q+1\) clearly. So we can assume \(n\ge k^2+k-1\). Then by (1), \(n=q^2+q-1= k^2+k-1\), which implies \(k=q\), \(i_0=k-1=q-1\), \(d(x_{k-i_0},v_g)=0\) (that is \(x_1=v_g\)), \(|T_{k-i_0}(x_{k-i_0})|=3(q-1)+1\) and \(|T_{k-i}(x_{k-i})|=2i+1\) for all \(i\not =q-1\). Hence, by Proposition 2.5, \(T_1(x_1)-v_g=3P_{q-1}\), and thus, \(U_{g}^{n-g}-N_{q-1}[v_g]= P_{g-2q+1}+ P_{n-g-q+1}\). Note that \(g\in \{2q+1,q^2-2\}\), and hence \(2\in \{g-2q+1,n-g-q+1\}\), which is a contradiction with \(|T_{k-i}(x_{k-i})|=2i+1\) for all \(i\not =q-1\). Hence, \(k\ge q+1\). \(\square \)

By Corollary 2.7 and Lemmas 3.33.6, we have the following result.

Theorem 3.7

Suppose that \(U_{g}^{n-g}\) is a unicyclic graph of order \(n=q^2+r\). If \( q\le r\le 2q+1\), or \(g\ge q^{2}+1\), or \(g\le 2r\), or \((g,n-g)\in {\mathcal {A}}\), then \(b(U_{g}^{n-g})=q+1\).

Note 1 By Theorems 3.2 and 3.7, \(b(U_{g}^{n-g})\) are listed in Table 1.

Table 1 Burning number of \(U_{g}^{n-g}\)

4 Burning Number of Unicyclic Graphs in \({\mathcal {U}}_{n,g}^{(2)}\)

Recall that \({\mathcal {U}}_{n,g}^{(2)}=\{U_{g}^{a_1,a_2}:a_1+a_2=n-g\}\) with \(a_1\ge a_2\), and \(\Delta (G)=d(v_g) =4\) for \(G\in {\mathcal {U}}_{n,g}^{(2)}\). By Theorem 1.1, \(b(G)=2\) if \(G\in \{{\mathcal {U}}_{5,g}^{(2)},{\mathcal {U}}_{6,g}^{(2)}\} \). Hence, we may assume \(n\ge 7\) and \(b(G)\ge 3\) for all \(G\in {\mathcal {U}}_{n,g}^{(2)}\). Let \(V(U_{g}^{a_1,a_2})=\{v_1,\ldots , v_g,u_1,\ldots ,u_{a_1},w_1,\ldots w_{a_2}\}\) with \(d(v_g,u_i)=i\) for \(0\le i\le a_1\) and \(d(v_g,w_j)=j\) for \(0\le j \le a_2\), where \(u_0=w_0=v_g\). Let \(n=q^2+r\) with \(1\le r\le 2q+1\). Then \(\lceil \sqrt{n}\rceil =q+1\).

4.1 Unicyclic Graphs in \({\mathcal {U}}_{n,g}^{(2)}\) with Burning Number q

In this subsection, we will give some sufficient conditions for the unicyclic graphs in \({\mathcal {U}}_{n,g}^{(2)}\) to have burning number q. By Theorem 2.1, we only need to show that \(b(U_{g}^{a_{1},a_{2}})\le q\), or find a burning sequence \((x_1,x_2,\ldots ,x_q)\) so that \(V(U_{g}^{a_{1},a_{2}})\subseteq N_{q-1}[x_1]\cup \cdots \cup N_1[x_{q-1}]\cup N_0[x_q]\). Denote \({\mathcal {B}}:=\{(2q-2,q^2-q-2,q+1),(2q-1,q^2-q-2,q+1)\}\).

Let \(v\in V(U_{g}^{a_{1},a_{2}})\), and let \(H(v):=U_{g}^{a_{1},a_{2}}-N_{q-1}[v]\). If \(b(H(v))\le q-1\), then \(b(U_{g}^{a_{1},a_{2}})\le q\) by Theorem 2.1. Hence, we can assume \(b(H(v))\ge q\) for any \(v\in V(U_{g}^{a_{1},a_{2}})\).

Lemma 4.1

Suppose that \(1\le r\le 2q-2\). If \(r+1\le g\le 2q-1\), \(a_{1}\le q^{2}-\lfloor \frac{g}{2}\rfloor -1\) and \((g,a_{1},a_{2})\notin {\mathcal {B}}\), then \(b(U_{g}^{a_{1},a_{2}})\le q\).

Proof

If \(a_2\le \lfloor \frac{g}{2}\rfloor \), then \(H({u_{q-1-\lfloor \frac{g}{2}\rfloor }})= P_{a_1-2(q-1)+\lfloor \frac{g}{2}\rfloor }\) and \(|H({u_{q-1-\lfloor \frac{g}{2}\rfloor }})|\le q^{2}-\lfloor \frac{g}{2}\rfloor -1-2q+2+\lfloor \frac{g}{2}\rfloor =(q-1)^2\), and then by Theorem 1.2, \(b(H(u_{q-1-\lfloor \frac{g}{2}\rfloor }))\le q-1\), a contradiction.

So \(a_{2}\ge \lfloor \frac{g}{2}\rfloor +1\). Then \(H(u_{q-1-\lfloor \frac{g}{2}\rfloor })=P_{a_{1}'}+ P_{a_{2}'}\) with \(a_1'=a_1-2(q-1)+\lfloor \frac{g}{2}\rfloor \), \(a_2'=a_2-\lfloor \frac{g}{2}\rfloor \) and \(a_{1}'+a_{2}'=q^{2}+r-g-(2q-2)\le (q-1)^2\) as \(r+1\le g\). By our assumption and Theorem 1.4, we have \(\min \{a_1',a_2'\}= 2\), \(g=r+1\) and \(a_{1}'+a_{2}'=(q-1)^2\).

If \(a_1'=2\), then \(a_{2}'=q^2-2q-1\), i.e., \(a_1=2q-\lfloor \frac{g}{2}\rfloor \) and \(a_2=q^2-2q-1+\lfloor \frac{g}{2}\rfloor \). Since \(a_1\ge a_2\), we have \(q^2-4q-1+2\lfloor \frac{g}{2}\rfloor \le 0\), which implies \(q=3\) and \(g\le 5\). Since \((g,a_{1},a_{2})\notin {\mathcal {B}}\), i.e., \((g,a_{1},a_{2})\notin \{(4,4,4),(5,4,4)\}\) for \(q=3\). Hence, \(g=3\), and then \(n=11\), \(a_1=5\) and \(a_2=3\). Then, \(H(w_1)= P_4\), and then by Theorem 1.2, \(b(H(w_1))=2=q-1\), a contradiction.

If \(a_2'=2\), then \(a_1=q^2-3-\lfloor \frac{g}{2}\rfloor \) and \(a_2=\lfloor \frac{g}{2}\rfloor +2\). If \(g\le 2q-3\), then \(q-2-\lfloor \frac{g}{2}\rfloor \ge 0\), and then \(H({u_{q-2-\lfloor \frac{g}{2}\rfloor }})=P_{a_1''}+ P_{a_2''}\) with \(a_1''=a_1-(2q-3-\lfloor \frac{g}{2}\rfloor )=(q-1)^2-1\) and \(a_2''=1\). By Theorem 1.4, \(b(H(u_{q-2-\lfloor \frac{g}{2}\rfloor }))=q-1\), a contradiction. Therefore, \(2q-2\le g\le 2q-1\), furthermore, \(a_1=q^2-q-2\) and \(a_2=q+1\), a contradiction with \((g,a_{1},a_{2})\notin {\mathcal {B}}\). \(\square \)

Let

$$\begin{aligned} B_1:= & {} \{(q^2-2,q,q),(q^2-6,q+2,q+2),(q^2-10,q+4,q+4),(q^2-3,q+1,q),\\&\quad (q^2-5,q+3,q),(q^2-7,q+3,q+2),(q^2-8,q+3,q+3),(q^2-7,q+5,q),\\&\quad (q^2-10,q+5,q+3),(q^2-11,q+5,q+4),(q^2-12,q+5,q+5),(q^2-14,\\&\quad q+6,q+6),(q^2-12,q+7,q+3),(q^2-14,q+7,q+5),(q^2-14,q+9,q+3)\}.\\ B_2:= & {} \{(2q,q^2-q-2,q),(2q+2,q^2-q-6,q+2),(2q+4,q^2-q-10,q+4),\\&\quad (2q+1,q^2-q-3,q),\\&\quad (2q+3,q^2-q-5,q),(2q+3,q^2-q-7,q+2),(2q+3,q^2-q-8,q+3),\\&\quad (2q+5,q^2-q-7,q),(2q+5,q^2-q-10,q+3),(2q+5,q^2-q-11,q+4),\\&\quad (2q+5,q^2-q-12,q+5),(2q+6,q^2-q-14,q+6),(2q+7,\\&\quad q^2-q-12,q+3),(2q+7,q^2-q-14,q+5),(2q+9,q^2-q-14,q+3)\}.\\ B_3:= & {} \{(2q,q^2-q-3,q+1),(2q,q^2-q-5,q+3),(2q+2,q^2-q-7,q+3),\\&\quad (2q,q^2-q-7,q+5),(2q+3,q^2-q-10,q+5),(2q+4,q^2-q-11,q+5),\\&\quad (2q +3,q^2-q-12,q+7),(2q+5,q^2-q-14,q+7),(2q+3,q^2-q-14,q+9)\}.\\ B_4:= & {} \{(24,16,6),(22,16,8),(35,19,7),(32,19,10),(30,19,12),(28,19,14),\\&\quad (26,19,16),(30,21,10),(28,21,12),(45,22,11),(43,22,13),(41,22,15),\\&\quad (34,22,22),(43,24,11),(41,24,13),(32,24,22),(41,26,11),(60,25,12),\\&\quad (58,25,14),(47,25,25),(58,27,12),(47,38,12),(77,28,13)\}.\\ B_5:= & {} \{(22,18,6),(22,16,8),(26,28,7),(26,25,10),(26,23,12),(26,21,14),\\&\quad (26,19,16),(28,23,10),(28,21,12),(30,37,11),(30,35,13),(30,33,15),\\&\quad (30,26,22),(32,35,11),(32,33,13),(32,24,22),(34,33,11),(34,51,12),\\&\quad (34,49,14),(34,38,25),(36,49,12),(47,38,12),(38,67,13)\}.\\ B_6:= & {} \{(12,18,16),(14,16,16),(14,28,19),(17,25,19),(19,23,19),(21,21,19),\\&\quad (23,19,19),(17,23,21),(19,21,21),(19,37,22),(21,35,22),(23,33,22),\\&\quad (30,26,22),(19,35,24),(21,33,24),(30,24,24),(19,33,26),(21,51,25),\\&\quad (23,49,25),(34,38,25),(21,49,27),(21,38,38),(23,67,28)\}. \end{aligned}$$

Denote

$$\begin{aligned} {\mathcal {C}}_1= & {} \{(2q+1,q^{2}-q-2,r-q+1),(q^{2}-2,q+1,r-q+1)\};\\ {\mathcal {C}}_2= & {} \{(q^{2}-7,q+2,q+1),(2q+1,q^{2}-q-6,q+1),(2q+1,q^{2}-q-7,q+2)\};\\ {\mathcal {C}}_3= & {} \{(q^2-3,q,q),(q^2-5,q+1,q+1),(q^2-6,q+2,q+1),(q^2-7,q+2,q+2),\\&\quad (q^2-7,q+3,q+1),(q^2-11,q+4,q+4),(2q+4,q^2-q-11,q+4),\\&\quad (2q+1,q^2-q-5,q+1),(2q+1,q^2-q-6,q+2),(2q+1,q^2-q-7,q+3),\\&\quad (2q+2,q^2-q-6,q+1),(2q+2,q^2-q-7,q+2),(2q+3,q^2-q-7,q+1),\\&\quad (2q,q^2-q-3,q),(22,16,7),(13,16,16)\};\\ {\mathcal {C}}_{4}= & {} \{(g,a_{1},a_{2}):n=q^{2}+2q-2,g-q\ge a_{1}\ge a_{2}=q+1\}\cup B_{1}\cup B_{4};\\ {\mathcal {C}}_{5}= & {} \{(g,a_{1},a_{2}):n=q^{2}+2q-2,a_{1}\ge g-q\ge a_{2}=q+1\}\cup B_{2}\cup B_{5};\\ {\mathcal {C}}_{6}= & {} \{(g,a_{1},a_{2}):n=q^{2}+2q-2,a_{1}\ge a_{2}\ge g-q=q+1\}\cup B_{3}\cup B_{6}. \end{aligned}$$

If \(g\ge 2q+2\), \(a_1\ge a_2\ge q\), we let \(\{m_1,m_2,m_3\}=\{g-2q+1,a_1-q+1,a_2-q+1\}\) with \(m_1\ge m_2\ge m_3\ge 1\), then \(m_3\not =a_1-q+1\) as \(a_{1}\ge a_{2}\).

Lemma 4.2

Suppose that \(1\le r\le 2q-2\). If \(2q\le g\le q^{2}\), \(a_{2}\ge r-q+1\) and \((g,a_{1},a_{2})\notin \bigcup _{i=1}^6 {\mathcal {C}}_i\), then \(b(U_{g}^{a_{1},a_{2}})\le q\).

Proof

If \(a_{2}\le q-1\), then \(a_{1}\ge q\) (otherwise, \(H(v_g)= P_{g-2q+1}\) with \(|H(v_g)|\le (q-1)^{2}\) as \(2q\le g\le q^{2}\), then by Theorem 1.2, \(b(H(v_g))\le q-1\), a contradiction). So \(H(v_g)= P_{g-2q+1}+ P_{a_{1}-q+1}\) with \(|H(v_g)|=q^{2}+r-3(q-1)-1-a_2\le (q-1)^{2}\) as \(a_2\ge r-q+1\). By our assumption and Theorem 1.4, \(a_2=r-q+1\) and \(2\in \{g-2q+1,a_{1}-q+1\}\), which implies \((g,a_{1},a_{2})\in {\mathcal {C}}_1\), a contradiction. Thus, \(a_{2}\ge q\). Then \(H(v_g) =P_{m_1}+ P_{m_2}+ P_{m_3}\) with \(|H(v_g)|=q^2+r-4q+3\). Note that \(|H(w_1)|=|H(v_g)|+2\).

If \(r\le 2q-6\), then \(|H(v_g)|\le (q-1)^2-4\), and then \(b(H(v_g))=q-1\) by Theorem 1.5, a contradiction.

If \(r=2q-5\), then \(|H(v_g)|= (q-1)^{2}-3\), and \((m_2,m_3)=(2,2)\) by our assumption and Theorem 1.5. Then \(m_1\ge 2\) and \(a_2-q+1=2\), and then \(H(w_1) \in \{P_{m_1+2}+ P_{3}+ P_{1},P_{4}+P_{m_1+1}+ P_{1}\}\) with \(|H(w_1)|= (q-1)^{2}-1\), and thus, by Theorem 1.5, \(b(H(w_1))= q-1\), a contradiction.

If \(r=2q-4\), then \(|H(v_g)|= (q-1)^{2}-2\), and \((m_2,m_3)\in \{(2,2),(3,2)\}\) by our assumption and Theorem 1.5. If \(m_3=g-2q+1=2\), then \(m_2=a_2-q+1\in \{2,3\}\) as \(a_1\ge a_2\), which implies \((g,a_{1},a_{2})\in {\mathcal {C}}_{2}\), a contradiction. Therefore, \(m_3=a_2-q+1\). If \(m_2=a_1-q+1\), then \(m_2=2\) (otherwise, \(a_1-q+1=3\), and then \((g,a_{1},a_{2})\in {\mathcal {C}}_{2}\), a contradiction), and then \(m_1=(q-1)^{2}-6\ge 3\). Note that \(H(w_1) =P_{m_1+2}+ P_{3}+ P_{1}\) with \(|H(w_1)|= (q-1)^{2}\), and hence, by Theorem 1.5, \(b(G)= q-1\), a contradiction. So \(m_2=g-2q+1\), furthermore, \(g-2q+1=3\) (otherwise, \((g,a_{1},a_{2})\in {\mathcal {C}}_{2}\), a contradiction), and thus \(H(w_1)=P_{m_1+1}+ P_{5}+ P_{1}\) with \(m_1=(q-1)^{2}-7\ge 9\) and \(|H(w_1)|=(q-1)^{2}\). By Theorem 1.5, \(b(H(w_1))= q-1\), a contradiction.

If \(r=2q-3\), then \(|H(v_g)|= (q-1)^{2}-1\), by our assumption and Theorem 1.5, \((m_1,m_2,m_3)\in J^3\), which implies \((g,a_{1},a_{2})\in {\mathcal {C}}_3\), a contradiction.

If \(r=2q-2\), then \(|H(v_g)|= (q-1)^{2}\), and then by our assumption and Theorem 1.5, we have \((m_1,m_2,m_3)\in J^4\cup J^5\), which implies \((g,a_{1},a_{2})\in {\mathcal {C}}_{4}\cup {\mathcal {C}}_{5}\cup {\mathcal {C}}_{6}\), a contradiction. \(\square \)

By Corollary 2.7 and Lemmas 4.14.2, we have

Theorem 4.3

Suppose that \(U_{g}^{a_{1},a_{2}}\) \((a_{1}\ge a_{2})\) is a unicyclic graph of order \(n=q^2+r\) (\(1\le r\le 2q+1\)). If \(1\le r\le 2q-2\), \(r+1\le g\le 2q-1\), \(a_{1}\le q^{2}-\lfloor \frac{g}{2}\rfloor -1\), \((g,a_{1},a_{2})\notin {\mathcal {B}}\) or \(2q\le g\le q^{2}\), \(a_{2}\ge r-q+1\) and \((g,a_{1},a_{2})\notin \bigcup _{i=1}^6 {\mathcal {C}}_i\), then \(b(U_{g}^{a_{1},a_{2}})= \left\lceil \sqrt{n}\right\rceil -1=q\).

4.2 Unicyclic Graphs in \({\mathcal {U}}_{n,g}^{(2)}\) with Burning Number \(q+1\)

In this subsection, we will characterize the graphs in \({\mathcal {U}}_{n,g}^{(2)}\) with burning number \(q+1\). By Corollary 2.7, we only need to give some sufficient conditions for a unicyclic graph to satisfy \(k\ge q+1\).

Recall that \((x_1, x_2,\ldots , x_k)\) is an optimal burning sequence for \(U_{g}^{a_{1},a_{2}}\), where \(n=g+a_{1}+a_{2}\). Suppose that \(v_g\in V(T_{k-i_0}(x_{k-i_0}))\) for some \(i_0\in [k]\). Then \(T_{k-i}(x_{k-i})\) is a path with \(|T_{k-i}(x_{k-i})|\le 2i+1\) for any \(i\ne i_{0}\).

Lemma 4.4

If \( r\ge 2q-1\), then \(k\ge q+1\).

Proof

Since \( r\ge 2q-1\), we have \(n+3=q^2+r+3\ge q^2+2q+2=(q+1)^2+1\). Then \(\left\lceil \sqrt{n+3}\right\rceil -1\ge q+1\), and then by (2), \(k\ge q+1\). \(\square \)

By Lemma 4.4, we can assume \(r\le 2q-2\) in the following.

Lemma 4.5

If \(3\le g\le r\) or \(a_{1}\ge q^{2}-\lfloor \frac{g}{2}\rfloor \), then \(k\ge q+1\).

Proof

If \(3\le g\le r\), then \(a_{1}+a_{2}+1=q^2+r-g+1\ge q^{2}+1\); and if \(a_{1}\ge q^{2}-\lfloor \frac{g}{2}\rfloor \), then \(a_{1}+\lfloor \frac{g}{2}\rfloor +1\ge q^2+1\). Note that \(P_{a_{1}+a_{2}+1}\) and \(P_{a_{1}+\lfloor \frac{g}{2}\rfloor +1}\) are isometric subtrees of \(U_{g}^{a_{1},a_{2}}\), and hence, by Lemma 2.4 and Theorem 1.2, \(k\ge b(P_{a_{1}+a_{2}+1})=\lceil \sqrt{a_{1}+a_{2}+1}\rceil \ge q+1\) and \(k\ge b(P_{a_{1}+\lfloor \frac{g}{2}\rfloor +1})=\left\lceil \sqrt{a_{1}+\lfloor \frac{g}{2}\rfloor +1}\right\rceil \ge q+1\). \(\square \)

Lemma 4.6

If \(g\ge q^{2}+1\), then \(k\ge q+1\).

Proof

Note that \(|T_{k-i_0}(x_{k-i_0})|\le 2i_{0}+1+a_1+a_2\). Hence, \(n\le \sum _{i=0}^{k-1}(2i+1)+a_{1}+a_{2}=k^2+n-g\le k^2+n-q^2-1,\) that is \(k^{2}\ge q^2+1\). Thus, \(k\ge q+1\). \(\square \)

Lemma 4.7

Let \(2q\le g\le q^{2}\). If \(a_{2}\le r-q\) or \((g,a_{1},a_{2})\in {\mathcal {C}}_1\), then \(k\ge q+1\).

Proof

Since \(2q\le g\le q^{2}\) and \(a_{2}\le r-q+1\), we have \(a_1=q^2+r-g-a_2\ge q-1\). Then \(|T_{k-i_0}(x_{k-i_0})|\le 2i_{0}+1+(i_{0}-p_{i_{0}})+a_2\), where \(p_{i_{0}}=d(v_g,x_{k-i_0})\). Hence,

$$\begin{aligned} n=q^2+r=\sum _{i=1}^k|V(T_{i}(x_i))|\le k^2+i_0-p_{i_{0}}+a_2\le k^2+k-1+a_2. \end{aligned}$$
(3)

If \(a_{2}\le r-q\), then by (3), \( k^2+k\ge q^2+q+1\), i.e., \(k\ge q+1\).

If \((g,a_{1},a_{2})\in {\mathcal {C}}_1\), then \(a_{2}=r-q+1\le q-1\) as \(r\le 2q-2\), and then by (3), \(n=q^2+r\le k^2+k+r-q\). If \(n=q^2+r\le k^2+k-1+r-q\), then \(k\ge q+1\). So we assume \(n\ge k^2+k+r-q\). Then \(n=q^2+r=k^2+k+r-q\), which implies \(k=q\) and all inequalities in (4) should be equal, that is, \(i_0=k-1\), \(p_{i_0}=0\) and \(|T_{k-i}(x_{k-i})|=2i+1\) for any \(i\not =i_0\). So \(x_1=v_g\) and \(H(v_g)\cong P_{2}+P_{q^2-2q-1}\), a contradiction. \(\square \)

Lemma 4.8

If \((g,a_{1},a_{2})\in {\mathcal {B}}\), then \(k\ge q+1\).

Proof

Since \((g,a_{1},a_{2})\in {\mathcal {B}}\), we have \(2q-3\le r=g-1\le 2q-2\) and \(a_1\ge a_2= q+1\). Then \(|T_{k-i_0}(x_{k-i_0})|\le 2i_{0}+g\), and hence, \(n=q^2+r=\sum _{i=1}^k|T_{i}(x_i)|\le k^2+g-1=k^2+r\). Then \(n=q^2+r=k^2+r\) (otherwise \(n=q^2+r\le k^2+r-1\), then \(k\ge q+1\)), which implies \(k=q\), \(|T_{k-i_0}(x_{k-i_0})|=2i_{0}+g\) and \(|T_{k-i}(x_{k-i})|=2i+1\) for any \(i\not =i_0\), then \(i_0=q-1\) and \(|T_1(x_1)|=2i_0+g\in \{4(q-1),4(q-1)+1\}\). By Proposition 2.5 we can find that \(x_1=v_g\), and \(|T_{1}(x_{1})|=|U_{g}^{q-1,q-1}|\), then \(H(v_g)=P_{q^2-2q-1}+P_{2}\), a contradiction with \(|T_{k-i}(x_{k-i})|=2i+1\) for any \(i\not =i_0\). \(\square \)

Lemma 4.9

If \((g,a_{1},a_{2})\in \bigcup _{i=2}^{6}{\mathcal {C}}_i\), then \(k\ge q+1\).

Proof

Since \( k \ge q \), we shall assume, to the contrary, that \( k = q \). Let \(G^*:=U_{g}^{a_{1},a_{2}}-V(T_{1}(x_{1}))\), then by Theorem 2.1, \(b(G^*)\le q-1\).

By Proposition 2.5, \(|T_{k-i_0}(x_{k-i_0})|\le 2i_{0}+1+(s-2)(i_{0}-p_{i_{0}})\) with \(s\le 4\) and \(p_{i_{0}}=d(v_g,x_{k-i_0})\). Hence, by (1),

$$\begin{aligned} n=q^2+r\le k^2+2(i_0-p_{i_{0}})\le k^2+2k-2=q^2+ 2q-2. \end{aligned}$$
(4)

If \((g,a_{1},a_{2})\in \bigcup _{i=4}^{6}{\mathcal {C}}_i\), i.e., \(n=q^2+ 2q-2\), then all inequalities in (4) should be equal, that is \(p_{i_0}=0\), \(i_0=q-1\), \(|T_{1}(x_{1})|=4(q-1)+1\), and then \(x_1=v_g\), \(T_{1}(x_{1})-v_g=4P_{q-1}\) by Proposition 2.5, which implies \(G^*= P_{m_1}+P_{m_2}+P_{m_3}\) and \(|G^*|=(q-1)^2\), where \(\{m_1,m_2,m_3\}=\{g-2q+1,a_1-q+1,a_2-q+1\}\) and \(m_1\ge m_2\ge m_3\ge 1\). On the other hand, since \((g,a_{1},a_{2})\in \bigcup _{i=4}^{6}{\mathcal {C}}_i\), we can check that \((m_1,m_2,m_3)\in J^4\cup J^5\), and thus, by Theorem 1.5, \(b(G^*)=q\), a contradiction.

If \((g,a_{1},a_{2})\in {\mathcal {C}}_{3}\), then \(n=q^2+2q-3\), and then by (4), \(p_{i_0}=0\) (that is \(x_1=v_g\)) and \(i_0=q-1\), furthermore, \(|T_{1}(x_{1})|=4(q-1)\) and \(T_{1}(x_{1})-v_g=3P_{q-1}+P_{q-2}\) by Proposition 2.5, or \(|T_{1}(x_{1})|=4(q-1)+1\) and \(T_{1}(x_{1})-v_g=4P_{q-1}\), which implies \(G^*= P_{m}+P_{m'}+P_{M}\) for some \(M\ge m'\ge m\ge 1\). In the former case, \(G^*\in \{P_{g-2q+2}+P_{a_1-q+1}+P_{a_2-q+1}, P_{g-2q+1}+P_{a_1-q+2}+P_{a_2-q+1}, P_{g-2q+1}+P_{a_1-q+1}+P_{a_2-q+2}\}\), \(|G^*|=(q-1)^2\) and we can check that \((M,m',m)\in J^4\cup J^5\). In the later case, \(G^*= P_{g-2q+1}+P_{a_1-q+1}+P_{a_2-q+1}\), \(|G^*|=(q-1)^2-1\) and \((M,m',m)\in J^3\). Then in either case, \(b(G^*)=q\) by Theorem 1.5, a contradiction.

If \((g,a_{1},a_{2})\in {\mathcal {C}}_{2}\), then \(n=q^2+2q-4\), and then by (4), \(4q-5\le |T_{1}(x_{1})|\le 4q-3\). If \(|T_{1}(x_{1})|=4q-3\), then \(x_1=v_g\), \(T_{1}(x_{1})-v_g=4P_{q-1}\) by Proposition 2.5, which implies \(G^*\in \{ P_{q^2-2q-6}+P_3+P_2,P_{q^2-2q-5}+P_2+P_2\}\) and \(|G^*|=(q-1)^2-2\), and then \(b(G^*)=q\) by Theorem 1.5, a contradiction. If \(|T_{1}(x_{1})|=4(q-1)\), then \(x_1=v_g\), \(T_{1}(x_{1})-v_g=3P_{q-1}+P_{q-2}\) by Proposition 2.5, which implies \(G^*\in \{ P_{q^2-2q-5}+P_3+P_2,P_{q^2-2q-6}+P_4+P_2,P_{q^2-2q-6}+P_3+P_3, P_{q^2-2q-4}+P_2+P_2\}\) and \(|G^*|=(q-1)^2-1\), and then \(b(G^*)=q\) by Theorem 1.5, a contradiction. So \(|T_{1}(x_{1})|=4q-5\). Then \(|G^*|=(q-1)^2\) and \(p_{i_{0}}=d(v_g,x_{1})\le 1\). If \(x_1=v_g\), then \(T_{1}(x_{1})-v_g\in \{3P_{q-1}+P_{q-3}, 2P_{q-1}+2P_{q-2}\}\) by Proposition 2.5, which implies \(G^*\in \{ P_{q^2-2q-6}+P_4+P_3,P_{q^2-2q-5}+P_4+P_2,P_{q^2-2q-6}+P_5+P_2, P_{q^2-2q-3}+P_2+P_2, P_{q^2-2q-4}+P_3+P_2, P_{q^2-2q-6}+P_5+P_2, P_{q^2-2q-5}+P_3+P_3\}\), and then \(b(G^*)=q\) by Theorem 1.5, a contradiction. So \(d(x_1,v_g)=1\), then \(x_1\in \{w_1,u_1,v_1\}\) and \(T_{1}(x_{1})-\{v_g,x_1\}=3P_{q-2}+P_{q-1}\). If \(x_1=w_1\), then \(G^*\in \{ P_{q^2-2q-4}+P_4+P_1,P_{q^2-2q-5}+P_4+P_2\}\); if \(x_1=u_1\), then \(G^*\in \{ P_{q^2-2q-4}+P_3+P_2,P_{q^2-2q-6}+P_4+P_3,P_{q^2-2q-7}+P_4+P_4\}\); and if \(x_1=v_1\), then \(G^*\in \{ P_{q^2-2q-4}+P_3+P_2,P_{q^2-2q-6}+P_4+P_3,P_{q^2-2q-5}+P_4+P_2\}\), and thus \(b(G^*)=q\) by Theorem 1.5, a contradiction. \(\square \)

By Corollary 2.7 and Lemmas 4.44.9, we have

Theorem 4.10

Suppose that \(U_{g}^{a_{1},a_{2}}\) (\(a_{1}\ge a_{2}\)) is a unicyclic graph of order \(n=q^2+r\) with \(1\le r\le 2q+1\). If \(r\ge 2q-1\) or \(3\le g\le r\) or \(g\ge q^{2}+1\) or \(a_{1}\ge q^{2}-\lfloor \frac{g}{2}\rfloor \), or \(2q\le g\le q^{2}\) and \(a_{2}\le r-q\), or \((g,a_{1},a_{2})\in \bigcup _{i=1}^{6}{\mathcal {C}}_{i}\cup {\mathcal {B}}\), then \(b(U_{g}^{a_{1},a_{2}})= \left\lceil \sqrt{n}\right\rceil =q+1\).

Note 2. By Theorems 4.3 and 4.10, \(b(U_{g}^{a_1,a_2})\) are listed in Table 2, where \(g+a_1+a_2=q^2+r\) and \(1\le r\le 2q+1\).

Table 2 Burning number of \(U_{g}^{a_{1},a_{2}}\)