1 Introduction

The definition of \(\eta \)-Hermitian quaternion matrix was first proposed by Took et al. [38] (see Definition 2.1). Nowadays \(\eta \)-Hermitian quaternion matrices play an important role in widely linear model and statistical signal processing [35,36,37,38].

Since Took et al. [38] first studied the \(\eta \)-Hermitian quaternion matrix in 2011, there have been some papers to discuss the topics related to \(\eta \)-Hermitian quaternion matrix. These papers mainly considered the \(\eta \)-Hermitian solutions to quaternion matrix equations (e.g. [3, 31, 43,44,45,46]) and decompositions of quaternion matrices involving \(\eta \)-Hermicity (e.g. [15, 17]). For instance, He and Wang [13] provided some necessary and sufficient conditions for the existence of a solution (XYZ) to the quaternion matrix equation

$$\begin{aligned} A_{1}X+(A_{1}X)^{\eta *}+B_{1}YB_{1}^{\eta *}+C_{1}ZC_{1}^{\eta *}=D_{1}, \end{aligned}$$
(1.1)

where Y and Z are required to be \(\eta \)-Hermitian. They also presented the general solution to equation (1.1) when it is solvable. Liu [29] considered the \(\eta \)-anti-Hermitian solutions to some classic quaternion matrix equations. Zhang and Wang [47] derived the exact solution to a system of quaternion matrix equations involving \(\eta \)-Hermicity. Many authors investigated the solutions to quaternion matrix equations (e.g. [1, 2, 4,5,6,7,8,9,10,11,12, 16, 18,19,20,21,22,23,24,25,26,27,28, 32,33,34, 39,40,41, 45]).

In 2014, He and Wang [14] gave the solvability conditions and general \(\eta \)-Hermitian solution to the system of quaternion matrix equations with two unknowns

$$\begin{aligned} \left\{ \begin{array}{l} A_{1}X=C_{1}, ~XB_{1}=D_{1},\\ A_{2}Y=C_{2}, ~YB_{2}=D_{2},\\ A_{3}XA_{3}^{\eta *}+C_{3}YC_{3}^{\eta *}=P. \end{array} \right. \end{aligned}$$
(1.2)

However, to our knowledge, there has been little information on the generalization of system (1.2). Motivated by the work mentioned above and keeping the wide application of \(\eta \)-Hermitian quaternion matrices, we consider the \(\eta \)-Hermitian solution to the system of quaternion matrix equations with three unknowns

$$\begin{aligned} \left\{ \begin{array}{l} A_{1}X=C_{1}, ~XB_{1}=D_{1},\\ A_{2}Y=C_{2}, ~YB_{2}=D_{2},\\ A_{3}Z=C_{3}, ~ZB_{3}=D_{3},\\ A_{4}XA_{4}^{\eta *}+C_{4}YC_{4}^{\eta *}=P,\\ B_{4}ZB_{4}^{\eta *}+D_{4}YD_{4}^{\eta *}=Q, \end{array} \right. \end{aligned}$$
(1.3)

where \(A_{i},B_{i},C_{i},D_{i},P=P^{\eta *}\) and \(Q=Q^{\eta *}\) are given matrices \((i=1,2,3,4)\).

The remainder of the paper is organized as follows. In Sect. 2, we review the definition and properties of \(\eta \)-Hermitian quaternion matrix. We also discuss some quaternion matrix equations, which will be used in proving our main result. In Sect. 3, we explore the consistency and \(\eta \)-Hermitian solutions to system (1.3). In Sect. 4, we provide an algorithm and a numerical example to illustrate our results. Finally, a brief conclusion is given in Sect. 5.

Throughout this paper, let \({\mathbb {R}}\) and \({\mathbb {H}}^{m\times n}\) stand for the real number field and the set of all \(m\times n\) matrices over the real quaternion algebra

$$\begin{aligned} {\mathbb {H}}=\big \{a_{0}+a_{1}{\mathbf {i}}+a_{2}{\mathbf {j}} +a_{3}{\mathbf {k}}\big |~{\mathbf {i}}^{2}={\mathbf {j}}^{2} ={\mathbf {k}}^{2}=\mathbf {ijk}=-1,a_{0} ,a_{1},a_{2},a_{3}\in {\mathbb {R}}\big \}, \end{aligned}$$

respectively. The symbol \(A^{*}\) stands for the conjugate transpose of matrix A. I and 0 denotes the identity matrix and zero matrix with appropriate sizes, respectively. The rank of \(A\in {\mathbb {H}}^{m\times n}\) is defined as the (quaternion) dimension of

$$\begin{aligned} \text {Ran}(A):=\{Ax:~x\in {\mathbb {H}}^{m\times 1}\}, \end{aligned}$$

the range of A (Definition 3.2.3 in [32]). If \(A\in {\mathbb {H}}^{m\times n},\) then there exist nonsingular matrices P and Q such that

$$\begin{aligned} PAQ=\begin{pmatrix}I_{r(A)}&{}\quad 0\\ 0&{}\quad 0\end{pmatrix}, \end{aligned}$$

where the symbol r(A) is the rank of A. The Moore-Penrose inverse \(A^{\dag }\) of a quaternion matrix A, is defined to be the unique matrix \(A^{\dag },\) such that

$$\begin{aligned} \text {(i)}~AA^{\dag }A=A,~\text {(ii)}~A^{\dag }AA^{\dag }=A^{\dag },~\text {(iii)} ~(AA^{\dag })^{*}=AA^{\dag },~\text {(iv)}~(A^{\dag }A)^{*}=A^{\dag }A. \end{aligned}$$

Furthermore, \(L_{A}\) and \(R_{A}\) stand for the projectors \(L_{A} =I-A^{\dag }A\) and \(R_{A}=I-AA^{\dag }\) induced by A, respectively.

2 Preliminaries

In this section, we first review the definition of \(\eta \)-Hermitian quaternion matrix.

Definition 2.1

(\(\eta \)-Hermitian quaternion matrix) [38] For \(\eta \in \{{\mathbf {i}},{\mathbf {j}},{\mathbf {k}}\}\), a square real quaternion matrix A is said to be \(\eta \)-Hermitian if \(A=A^{\eta *},\) where \(A^{\eta *}=-\eta A^{*}\eta \).

Some basic properties of \(\eta \)-Hermitian matrix are given in the following lemma.

Lemma 2.1

[13] Let \(A\in {\mathbb {H}}^{m\times n}\) be given. Then,

  1. (1)

    \((A^{\eta *})^{\dag }=(A^{\dag })^{\eta *}\).

  2. (2)

    \(r(A)=r(A^{\eta *})\).

  3. (3)

    \((L_{A})^{\eta *}=R_{A^{\eta *}}\).

  4. (4)

    \((R_{A})^{\eta *}=L_{A^{\eta *}}\).

Now, we discuss some quaternion matrix equations, which will be used for proving the main result of the paper.

Lemma 2.2

[14] The system of quaternion matrix equations

$$\begin{aligned} A_{1}X=C_{1},~XB_{1}=D_{1} \end{aligned}$$
(2.1)

has an \(\eta \)-Hermitian solution if and only if \(R_{E_{1}}F_{1}=0\) and \(E_{1}F_{1}^{\eta *}=F_{1}E_{1}^{\eta *}\), where

$$\begin{aligned} E_{1}= \begin{bmatrix} A_{1}\\ B_{1}^{\eta *} \end{bmatrix} , ~F_{1}= \begin{bmatrix} C_{1}\\ D_{1}^{\eta *} \end{bmatrix}. \end{aligned}$$

In this case, the general \(\eta \)-Hermitian solution to (2.1) can be expressed as

$$\begin{aligned} X=E_{1}^{\dag }F_{1}+F_{1}^{\eta *}(E_{1}^{\dag })^{\eta *} -E_{1}^{\dag }E_{1}F_{1}^{\eta *}(E_{1}^{\dag })^{\eta *}+L_{E_{1}}W(L_{E_{1}})^{\eta *}, \end{aligned}$$

where W is an arbitrary \(\eta \)-Hermitian matrix over \({\mathbb {H}}\) with appropriate size.

Lemma 2.3

[13] Consider the quaternion matrix equation (1.1). Set

$$\begin{aligned} A=R_{A_{1}}B_{1},~B=R_{A_{1}}C_{1},~ C=R_{A_{1}}D_{1}(R_{A_{1}})^{\eta *},~M_{1}=R_{A}B,~S_{1}=BL_{M_{1}}. \end{aligned}$$

Then, the following statements are equivalent:

  1. (1)

    Equation (1.1) has a solution (XYZ), where Y and Z are \(\eta \)-Hermitian.

  2. (2)
    $$\begin{aligned} R_{M_{1}}R_{A}C=0,\qquad R_{A}CL_{B^{\eta *}}=0. \end{aligned}$$
  3. (3)
    $$\begin{aligned} r\begin{bmatrix}D_{1} &{} C_{1} &{} B_{1} &{} A_{1}\\ A_{1}^{\eta *} &{} 0 &{} 0 &{} 0\end{bmatrix}=r[C_{1},~B_{1},~A_{1}]+r(A_{1}), \end{aligned}$$
    $$\begin{aligned} r\begin{bmatrix}D_{1} &{} B_{1} &{} A_{1}\\ A_{1}^{\eta *} &{} 0 &{} 0\\ C_{1}^{\eta *} &{} 0 &{} 0\end{bmatrix}=r[B_{1},~A_{1}]+r[A_{1},~C_{1}]. \end{aligned}$$

    If matrix equation (1.1) is consistent, then the general solution to (1.1) is

    $$\begin{aligned} X=&\,A_{1}^{\dag }(D_{1}-B_{1}YB_{1}^{\eta *}-C_{1}ZC_{1}^{\eta *}) -\frac{1}{2}A_{1}^{\dag }(D_{1}-B_{1}YB_{1}^{\eta *} -C_{1}ZC_{1}^{\eta *})(A_{1}^{\dag })^{\eta *}A_{1}^{\eta *}\\&+L_{A_{1}}U_{1}+U_{2}^{\eta *}(A_{1}^{\dag })^{\eta *}A_{1}^{\eta *} -A_{1}^{\dag }U_{2}A_{1}^{\eta *},\\ Y=&\,Y^{\eta *}=A^{\dag }C(A^{\dag })^{\eta *}-\frac{1}{2}A^{\dag }BM_{1}^{\dag }C[I+(B^{\dag })^{\eta *}S_{1}^{\eta *}](A^{\dag })^{\eta *}\\&-\frac{1}{2}A^{\dag }(I+S_{1}B^{\dag })C(M_{1}^{\dag })^{\eta *} B^{\eta *}(A^{\dag })^{\eta *}\\&-A^{\dag }S_{1}VS_{1}^{\eta *}(A^{\dag })^{\eta *}+L_{A}U_{3}+(L_{A}U_{3})^{\eta *},\\ Z=&\,Z^{\eta *}=\frac{1}{2}M_{1}^{\dag }C(B^{\dag })^{\eta *}[I+(S_{1}^{\dag }S_{1})^{\eta *}]+\frac{1}{2}(I+S_{1}^{\dag }S_{1})B^{\dag }C(M_{1}^{\dag })^{\eta *} +L_{M_{1}}V(L_{M_{1}})^{\eta *}\\&+L_{B}U_{4}+(L_{B}U_{4})^{\eta *} +L_{M_{1}}L_{S_{1}}U_{5}+(L_{M_{1}}L_{S_{1}}U_{5})^{\eta *}, \end{aligned}$$

    where \(U_{1},U_{2},U_{3},U_{4},U_{5},V=V^{\eta *}\) are arbitrary matrices over \({\mathbb {H}}\) with appropriate sizes.

The following lemma can be easily generalized to \({\mathbb {H}}\).

Lemma 2.4

[30] Let \(A\in {\mathbb {H}}^{m\times n},B\in {\mathbb {H}}^{m\times k},C\in {\mathbb {H}}^{l\times n}\) be given. Then,

  1. (1)

    \(r(A)+r(R_{A}B)=r(B)+r(R_{B}A)=r [ A,~ B ]\).

  2. (2)

    \(r(A)+r(CL_{A})=r(C)+r(AL_{C})=r \begin{bmatrix} A\\ C \end{bmatrix}\).

3 The General \(\eta \)-Hermitian Solution to System (1.3)

In this section, we derive some practical necessary and sufficient conditions for the existence of an \(\eta \)-Hermitian solution (XYZ) to the system of quaternion matrix equations

$$\begin{aligned} \left\{ \begin{array}{l} A_{1}X=C_{1}, ~XB_{1}=D_{1},\\ A_{2}Y=C_{2}, ~YB_{2}=D_{2},\\ A_{3}Z=C_{3}, ~ZB_{3}=D_{3},\\ A_{4}XA_{4}^{\eta *}+C_{4}YC_{4}^{\eta *}=P,\\ B_{4}ZB_{4}^{\eta *}+D_{4}YD_{4}^{\eta *}=Q. \end{array} \right. \end{aligned}$$
(3.1)

Moreover, we also give the expression of the general \(\eta \)-Hermitian solution to system (3.1) when it is solvable. For simplicity, we denote

$$\begin{aligned} E_{j}=&\, \begin{bmatrix} A_{j}\\ B_{j}^{\eta *} \end{bmatrix}, ~F_{j}= \begin{bmatrix} C_{j}\\ D_{j}^{\eta *} \end{bmatrix},~(j=1,2,3), \end{aligned}$$
(3.2)
$$\begin{aligned} A_{5}=&\,A_{4}L_{E_{1}},~B_{5}=B_{4}L_{E_{3}},~C_{5}=C_{4} L_{E_{2}},~D_{5}=D_{4}L_{E_{2}}, \end{aligned}$$
(3.3)
$$\begin{aligned} P_{1}=&\,P-A_{4}[E_{1}^{\dag }F_{1}+F_{1}^{\eta *}(E_{1}^{\dag })^{\eta *} -E_{1}^{\dag }E_{1}F_{1}^{\eta *}(E_{1}^{\dag })^{\eta *}]A_{4}^{\eta *}\nonumber \\&-C_{4}[E_{2}^{\dag }F_{2}+F_{2}^{\eta *} (E_{2}^{\dag })^{\eta *}-E_{2}^{\dag }E_{2}F_{2}^{\eta *}(E_{2}^{\dag })^{\eta *}]C_{4}^{\eta *}, \end{aligned}$$
(3.4)
$$\begin{aligned} Q_{1}=&\,Q-B_{4}[E_{3}^{\dag }F_{3}+F_{3}^{\eta *}(E_{3}^{\dag })^{\eta *} -E_{3}^{\dag }E_{3}F_{3}^{\eta *}(E_{3}^{\dag })^{\eta *}]B_{4}^{\eta *}\nonumber \\&-D_{4}[E_{2}^{\dag }F_{2}+F_{2}^{\eta *} (E_{2}^{\dag })^{\eta *}-E_{2}^{\dag }E_{2}F_{2}^{\eta *} (E_{2}^{\dag })^{\eta *}]D_{4}^{\eta *}, \end{aligned}$$
(3.5)
$$\begin{aligned} M_{1}=&\,R_{A_{5}}C_{5},~S_{1}=C_{5}L_{M_{1}},~M_{2}=R_{B_{5}}D_{5}, ~S_{2}=D_{5}L_{M_{2}}, \end{aligned}$$
(3.6)
$$\begin{aligned} A_{6}=&\,[L_{C_{5}},~L_{M_{1}}L_{S_{1}},~-L_{D_{5}},~-L_{M_{2}}L_{S_{2}}], \end{aligned}$$
(3.7)
$$\begin{aligned} P_{2}=&\,\frac{1}{2}M_{2}^{\dag }Q_{1}(D_{5}^{\dag })^{\eta *} [I+(S_{2}^{\dag }S_{2})^{\eta *}]+\frac{1}{2}(I+S_{2}^{\dag }S_{2})D_{5}^{\dag }Q_{1}(M_{2}^{\dag })^{\eta *}\nonumber \\&-\frac{1}{2}M_{1}^{\dag }P_{1}(C_{5}^{\dag })^{\eta *} [I+(S_{1}^{\dag }S_{1})^{\eta *}]-\frac{1}{2}(I+S_{1}^{\dag }S_{1})C_{5}^{\dag }P_{1}(M_{1}^{\dag })^{\eta *}, \end{aligned}$$
(3.8)
$$\begin{aligned} A=&\,R_{A_{6}}L_{M_{1}},~B=R_{A_{6}}L_{M_{2}},~C=R_{A_{6}}P_{2} (R_{A_{6}})^{\eta *},~M=R_{A}B,~S=BL_{M}. \end{aligned}$$
(3.9)

Next, we establish the main result of the paper.

Theorem 3.1

Let \(A_{i},B_{i},C_{i},D_{i},P=P^{\eta *}\) and \(Q=Q^{\eta *}\) be given over \({\mathbb {H}}\), \((\eta \in \{{\mathbf {i}},{\mathbf {j}},{\mathbf {k}}\},i=1,\ldots ,4)\). Then, the following statements are equivalent:

  1. (1)

    System (3.1) has an \(\eta \)-Hermitian solution (XYZ).

  2. (2)
    $$\begin{aligned} R_{E_{j}}F_{j}=&\,0,~E_{j}F_{j}^{\eta *}=F_{j}E_{j}^{\eta *},~(j=1,2,3), \end{aligned}$$
    (3.10)
    $$\begin{aligned} R_{M_{1}}R_{A_{5}}P_{1}=&\,0,~R_{A_{5}}P_{1}(R_{C_{5}})^{\eta *}=0,~ R_{M_{2}}R_{B_{5}}Q_{1}=0,~R_{B_{5}}Q_{1}(R_{D_{5}})^{\eta *}=0, \end{aligned}$$
    (3.11)
    $$\begin{aligned} R_{M}R_{A}C=&\,0,~R_{A}C(R_{B})^{\eta *}=0. \end{aligned}$$
    (3.12)
  3. (3)
    $$\begin{aligned}&r\begin{bmatrix}A_{j}&{}C_{j}\\ B_{1}^{\eta *}&{}D_{1}^{\eta *}\end{bmatrix} =r\begin{bmatrix}A_{j}\\ B_{1}^{\eta *}\end{bmatrix},~ \begin{bmatrix} A_{j}C_{j}^{\eta *}&{}A_{j}D_{j}\\ B_{j}^{\eta *}C_{j}^{\eta *}&{}B_{j}^{\eta *}D_{j} \end{bmatrix}\nonumber \\&\quad =\begin{bmatrix} C_{j}A_{j}^{\eta *}&{}C_{j}B_{j}\\ D_{j}^{\eta *}A_{j}^{\eta *}&{}D_{j}^{\eta *}B_{j} \end{bmatrix}, \quad (j=1,2,3), \end{aligned}$$
    (3.13)
    $$\begin{aligned}&r\begin{bmatrix} P&{}A_{4}&{}C_{4}\\ C_{1}A_{4}^{\eta *}&{}A_{1}&{}0\\ D_{1}^{\eta *}A_{4}^{\eta *}&{}B_{1}^{\eta *}&{}0\\ C_{2}C_{4}^{\eta *}&{}0&{}A_{2}\\ D_{2}^{\eta *}C_{4}^{\eta *}&{}0&{}B_{2}^{\eta *}\end{bmatrix}= r\begin{bmatrix} A_{4}&{}C_{4}\\ A_{1}&{}0\\ B_{1}^{\eta *}&{}0\\ 0&{}A_{2}\\ 0&{}B_{2}^{\eta *}\end{bmatrix}, \end{aligned}$$
    (3.14)
    $$\begin{aligned}&r\begin{bmatrix} P&{}A_{4}&{}C_{4}C_{2}^{\eta *}&{}C_{4}D_{2}\\ C_{4}^{\eta *}&{}0&{}A_{2}^{\eta *}&{}B_{2}\\ C_{1}A_{4}^{\eta *}&{}A_{1}&{}0&{}0\\ D_{1}^{\eta *}A_{4}^{\eta *}&{}B_{1}^{\eta *}&{}0&{}0\end{bmatrix}= r\begin{bmatrix} A_{1}\\ B_{1}^{\eta *}\\ A_{4}\end{bmatrix}+r\begin{bmatrix} A_{2}\\ B_{2}^{\eta *}\\ C_{4}\end{bmatrix}, \end{aligned}$$
    (3.15)
    $$\begin{aligned}&r\begin{bmatrix} Q&{}B_{4}&{}D_{4}\\ C_{3}B_{4}^{\eta *}&{}A_{3}&{}0\\ D_{3}^{\eta *}B_{4}^{\eta *}&{}B_{3}^{\eta *}&{}0\\ C_{2}D_{4}^{\eta *}&{}0&{}A_{2}\\ D_{2}^{\eta *}D_{4}^{\eta *}&{}0&{}B_{2}^{\eta *}\end{bmatrix}= r\begin{bmatrix} B_{4}&{}D_{4}\\ A_{3}&{}0\\ B_{3}^{\eta *}&{}0\\ 0&{}A_{2}\\ 0&{}B_{2}^{\eta *}\end{bmatrix}, \end{aligned}$$
    (3.16)
    $$\begin{aligned}&r\begin{bmatrix} Q&{}B_{4}&{}D_{4}C_{2}^{\eta *}&{}D_{4}D_{2}\\ D_{4}^{\eta *}&{}0&{}A_{2}^{\eta *}&{}B_{2}\\ C_{3}B_{4}^{\eta *}&{}A_{3}&{}0&{}0\\ D_{3}^{\eta *}B_{4}^{\eta *}&{}B_{3}^{\eta *}&{}0&{}0\end{bmatrix}= r\begin{bmatrix} A_{3}\\ B_{3}^{\eta *}\\ B_{4}\end{bmatrix}+r\begin{bmatrix} A_{2}\\ B_{2}^{\eta *}\\ D_{4}\end{bmatrix}, \end{aligned}$$
    (3.17)
    $$\begin{aligned}&r\begin{bmatrix} 0&{}-C_{4}^{\eta *}&{}D_{4}^{\eta *}&{}0&{}0&{}A_{2}^{\eta *}&{}B_{2}\\ C_{4}&{}P&{}0&{}A_{4}&{}0&{}0&{}0\\ D_{4}&{}0&{}Q&{}0&{}B_{4}&{}D_{4}C_{2}^{\eta *}&{}D_{4}D_{2}\\ A_{2}&{}C_{2}C_{4}^{\eta *}&{}0&{}0&{}0&{}0&{}0\\ B_{2}^{\eta *}&{}D_{2}^{\eta *}C_{4}^{\eta *}&{}0&{}0&{}0&{}0&{}0\\ 0&{}C_{1}A_{4}^{\eta *}&{}0&{}A_{1}&{}0&{}0&{}0\\ 0&{}D_{1}^{\eta *}A_{4}^{\eta *}&{}0&{}B_{1}^{\eta *}&{}0&{}0&{}0\\ 0&{}0&{}C_{3}B_{4}^{\eta *}&{}0&{}A_{3}&{}0&{}0\\ 0&{}0&{}D_{3}^{\eta *}B_{4}^{\eta *}&{}0&{}B_{3}^{\eta *}&{}0&{}0 \end{bmatrix}=r\begin{bmatrix}C_{4}\\ D_{4}\\ A_{2}\\ B_{2}^{\eta *} \end{bmatrix}\nonumber \\&\qquad + r\begin{bmatrix}C_{4}&{}A_{4}&{}0\\ D_{4}&{}0&{}B_{4}\\ A_{2}&{}0&{}0\\ B_{2}^{\eta *}&{}0&{}0\\ 0&{}A_{1}&{}0\\ 0&{}B_{1}^{\eta *}&{}0\\ 0&{}0&{}A_{3}\\ 0&{}0&{}B_{3}^{\eta *}\end{bmatrix}, \end{aligned}$$
    (3.18)
    $$\begin{aligned}&r\begin{bmatrix} 0&{}-C_{4}^{\eta *}&{}D_{4}^{\eta *}&{}0&{}A_{2}^{\eta *}&{}B_{2}&{}0&{}0\\ C_{4}&{}P&{}0&{}A_{4}&{}0&{}0&{}0&{}0\\ D_{4}&{}0&{}Q&{}0&{}D_{4}C_{2}^{\eta *}&{}D_{4}D_{2}&{}B_{4}C_{3}^{\eta *}&{}B_{4}D_{3}\\ A_{2}&{}C_{2}C_{4}^{\eta *}&{}0&{}0&{}0&{}0&{}0&{}0\\ B_{2}^{\eta *}&{}D_{2}^{\eta *}C_{4}^{\eta *}&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}C_{1}A_{4}^{\eta *}&{}0&{}A_{1}&{}0&{}0&{}0&{}0\\ 0&{}D_{1}^{\eta *}A_{4}^{\eta *}&{}0&{}B_{1}^{\eta *}&{}0&{}0&{}0&{}0\\ 0&{}0&{}B_{4}^{\eta *}&{}0&{}0&{}0&{}A_{3}^{\eta *}&{}B_{3} \end{bmatrix}= r\begin{bmatrix}C_{4}&{}A_{4}\\ D_{4}&{}0\\ A_{2}&{}0\\ B_{2}^{\eta *}&{}0\\ 0&{}A_{1}\\ 0&{}B_{1}^{\eta *}\end{bmatrix}\nonumber \\&\qquad + r\begin{bmatrix} C_{4}&{}0\\ D_{4}&{}B_{4}\\ A_{2}&{}0\\ B_{2}^{\eta *}&{}0\\ 0&{}A_{3}\\ 0&{}B_{3}^{\eta *}\end{bmatrix}. \end{aligned}$$
    (3.19)

If system (3.1) is consistent, the general \(\eta \)-Hermitian solution to (3.1) can be expressed as

$$\begin{aligned} X=&\,E_{1}^{\dag }F_{1}+F_{1}^{\eta *}(E_{1}^{\dag })^{\eta *} -E_{1}^{\dag }E_{1}F_{1}^{\eta *}(E_{1}^{\dag })^{\eta *}+L_{E_{1}}X_{1}(L_{E_{1}})^{\eta *}, \end{aligned}$$
(3.20)
$$\begin{aligned} Y=&\,E_{2}^{\dag }F_{2}+F_{2}^{\eta *}(E_{2}^{\dag })^{\eta *} -E_{2}^{\dag }E_{2}F_{2}^{\eta *}(E_{2}^{\dag })^{\eta *}+L_{E_{2}}Y_{1}(L_{E_{2}})^{\eta *}, \end{aligned}$$
(3.21)
$$\begin{aligned} Z=&\,E_{3}^{\dag }F_{3}+F_{3}^{\eta *}(E_{3}^{\dag })^{\eta *} -E_{3}^{\dag }E_{3}F_{3}^{\eta *}(E_{3}^{\dag })^{\eta *}+L_{E_{3}}Z_{1}(L_{E_{3}})^{\eta *}, \end{aligned}$$
(3.22)

where

$$\begin{aligned} X_{1}=&\,A_{5}^{\dag }P_{1}(A_{5}^{\dag })^{\eta *}-\frac{1}{2} A_{5}^{\dag }C_{5}M_{1}^{\dag }P_{1}[I+(C_{5}^{\dag })^{\eta *}S_{1}^{\eta *}](A_{5}^{\dag })^{\eta *}\\&-\frac{1}{2}A_{5}^{\dag }(I+S_{1}C_{5}^{\dag })P_{1}(M_{1}^{\dag })^{\eta *}C_{5}^{\eta *}(A_{5}^{\dag })^{\eta *}\\&-A_{5}^{\dag }S_{1}V_{1}S_{1}^{\eta *}(A_{5}^{\dag })^{\eta *} +L_{A_{5}}U_{1}+(L_{A_{5}}U_{1})^{\eta *},\\ Z_{1}=&\,B_{5}^{\dag }Q_{1}(B_{5}^{\dag })^{\eta *} -\frac{1}{2}B_{5}^{\dag }D_{5}M_{2}^{\dag }Q_{1}[I+(D_{5}^{\dag })^{\eta *}S_{2}^{\eta *}](B_{5}^{\dag })^{\eta *}\\&-\frac{1}{2}B_{5}^{\dag }(I+S_{2}D_{5}^{\dag })Q_{1}(M_{2}^{\dag })^{\eta *}D_{5}^{\eta *}(B_{5}^{\dag })^{\eta *}\\&+B_{5}^{\dag }S_{2}V_{2}S_{2}^{\eta *}(B_{5}^{\dag })^{\eta *} +L_{B_{5}}U_{4}+(L_{B_{5}}U_{4})^{\eta *},\\ Y_{1}=&\,\frac{1}{2}M_{1}^{\dag }P_{1}(C_{5}^{\dag })^{\eta *} [I+(S_{1}^{\dag }S_{1})^{\eta *}]+\frac{1}{2}(I+S_{1}^{\dag }S_{1})C_{5}^{\dag }P_{1}(M_{1}^{\dag })^{\eta *} +L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *}\\&+L_{C_{5}}U_{2}+(L_{C_{5}}U_{2})^{\eta *} +L_{M_{1}}L_{S_{1}}U_{3}+(L_{M_{1}}L_{S_{1}}U_{3})^{\eta *}, \end{aligned}$$

or

$$\begin{aligned} Y_{1}=&\,\frac{1}{2}M_{2}^{\dag }Q_{1}(D_{5}^{\dag })^{\eta *} [I+(S_{2}^{\dag }S_{2})^{\eta *}]+\frac{1}{2}(I+S_{2}^{\dag }S_{2})D_{5}^{\dag }Q_{1}(M_{2}^{\dag })^{\eta *}\\&-L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}\\&+L_{D_{5}}U_{5}+(L_{D_{5}}U_{5})^{\eta *} +L_{M_{2}}L_{S_{2}}U_{6}+(L_{M_{2}}L_{S_{2}}U_{6})^{\eta *},\\ U_{2}=&\,[I_{m},~0,~0,~0]\Bigg [A_{6}^{\dag }[P_{2} -L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *}-L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}]\\&+L_{A_{6}}W_{1}+W_{2}^{\eta *}(A_{6}^{\dag })^{\eta *}(A_{6})^{\eta *}\\&-\frac{1}{2}A_{6}^{\dag }[P_{2}-L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *} -L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}](A_{6}^{\dag })^{\eta *}A_{6}^{\eta *} -A_{6}^{\dag }W_{2}A_{6}^{\eta *}\Bigg ],\\ U_{3}=&\,[0,~I_{m},~0,~0]\Bigg [A_{6}^{\dag }[P_{2}-L_{M_{1}} V_{1}(L_{M_{1}})^{\eta *}-L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}]\\&+L_{A_{6}}W_{1}+W_{2}^{\eta *}(A_{6}^{\dag })^{\eta *}(A_{6})^{\eta *}\\&-\frac{1}{2}A_{6}^{\dag }[P_{2}-L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *} -L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}](A_{6}^{\dag })^{\eta *}A_{6}^{\eta *} -A_{6}^{\dag }W_{2}A_{6}^{\eta *}\Bigg ],\\ U_{5}=&\,[0,~0,~I_{m},~0]\Bigg [A_{6}^{\dag }[P_{2} -L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *}-L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}]\\&+L_{A_{6}}W_{1}+W_{2}^{\eta *}(A_{6}^{\dag })^{\eta *}(A_{6})^{\eta *}\\&-\frac{1}{2}A_{6}^{\dag }[P_{2}-L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *} -L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}](A_{6}^{\dag })^{\eta *}A_{6}^{\eta *} -A_{6}^{\dag }W_{2}A_{6}^{\eta *}\Bigg ],\\ U_{6}=&\,[0,~0,~0,~I_{m}]\Bigg [A_{6}^{\dag }[P_{2}-L_{M_{1}} V_{1}(L_{M_{1}})^{\eta *}-L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}]\\&+L_{A_{6}}W_{1}+W_{2}^{\eta *}(A_{6}^{\dag })^{\eta *}(A_{6})^{\eta *}\\&-\frac{1}{2}A_{6}^{\dag }[P_{2}-L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *} -L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}](A_{6}^{\dag })^{\eta *} A_{6}^{\eta *}-A_{6}^{\dag }W_{2}A_{6}^{\eta *}\Bigg ],\\ V_{1}=&\,V_{1}^{\eta *}=A^{\dag }C(A^{\dag })^{\eta *} -\frac{1}{2}A^{\dag }BM^{\dag }C[I+(B^{\dag })^{\eta *}S^{\eta *}](A^{\dag })^{\eta *}\\&-\frac{1}{2}A^{\dag }(I+SB^{\dag })C(M^{\dag })^{\eta *}B^{\eta *}(A^{\dag })^{\eta *} \\&-A^{\dag }SW_{3}S^{\eta *}(A^{\dag })^{\eta *}+L_{A}W_{4}+(L_{A}W_{4})^{\eta *},\\ V_{2}=&\,V_{2}^{\eta *} = \frac{1}{2}M^{\dag }C(B^{\dag })^{\eta *}[I+(S^{\dag }S)^{\eta *}]+\frac{1}{2}(I+S^{\dag }S)B^{\dag }C(M^{\dag })^{\eta *}+L_{M}W_{3}(L_{M})^{\eta *}\\&+L_{B}W_{5}+(L_{B}W_{5})^{\eta *} +L_{M}L_{S}W_{6}+(L_{M}L_{S}W_{6})^{\eta *} , \end{aligned}$$

and \(U_{1},U_{4},W_{1},W_{2},W_{3}=W_{3}^{\eta *},W_{4},W_{5},W_{6}\) are arbitrary matrices over \({\mathbb {H}}\) with appropriate sizes, m is the column number of \(A_{2}\).

Proof

\((1)\Longleftrightarrow (2):\) It follows from Lemma 2.2 that the systems

$$\begin{aligned} A_{1}X=&\,C_{1}, ~XB_{1}=D_{1}, \end{aligned}$$
(3.23)
$$\begin{aligned} A_{2}Y=&\,C_{2}, ~YB_{2}=D_{2} \end{aligned}$$
(3.24)

and

$$\begin{aligned} A_{3}Z=C_{3}, ~ZB_{3}=D_{3} \end{aligned}$$
(3.25)

have an \(\eta \)-Hermitian solution, respectively, if and only if

$$\begin{aligned} R_{E_{1}}F_{1}=&\,0,~E_{1}F_{1}^{\eta *}=F_{1}E_{1}^{\eta *},\\ R_{E_{2}}F_{2}=&\,0,~E_{2}F_{3}^{\eta *}=F_{2}E_{2}^{\eta *},\\ R_{E_{3}}F_{3}=&\,0,~E_{3}F_{3}^{\eta *}=F_{3}E_{3}^{\eta *}, \end{aligned}$$

where \(E_{j}\) and \(F_{j}\) are defined in (3.2). In this case, the general \(\eta \)-Hermitian solutions to systems (3.23)–(3.25) can be expressed as

$$\begin{aligned} X=E_{1}^{\dag }F_{1}+F_{1}^{\eta *}(E_{1}^{\dag })^{\eta *} -E_{1}^{\dag }E_{1}F_{1}^{\eta *}(E_{1}^{\dag })^{\eta *}+L_{E_{1}}X_{1}(L_{E_{1}})^{\eta *}, \end{aligned}$$
(3.26)
$$\begin{aligned} Y=E_{2}^{\dag }F_{2}+F_{2}^{\eta *}(E_{2}^{\dag })^{\eta *} -E_{2}^{\dag }E_{2}F_{2}^{\eta *}(E_{2}^{\dag })^{\eta *}+L_{E_{2}}Y_{1}(L_{E_{2}})^{\eta *}, \end{aligned}$$
(3.27)
$$\begin{aligned} Z=E_{3}^{\dag }F_{3}+F_{3}^{\eta *}(E_{3}^{\dag })^{\eta *} -E_{3}^{\dag }E_{3}F_{3}^{\eta *}(E_{3}^{\dag })^{\eta *}+L_{E_{3}}Z_{1}(L_{E_{3}})^{\eta *}, \end{aligned}$$
(3.28)

where \(X_{1},Y_{1}\) and \(Z_{1}\) are arbitrary \(\eta \)-Hermitian matrices over \({\mathbb {H}}\) with appropriate sizes. Substituting (3.26)–(3.28) into

$$\begin{aligned} \left\{ \begin{array}{c} A_{4}XA_{4}^{\eta *}+C_{4}YC_{4}^{\eta *}=P,\\ B_{4}ZB_{4}^{\eta *}+D_{4}YD_{4}^{\eta *}=Q, \end{array} \right. \end{aligned}$$

yields

$$\begin{aligned} \left\{ \begin{array}{c} A_{5}X_{1}A_{5}^{\eta *}+C_{5}Y_{1}C_{5}^{\eta *}=P_{1},\\ B_{5}Z_{1}B_{5}^{\eta *}+D_{5}Y_{1}D_{5}^{\eta *}=Q_{1}, \end{array} \right. \end{aligned}$$
(3.29)

where \(A_{5},B_{5},C_{5},D_{5},P_{1}\) and \(Q_{1}\) are defined in (3.3)–(3.5).

Now, we want to find the solvability conditions and general \(\eta \)-Hermitian solution to system (3.29). From Lemma 2.3, it follows that the first equation in system (3.29) has an \(\eta \)-Hermitian solution if and only if

$$\begin{aligned} R_{M_{1}}R_{A_{5}}P_{1}=0,~R_{A_{5}}P_{1}(R_{C_{5}})^{\eta *}=0, \end{aligned}$$

where \(M_{1}\) is defined in (3.6). The general \(\eta \)-Hermitian solution to the first equation in system (3.29) can be expressed as

$$\begin{aligned} X_{1}=&\,A_{5}^{\dag }P_{1}(A_{5}^{\dag })^{\eta *} -\frac{1}{2}A_{5}^{\dag }C_{5}M_{1}^{\dag }P_{1}[I+(C_{5}^{\dag })^{\eta *}S_{1}^{\eta *}](A_{5}^{\dag })^{\eta *}\nonumber \\&-\frac{1}{2}A_{5}^{\dag }(I+S_{1}C_{5}^{\dag })P_{1}(M_{1}^{\dag })^{\eta *}C_{5}^{\eta *}(A_{5}^{\dag })^{\eta *}\nonumber \\&-A_{5}^{\dag }S_{1}V_{1}S_{1}^{\eta *}(A_{5}^{\dag })^{\eta *} +L_{A_{5}}U_{1}+(L_{A_{5}}U_{1})^{\eta *},\nonumber \\ Y_{1}=&\,\frac{1}{2}M_{1}^{\dag }P_{1}(C_{5}^{\dag })^{\eta *} [I+(S_{1}^{\dag }S_{1})^{\eta *}]+\frac{1}{2}(I+S_{1}^{\dag } S_{1})C_{5}^{\dag }P_{1}(M_{1}^{\dag })^{\eta *}+L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *}\nonumber \\&+L_{C_{5}}U_{2}+(L_{C_{5}}U_{2})^{\eta *} +L_{M_{1}}L_{S_{1}}U_{3}+(L_{M_{1}}L_{S_{1}}U_{3})^{\eta *}, \end{aligned}$$
(3.30)

where \(S_{1}\) is defined in (3.6), \(U_{1},U_{2},U_{3}\) and \(V_{1}=V_{1}^{\eta *}\) are arbitrary matrices over \({\mathbb {H}}\) with appropriate size.

Similarly, the second equation in system (3.29) has an \(\eta \)-Hermitian solution if and only if

$$\begin{aligned} R_{M_{2}}R_{B_{5}}Q_{1}=0,~R_{B_{5}}Q_{1}(R_{D_{5}})^{\eta *}=0, \end{aligned}$$

where \(M_{2}\) is defined in (3.6). The general \(\eta \)-Hermitian solution to the second equation in system (3.29) can be expressed as

$$\begin{aligned} Z_{1}=&\,B_{5}^{\dag }Q_{1}(B_{5}^{\dag })^{\eta *}-\frac{1}{2}B_{5}^{\dag } D_{5}M_{2}^{\dag }Q_{1}[I+(D_{5}^{\dag })^{\eta *}S_{2}^{\eta *}](B_{5}^{\dag })^{\eta *}\nonumber \\&-\frac{1}{2}B_{5}^{\dag }(I+S_{2}D_{5}^{\dag })Q_{1}(M_{2}^{\dag })^{\eta *}D_{5}^{\eta *}(B_{5}^{\dag })^{\eta *}\nonumber \\&+B_{5}^{\dag }S_{2}V_{2}S_{2}^{\eta *}(B_{5}^{\dag })^{\eta *} +L_{B_{5}}U_{4}+(L_{B_{5}}U_{4})^{\eta *},\nonumber \\ Y_{1}=&\,\frac{1}{2}M_{2}^{\dag }Q_{1}(D_{5}^{\dag })^{\eta *} [I+(S_{2}^{\dag }S_{2})^{\eta *}]+\frac{1}{2}(I+S_{2}^{\dag } S_{2})D_{5}^{\dag }Q_{1}(M_{2}^{\dag })^{\eta *}-L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *} \nonumber \\&+L_{D_{5}}U_{5}+(L_{D_{5}}U_{5})^{\eta *} +L_{M_{2}}L_{S_{2}}U_{6}+(L_{M_{2}}L_{S_{2}}U_{6})^{\eta *}, \end{aligned}$$
(3.31)

where \(S_{2}\) is defined in (3.6), \(U_{4},U_{5},U_{6}\) and \(V_{2}=V_{2}^{\eta *}\) are arbitrary matrices over \({\mathbb {H}}\) with appropriate sizes.

Equating (3.30) and (3.31), we have

$$\begin{aligned}&[L_{C_{5}},~L_{M_{1}}L_{S_{1}},~-L_{D_{5}},~ -L_{M_{2}}L_{S_{2}}]\begin{bmatrix}U_{2}\\ U_{3}\\ U_{5}\\ U_{6}\end{bmatrix}\\&\qquad + \left( [L_{C_{5}},~L_{M_{1}}L_{S_{1}},~-L_{D_{5}},~ -L_{M_{2}}L_{S_{2}}]\begin{bmatrix}U_{2}\\ U_{3}\\ U_{5}\\ U_{6}\end{bmatrix}\right) ^{\eta *}\\&\qquad +L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *}+L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}\\&\quad =\frac{1}{2}M_{2}^{\dag }Q_{1}(D_{5}^{\dag })^{\eta *} [I+(S_{2}^{\dag }S_{2})^{\eta *}]+\frac{1}{2}(I+S_{2}^{\dag }S_{2})D_{5}^{\dag }Q_{1}(M_{2}^{\dag })^{\eta *}\\&\qquad -\frac{1}{2}M_{1}^{\dag }P_{1}(C_{5}^{\dag })^{\eta *} [I+(S_{1}^{\dag }S_{1})^{\eta *}]-\frac{1}{2}(I+S_{1}^{\dag }S_{1})C_{5}^{\dag }P_{1}(M_{1}^{\dag })^{\eta *}. \end{aligned}$$

Then, it can be rewritten as

$$\begin{aligned} A_{6}\begin{bmatrix}U_{2}\\ U_{3}\\ U_{5}\\ U_{6}\end{bmatrix}+\left( A_{6}\begin{bmatrix}U_{2}\\ U_{3}\\ U_{5}\\ U_{6}\end{bmatrix}\right) ^{\eta *} +L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *}+L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}=P_{2}, \end{aligned}$$
(3.32)

where \(V_{1}\) and \(V_{2}\) are \(\eta \)-Hermitian, \(A_{6}\) and \(P_{2}\) are defined in (3.7) and (3.8), separately. We want to find the general solution to equation (3.32), where \(V_{1}\) and \(V_{2}\) are \(\eta \)-Hermitian. By Lemma 2.3, we know that equation (3.32) has a solution if and only if

$$\begin{aligned} R_{M}R_{A}C=0,~R_{A}C(R_{B})^{\eta *}=0, \end{aligned}$$

where ABCM are defined in (3.9). In this case, the general solution to equation (3.32) is given as follows:

$$\begin{aligned} \begin{bmatrix}U_{2}\\ U_{3}\\ U_{5}\\ U_{6}\end{bmatrix}=&\,A_{6}^{\dag }[P_{2}-L_{M_{1}} V_{1}(L_{M_{1}})^{\eta *}-L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}]\\&-\frac{1}{2}A_{6}^{\dag }[P_{2}-L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *} -L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}](A_{6}^{\dag })^{\eta *}A_{6}^{\eta *}\\&+L_{A_{6}}W_{1}+W_{2}^{\eta *}(A_{6}^{\dag })^{\eta *}(A_{6})^{\eta *} -A_{6}^{\dag }W_{2}A_{6}^{\eta *},\\ V_{1}=&\,V_{1}^{\eta *}=A^{\dag }C(A^{\dag })^{\eta *}\\&-\frac{1}{2}A^{\dag }BM^{\dag }C[I+(B^{\dag })^{\eta *}S^{\eta *}](A^{\dag })^{\eta *} -\frac{1}{2}A^{\dag }(I+SB^{\dag })C(M^{\dag })^{\eta *}B^{\eta *}(A^{\dag })^{\eta *} \\&-A^{\dag }SW_{3}S^{\eta *}(A^{\dag })^{\eta *}+L_{A}W_{4}+(L_{A}W_{4})^{\eta *},\\ V_{2}=&\,V_{2}^{\eta *} = \frac{1}{2}M^{\dag }C(B^{\dag })^{\eta *}[I+(S^{\dag }S)^{\eta *}]+\frac{1}{2}(I+S^{\dag }S)B^{\dag }C(M^{\dag })^{\eta *}+L_{M}W_{3}(L_{M})^{\eta *}\\&+L_{B}W_{5}+(L_{B}W_{5})^{\eta *} +L_{M}L_{S}W_{6}+(L_{M}L_{S}W_{6})^{\eta *} , \end{aligned}$$

where \(W_{1},W_{2},W_{3}=W_{3}^{\eta *},W_{4},W_{5},W_{6}\) are arbitrary matrices over \({\mathbb {H}}\) with appropriate sizes.

\((2)\Longleftrightarrow (3):\) By Lemma 2.4 and block Gaussian elimination, we obtain

$$\begin{aligned} R_{E_{j}}F_{j}=0\Longleftrightarrow r[E_{j},~F_{j}]=r(E_{j}), \end{aligned}$$

i.e. (3.10) \(\Longleftrightarrow \) (3.13). It follows from Lemma 2.2 that systems (3.23)–(3.25) have an \(\eta \)-Hermitian solution, respectively, under the conditions (3.10). Note that

$$\begin{aligned} X_{0}:=&\,E_{1}^{\dag }F_{1}+F_{1}^{\eta *}(E_{1}^{\dag })^{\eta *} -E_{1}^{\dag }E_{1}F_{1}^{\eta *}(E_{1}^{\dag })^{\eta *},\\ Y_{0}:=&\,E_{2}^{\dag }F_{2}+F_{2}^{\eta *}(E_{2}^{\dag })^{\eta *} -E_{2}^{\dag }E_{2}F_{2}^{\eta *}(E_{2}^{\dag })^{\eta *}, \end{aligned}$$

and

$$\begin{aligned} Z_{0}:=E_{3}^{\dag }F_{3}+F_{3}^{\eta *}(E_{3}^{\dag })^{\eta *} -E_{3}^{\dag }E_{3}F_{3}^{\eta *}(E_{3}^{\dag })^{\eta *} \end{aligned}$$

are special \(\eta \)-Hermitian solutions to systems (3.23)–(3.25). Then, \(P_{1}\) and \(Q_{1}\) can be rewritten as follows:

$$\begin{aligned} P_{1}=&\,P-A_{4}X_{0}A_{4}^{\eta *}-C_{4}Y_{0}C_{4}^{\eta *}, \end{aligned}$$
(3.33)
$$\begin{aligned} Q_{1}=&\,Q-B_{4}Z_{0}B_{4}^{\eta *}-D_{4}Y_{0}D_{4}^{\eta *}. \end{aligned}$$
(3.34)

Now, we will use Lemma 2.4, (3.33), (3.34) and block Gaussian elimination to prove (3.11) \(\Longleftrightarrow \) (3.14)–(3.17). Applying Lemma 2.4 to \(R_{M_{1}}R_{A_{5}}P_{1}=0\) yields

$$\begin{aligned}&R_{M_{1}}R_{A_{5}}P_{1}=\,0 \Leftrightarrow r(R_{M_{1}}R_{A_{5}}P_{1})=0 \Leftrightarrow r[P_{1},~A_{5},~C_{5}]=r[A_{5},~C_{5}]\\&\Leftrightarrow r[P_{1},~A_{4}L_{E_{1}},~C_{4}L_{E_{2}}]=\,r[A_{4}L_{E_{1}},~C_{4}L_{E_{2}}] \Leftrightarrow r\begin{bmatrix}P_{1}&{}A_{4}&{}C_{4}\\ 0&{}E_{1}&{}0\\ 0&{}0&{}E_{2}\end{bmatrix} =r\begin{bmatrix}A_{4}&{}C_{4}\\ E_{1}&{}0\\ 0&{}E_{2}\end{bmatrix}\\&\Leftrightarrow r\begin{bmatrix}P-A_{4}X_{0}A_{4}^{\eta *}-C_{4}Y_{0} C_{4}^{\eta *}&{}A_{4}&{}C_{4}\\ 0&{}E_{1}&{}0\\ 0&{}0&{}E_{2}\end{bmatrix} =r\begin{bmatrix}A_{4}&{}C_{4}\\ E_{1}&{}0\\ 0&{}E_{2}\end{bmatrix}\\&\Leftrightarrow r\begin{bmatrix}P&{}A_{4}&{}C_{4}\\ E_{1}X_{0}A_{4}^{\eta *} &{}E_{1}&{}0\\ E_{2}Y_{0}C_{4}^{\eta *}&{}0&{}E_{2}\end{bmatrix}= r\begin{bmatrix}A_{4}&{}C_{4}\\ E_{1}&{}0\\ 0&{}E_{2}\end{bmatrix}\\&\Leftrightarrow r\begin{bmatrix}P&{}A_{4}&{}C_{4}\\ F_{1}A_{4}^{\eta *}&{}E_{1}&{}0\\ F_{2}C_{4}^{\eta *}&{}0&{}E_{2}\end{bmatrix}=r\begin{bmatrix}A_{4} &{}C_{4}\\ E_{1}&{}0\\ 0&{}E_{2}\end{bmatrix} \Leftrightarrow (3.14). \end{aligned}$$

Similarly, it can be shown that

$$\begin{aligned} R_{A_{5}}P_{1}(R_{C_{5}})^{\eta *}=&\,0\Leftrightarrow (3.15),\\ R_{M_{2}}R_{B_{5}}Q_{1}=&\,0\Leftrightarrow (3.16),\\ R_{B_{5}}Q_{1}(R_{D_{5}})^{\eta *}=&\,0\Leftrightarrow (3.17). \end{aligned}$$

Next, we prove that (3.12) \(\Longleftrightarrow \) (3.18) and (3.19). Note that

$$\begin{aligned} Y_{01}:=\frac{1}{2}M_{1}^{\dag }P_{1}(C_{5}^{\dag })^{\eta *} [I+(S_{1}^{\dag }S_{1})^{\eta *}]+\frac{1}{2}(I+S_{1}^{\dag }S_{1})C_{5}^{\dag }P_{1}(M_{1}^{\dag })^{\eta *} \end{aligned}$$

and

$$\begin{aligned} Y_{02}:=\frac{1}{2}M_{2}^{\dag }Q_{1}(D_{5}^{\dag })^{\eta *} [I+(S_{2}^{\dag }S_{2})^{\eta *}]+\frac{1}{2}(I+S_{2}^{\dag }S_{2})D_{5}^{\dag }Q_{1}(M_{2}^{\dag })^{\eta *} \end{aligned}$$

are special solutions to the first two equations in system (3.29), separately, under the conditions (3.11). Then, \(P_{2}\) can be rewritten as follows

$$\begin{aligned} P_{2}=Y_{02}-Y_{01}. \end{aligned}$$
(3.35)

We next use Lemma 2.4, together with (3.29), (3.33), (3.34), (3.35) and block Gaussian elimination to show \(R_{M}R_{A}C=0\) \(\Longleftrightarrow \) (3.18). Applying Lemma 2.4 to \(R_{M}R_{A}C=0\) gives

$$\begin{aligned}&R_{M}R_{A}C=0 \Leftrightarrow r(R_{M}R_{A}C)=0\\&\qquad \Leftrightarrow r\begin{bmatrix}P_{2}&{}A_{6}&{}L_{M_{1}}&{}L_{M_{2}}\\ A_{6}^{\eta *}&{}0&{}0&{}0\end{bmatrix}= r[A_{6},~L_{M_{1}},~L_{M_{2}}]+r(A_{6}) \\&\qquad \Leftrightarrow r\begin{bmatrix}P_{2}&{}L_{M_{1}}&{}L_{M_{2}}\\ R_{S_{1}^{\eta *}} R_{M_{1}^{\eta *}}&{}0&{}0\\ R_{S_{2}^{\eta *}}R_{M_{2}^{\eta *}}&{}0&{}0\end{bmatrix}= r[L_{M_{1}},~L_{M_{2}}]+r\begin{bmatrix}R_{S_{1}^{\eta *}} R_{M_{1}^{\eta *}}\\ R_{S_{2}^{\eta *}}R_{M_{2}^{\eta *}}\end{bmatrix} \\&\qquad \Leftrightarrow r\begin{bmatrix}P_{2}&{}I&{}I&{}0&{}0&{}0&{}0\\ I&{}0&{}0&{}C_{5}^{\eta *} &{}0&{}0&{}0\\ I&{}0&{}0&{}0&{}D_{5}^{\eta *}&{}0&{}0\\ 0&{}C_{5}&{}0&{}0&{}0&{}A_{5}&{}0\\ 0&{}0&{}D_{5}&{}0&{}0&{}0&{}B_{5}\end{bmatrix}= r\begin{bmatrix}I&{}I&{}0&{}0\\ C_{5}&{}0&{}A_{5}&{}0\\ 0&{}D_{5}&{}0&{}B_{5}\end{bmatrix}+r\begin{bmatrix}I&{}C_{5}^{\eta *}&{}0\\ I&{}0&{}D_{5}^{\eta *}\end{bmatrix}\\&\qquad \Leftrightarrow r\begin{bmatrix}Y_{02}-Y_{01}&{}I&{}I&{}0&{}0&{}0&{}0\\ I&{}0&{}0&{}C_{5}^{\eta *}&{}0&{}0&{}0\\ I&{}0&{}0&{}0&{}D_{5}^{\eta *}&{}0&{}0\\ 0&{}C_{5}&{}0&{}0&{}0&{}A_{5}&{}0\\ 0&{}0&{}D_{5}&{}0&{}0&{}0&{}B_{5}\end{bmatrix}= r\begin{bmatrix}I&{}I&{}0&{}0\\ C_{5}&{}0&{}A_{5}&{}0\\ 0&{}D_{5}&{}0&{}B_{5} \end{bmatrix}+r\begin{bmatrix}I&{}C_{5}^{\eta *}&{}0\\ I&{}0&{}D_{5}^{\eta *}\end{bmatrix}\\&\qquad \Leftrightarrow r\begin{bmatrix}0&{}C_{5}^{\eta *}&{}D_{5}^{\eta *}&{}0&{}0\\ C_{5}&{}-P_{1}&{}0&{}A_{5}&{}0\\ D_{5}&{}0&{}Q_{1}&{}0&{}B_{5}\end{bmatrix}=r\begin{bmatrix} C_{5}&{}A_{5}&{}0\\ D_{5}&{}0&{}B_{5}\end{bmatrix}+r\begin{bmatrix}C_{5}\\ D_{5}\end{bmatrix}\\&\qquad \Leftrightarrow r\begin{bmatrix} 0&{}C_{4}^{\eta *}&{}D_{4}^{\eta *}&{}0&{}0&{}E_{2}^{\eta *}\\ C_{4}&{}-P_{1}&{}0&{}A_{4}&{}0&{}0\\ D_{4}&{}0&{}Q_{1}&{}0&{}B_{4}&{}0\\ E_{2}&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}E_{1}&{}0&{}0\\ 0&{}0&{}0&{}0&{}E_{3}&{}0 \end{bmatrix}=r\begin{bmatrix}C_{4}&{}A_{4}&{}0\\ D_{4}&{}0&{}B_{4}\\ E_{2}&{}0&{}0\\ 0&{}E_{1}&{}0\\ 0&{}0&{}E_{3}\end{bmatrix}+r \begin{bmatrix}C_{4}\\ D_{4}\\ E_{2}\end{bmatrix}\\&\qquad \Leftrightarrow r\begin{bmatrix} 0&{}C_{4}^{\eta *}&{}D_{4}^{\eta *}&{}0&{}0&{}E_{2}^{\eta *}\\ C_{4}&{}-P+A_{4}X_{0}A_{4}^{\eta *}+C_{4}Y_{0}C_{4}^{\eta *}&{}0&{}A_{4}&{}0&{}0\\ D_{4}&{}0&{}Q-B_{4}Z_{0}B_{4}^{\eta *}-D_{4}Y_{0}D_{4}^{\eta *}&{}0&{}B_{4}&{}0\\ E_{2}&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}E_{1}&{}0&{}0\\ 0&{}0&{}0&{}0&{}E_{3}&{}0 \end{bmatrix}\\&\quad =r\begin{bmatrix}C_{4}&{}A_{4}&{}0\\ D_{4}&{}0&{}B_{4}\\ E_{2}&{}0&{}0\\ 0&{}E_{1}&{}0\\ 0&{}0&{}E_{3}\end{bmatrix}+r\begin{bmatrix}C_{4}\\ D_{4}\\ E_{2}\end{bmatrix} \Leftrightarrow (3.18). \end{aligned}$$

Similarly, we can prove that \(R_{A}C(R_{B})^{\eta *}=0\) \(\Longleftrightarrow \) (3.19). \(\square \)

As a special case of system (3.1), we obtain a result about the system of quaternion matrix equations

$$\begin{aligned} \left\{ \begin{array}{c} A_{1}XA_{1}^{\eta *}+B_{1}YB_{1}^{\eta *}=E_{1},\\ A_{2}ZA_{2}^{\eta *}+B_{2}YB_{2}^{\eta *}=E_{2}, \end{array} \right. ~X=X^{\eta *},~Y=Y^{\eta *},~Z=Z^{\eta *}, \end{aligned}$$
(3.36)

which we state as follows:

Corollary 3.2

Let \(A_{i},B_{i}\) and \(E_{i}=E_{i}^{\eta *}\) be given over \({\mathbb {H}}\), \((\eta \in \{{\mathbf {i}},{\mathbf {j}},{\mathbf {k}}\},i=1,2)\) and

$$\begin{aligned} M_{i}=&\,R_{A_{i}}B_{i}, ~S_{i}=B_{i}L_{M_{i}},~ A_{3}=[L_{B_{1}},~L_{M_{1}}L_{S_{1}},~-L_{B_{2}},~-L_{M_{2}}L_{S_{2}}],\\ E_{3}=&\,\frac{1}{2}M_{2}^{\dag }E_{2}(B_{2}^{\dag })^{\eta *} [I+(S_{2}^{\dag }S_{2})^{\eta *}]+\frac{1}{2}(I+S_{2}^{\dag }S_{2})B_{2}^{\dag }E_{2}(M_{2}^{\dag })^{\eta *}\\&-\frac{1}{2}M_{1}^{\dag }E_{1}(B_{1}^{\dag })^{\eta *} [I+(S_{1}^{\dag }S_{1})^{\eta *}]-\frac{1}{2}(I+S_{1}^{\dag }S_{1})B_{1}^{\dag }E_{1}(M_{1}^{\dag })^{\eta *},\\ A=&\,R_{A_{3}}L_{M_{1}},~B=R_{A_{3}}L_{M_{2}},~C=R_{A_{3}}E_{3}(R_{A_{3}})^{\eta *}, ~ M=R_{A}B,~S=BL_{M}. \end{aligned}$$

Then, the following statements are equivalent:

  1. (1)

    System (3.36) has an \(\eta \)-Hermitian solution (XYZ).

  2. (2)
    $$\begin{aligned} R_{M_{i}}R_{A_{i}}E_{i}=0, ~ R_{A_{i}}E_{i}L_{D_{i}}=0, ~ R_{M}R_{A}C=0,~R_{A}C(R_{B})^{\eta *}=0. \end{aligned}$$
  3. (3)
    $$\begin{aligned} r[E_{i},~A_{i},~B_{i}] =&\,r[A_{i},~B_{i}], ~ r\begin{bmatrix} E_{i} &{} A_{i}\\ B_{i}^{\eta *} &{} 0 \end{bmatrix} =r(A_{i})+r(B_{i}) ,\\ r\begin{bmatrix} 0&{}B_{1}^{\eta *}&{}B_{2}^{\eta *}&{}0&{}0\\ B_{1}&{}E_{1}&{}0&{}A_{1}&{}0\\ B_{2}&{}0&{}-E_{2}&{}0&{}A_{2} \end{bmatrix} =&\,r \begin{bmatrix} B_{1} &{} A_{1}&{}0\\ B_{2}&{}0&{}A_{2} \end{bmatrix}+r\begin{bmatrix}B_{1}\\ B_{2} \end{bmatrix},\\ r\begin{bmatrix} 0&{}B_{1}^{\eta *}&{}B_{2}^{\eta *}&{}0\\ B_{1}&{}-E_{1}&{}0&{}A_{1}\\ B_{2}&{}0&{}E_{2}&{}0\\ 0&{}0&{}A_{2}^{\eta *}&{}0 \end{bmatrix} =&\,r \begin{bmatrix} B_{1} &{} A_{1}\\ B_{2}&{}0 \end{bmatrix}+r\begin{bmatrix}B_{1}&{}0\\ B_{2}&{}A_{2}\end{bmatrix}. \end{aligned}$$

In this case, the general \(\eta \)-Hermitian solution to system (3.36) can be expressed as

$$\begin{aligned} X=&\,A_{1}^{\dag }E_{1}(A_{1}^{\dag })^{\eta *} -\frac{1}{2}A_{1}^{\dag }B_{1}M_{1}^{\dag }E_{1}[I+(B_{1}^{\dag })^{\eta *} S_{1}^{\eta *}](A_{1}^{\dag })^{\eta *}\\&-\frac{1}{2}A_{1}^{\dag }(I+S_{1}B_{1}^{\dag })E_{1}(M_{1}^{\dag })^{\eta *}B_{1}^{\eta *}(A_{1}^{\dag })^{\eta *}\\&-A_{1}^{\dag }S_{1}V_{1}S_{1}^{\eta *}(A_{1}^{\dag })^{\eta *} +L_{A_{1}}U_{1}+(L_{A_{1}}U_{1})^{\eta *},\\ Z=&\,A_{1}^{\dag }E_{2}(A_{2}^{\dag })^{\eta *}\\&-\frac{1}{2}A_{2}^{\dag } B_{2}M_{2}^{\dag }E_{2}[I+(B_{2}^{\dag })^{\eta *}S_{2}^{\eta *}](A_{2}^{\dag })^{\eta *} -\frac{1}{2}A_{2}^{\dag }(I+S_{2}B_{2}^{\dag })E_{2}(M_{2}^{\dag })^{\eta *}B_{2}^{\eta *}(A_{2}^{\dag })^{\eta *}\\&+A_{2}^{\dag }S_{2}V_{2}S_{2}^{\eta *}(A_{2}^{\dag })^{\eta *} +L_{A_{2}}U_{4}+(L_{A_{2}}U_{4})^{\eta *},\\ Y=&\,\frac{1}{2}M_{1}^{\dag }E_{1}(B_{1}^{\dag })^{\eta *} [I+(S_{1}^{\dag }S_{1})^{\eta *}]+\frac{1}{2}(I+S_{1}^{\dag }S_{1})B_{1}^{\dag }E_{1}(M_{1}^{\dag })^{\eta *} +L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *}\\&+L_{B_{1}}U_{2}+(L_{B_{1}}U_{2})^{\eta *} +L_{M_{1}}L_{S_{1}}U_{3}+(L_{M_{1}}L_{S_{1}}U_{3})^{\eta *}, \end{aligned}$$

or

$$\begin{aligned} Y=&\,\frac{1}{2}M_{2}^{\dag }E_{2}(B_{2}^{\dag })^{\eta *} [I+(S_{2}^{\dag }S_{2})^{\eta *}]+\frac{1}{2}(I+S_{2}^{\dag } S_{2})B_{2}^{\dag }E_{2}(M_{2}^{\dag })^{\eta *}-L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}\\&+L_{B_{2}}U_{5}+(L_{B_{2}}U_{5})^{\eta *} +L_{M_{2}}L_{S_{2}}U_{6}+(L_{M_{2}}L_{S_{2}}U_{6})^{\eta *}, \end{aligned}$$

where

$$\begin{aligned} U_{2}=&\,[I_{m},~0,~0,~0]\Bigg [A_{3}^{\dag }[E_{3}-L_{M_{1}} V_{1}(L_{M_{1}})^{\eta *}-L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}]\\&+L_{A_{3}}W_{1}+W_{2}^{\eta *}(A_{3}^{\dag })^{\eta *}(A_{3})^{\eta *}\\&-\frac{1}{2}A_{3}^{\dag }[E_{3}-L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *} -L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}](A_{3}^{\dag })^{\eta *}A_{3}^{\eta *} -A_{3}^{\dag }W_{2}A_{3}^{\eta *}\Bigg ],\\ U_{3}=&\,[0,~I_{m},~0,~0]\Bigg [A_{3}^{\dag }[E_{3}-L_{M_{1}}V_{1} (L_{M_{1}})^{\eta *}-L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}]\\&+L_{A_{3}}W_{1}+W_{2}^{\eta *}(A_{3}^{\dag })^{\eta *}(A_{3})^{\eta *}\\&-\frac{1}{2}A_{3}^{\dag }[E_{3}-L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *} -L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}](A_{3}^{\dag })^{\eta *}A_{3}^{\eta *} -A_{3}^{\dag }W_{2}A_{3}^{\eta *}\Bigg ],\\ U_{5}=&\,[0,~0,~I_{m},~0]\Bigg [A_{3}^{\dag }[E_{3}-L_{M_{1}}V_{1} (L_{M_{1}})^{\eta *}-L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}]\\&+L_{A_{3}}W_{1}+W_{2}^{\eta *}(A_{3}^{\dag })^{\eta *}(A_{3})^{\eta *}\\&-\frac{1}{2}A_{3}^{\dag }[E_{3}-L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *} -L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}](A_{3}^{\dag })^{\eta *}A_{3}^{\eta *} -A_{3}^{\dag }W_{2}A_{3}^{\eta *}\Bigg ],\\ U_{6}=&\,[0,~0,~0,~I_{m}]\Bigg [A_{3}^{\dag }[E_{3}-L_{M_{1}}V_{1} (L_{M_{1}})^{\eta *}-L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}]\\&+L_{A_{3}}W_{1}+W_{2}^{\eta *}(A_{3}^{\dag })^{\eta *}(A_{3})^{\eta *}\\&-\frac{1}{2}A_{3}^{\dag }[E_{3}-L_{M_{1}}V_{1}(L_{M_{1}})^{\eta *} -L_{M_{2}}V_{2}(L_{M_{2}})^{\eta *}](A_{3}^{\dag })^{\eta *}A_{3}^{\eta *} -A_{3}^{\dag }W_{2}A_{3}^{\eta *}\Bigg ],\\ V_{1}=&\,V_{1}^{\eta *}=A^{\dag }C(A^{\dag })^{\eta *} -\frac{1}{2}A^{\dag }BM^{\dag }C[I+(B^{\dag })^{\eta *}S^{\eta *}](A^{\dag })^{\eta *}\\&-\frac{1}{2}A^{\dag }(I+SB^{\dag })C(M^{\dag })^{\eta *}B^{\eta *}(A^{\dag })^{\eta *} \\&-A^{\dag }SW_{3}S^{\eta *}(A^{\dag })^{\eta *}+L_{A}W_{4}+(L_{A}W_{4})^{\eta *},\\ V_{2}=&\,V_{2}^{\eta *} = \frac{1}{2}M^{\dag }C(B^{\dag })^{\eta *}[I+(S^{\dag }S)^{\eta *}]+\frac{1}{2}(I+S^{\dag }S)B^{\dag }C(M^{\dag })^{\eta *}+L_{M}W_{3}(L_{M})^{\eta *}\\&+L_{B}W_{5}+(L_{B}W_{5})^{\eta *} +L_{M}L_{S}W_{6}+(L_{M}L_{S}W_{6})^{\eta *} , \end{aligned}$$

and \(U_{1},U_{4},W_{1},W_{2},W_{3}=W_{3}^{\eta *},W_{4},W_{5},W_{6}\) are arbitrary matrices over \({\mathbb {H}}\) with appropriate sizes, m is the column number of \(B_{1}\).

4 An Algorithm and an Example

In this section, we give an algorithm and an example to illustrate the main result. The algorithm for finding the \(\eta \)-Hermitian solution to the system of real quaternion matrix equations (3.1) is presented as follows.

Algorithm 4.1

The \(\eta \)-Hermitian solution to the system of quaternion matrix equations (3.1).

Input: The system of quaternion matrix equations (3.1).

  1. (i)

    Compute \(E_{j},F_{j},(j=1,2,3)\) by (3.2).

  2. (ii)

    Compute \(A_{5},B_{5},C_{5},D_{5},P_{1},Q_{1},M_{1},S_{1},M_{2},S_{2},A_{6},P_{2},A,B,C,M,S\) by (3.3)–(3.9).

  3. (iii)

    Compute the Moore–Penrose inverses conditions in Theorem 3.1 (2).

  4. (iv)

    Compute the rank conditions in Theorem 3.1 (3).

  5. (iv)

    If any of equations in Theorem 3.1 (2) or (3) fails, return

    “No \(\eta \)-Hermitian solution”.

  6. (v)

    Else compute the Moore–Penrose inverses in Theorem 3.1 (3.20)–(3.22).

Output: \(\eta \)-Hermitian solution (XYZ) in Theorem 3.1.

Here is an example to illustrate Theorem 3.1.

Example 1

Given the matrices:

$$\begin{aligned} A_{1}=&\,\begin{bmatrix} {\mathbf {j}}&{}\quad {\mathbf {k}}&{}\quad 2+{\mathbf {j}}\\ {\mathbf {i}}&{}\quad 0&{}\quad 1\\ {\mathbf {i}}+{\mathbf {j}}&{}\quad {\mathbf {k}}&{}\quad 3+{\mathbf {j}} \end{bmatrix},~ A_{2}= \begin{bmatrix} {\mathbf {k}}&{}\quad 1&{}\quad 0\\ -{\mathbf {j}}&{}\quad {\mathbf {i}}&{}\quad 0\\ -{\mathbf {j}}+{\mathbf {k}}&{}\quad 1+{\mathbf {i}}&{}\quad 0 \end{bmatrix},~ A_{3}=\begin{bmatrix} {\mathbf {j}}-{\mathbf {k}}&{}\quad {\mathbf {i}}+2{\mathbf {j}}&{}\quad 1\\ {\mathbf {k}}&{}\quad -{\mathbf {j}}&{}\quad {\mathbf {i}}\\ {\mathbf {j}}&{}\quad {\mathbf {i}}+{\mathbf {j}}&{}\quad 1+{\mathbf {i}} \end{bmatrix},\\ B_{1}=&\, \begin{bmatrix} {\mathbf {i}}&{}\quad {\mathbf {j}}&{}\quad {\mathbf {k}}\\ -1&{}\quad {\mathbf {k}}&{}\quad -{\mathbf {j}}\\ -1+{\mathbf {i}}&{}\quad {\mathbf {j}}+{\mathbf {k}}&{}\quad -{\mathbf {j}}+{\mathbf {k}} \end{bmatrix},~ B_{2}=\begin{bmatrix} 1+2{\mathbf {j}}&{}\quad 1-{\mathbf {k}}&{}\quad 0\\ -2{\mathbf {j}}&{}\quad {\mathbf {k}}&{}\quad 1\\ 1&{}\quad 1&{}\quad 1 \end{bmatrix},\\ B_{3}=&\,\begin{bmatrix} {\mathbf {i}}+{\mathbf {j}}-{\mathbf {k}}&{}\quad {\mathbf {j}}&{}\quad {\mathbf {i}}\\ {\mathbf {k}}&{}\quad -{\mathbf {j}}&{}\quad 1\\ {\mathbf {i}}+{\mathbf {j}}&{}\quad 0&{}\quad 1+{\mathbf {i}} \end{bmatrix},\\ C_{1}=&\,\begin{bmatrix} 1+3{\mathbf {i}}-2{\mathbf {j}}+2{\mathbf {k}}&{}\quad -1+{\mathbf {j}} &{}\quad 3+{\mathbf {i}}+2{\mathbf {j}}\\ -2{\mathbf {j}}+{\mathbf {k}}&{}\quad {\mathbf {k}}&{}\quad 2-{\mathbf {j}}+{\mathbf {k}}\\ 1+3{\mathbf {i}}-4{\mathbf {j}}+3{\mathbf {k}}&{}\quad -1+{\mathbf {j}} +{\mathbf {k}}&{}\quad 5+{\mathbf {i}}+{\mathbf {j}}+{\mathbf {k}} \end{bmatrix},\\ C_{2}=&\,\begin{bmatrix} {\mathbf {i}}&{}\quad {\mathbf {j}}+2{\mathbf {k}}&{}\quad -{\mathbf {i}}+2{\mathbf {k}}\\ -1&{}\quad -2{\mathbf {j}}+{\mathbf {k}}&{}\quad 1-2{\mathbf {j}}\\ -1+{\mathbf {i}}&{}\quad -{\mathbf {j}}+3{\mathbf {k}}&{}\quad 1-{\mathbf {i}}-2{\mathbf {j}}+2{\mathbf {k}} \end{bmatrix},\\ C_{3}=&\,\begin{bmatrix} 4+2{\mathbf {i}}+{\mathbf {j}}-3{\mathbf {k}}&{}\quad -2+4{\mathbf {i}} -{\mathbf {k}}&{}\quad 1-{\mathbf {j}}-{\mathbf {k}}\\ -3&{}\quad -3{\mathbf {i}}+{\mathbf {k}}&{}\quad -{\mathbf {i}}+{\mathbf {j}}\\ 1+2{\mathbf {i}}+{\mathbf {j}}-3{\mathbf {k}}&{}\quad -2+{\mathbf {i}}&{}\quad -1-{\mathbf {i}}-{\mathbf {k}} \end{bmatrix},\\ D_{1}=&\, \begin{bmatrix} -2{\mathbf {k}}&{}\quad -2&{}\quad 2{\mathbf {i}}\\ -{\mathbf {i}}+{\mathbf {k}}&{}\quad 1-{\mathbf {j}}&{}\quad -{\mathbf {i}}-{\mathbf {k}}\\ -2+2{\mathbf {i}}+{\mathbf {j}}+{\mathbf {k}}&{}\quad 1-{\mathbf {i}} +2{\mathbf {j}}+2{\mathbf {k}}&{}\quad -1-{\mathbf {i}}-2{\mathbf {j}}+2{\mathbf {k}} \end{bmatrix},\\ D_{2}=&\,\begin{bmatrix} 2+{\mathbf {j}}-2{\mathbf {k}}&{}\quad 2&{}\quad 2+{\mathbf {i}}+{\mathbf {j}}\\ 5{\mathbf {i}}+2{\mathbf {k}}&{}\quad -2+{\mathbf {i}}+{\mathbf {j}}&{}\quad 2{\mathbf {k}}\\ 5+3{\mathbf {j}}&{}\quad 3+{\mathbf {i}}-{\mathbf {j}}+2{\mathbf {k}}&{}\quad 1 \end{bmatrix},~\\ D_{3}=&\,\begin{bmatrix} -2+2{\mathbf {i}}+{\mathbf {j}}+3{\mathbf {k}}&{}\quad 2-{\mathbf {j}} +{\mathbf {k}}&{}\quad -1+{\mathbf {i}}+2{\mathbf {j}}\\ 1+3{\mathbf {i}}+{\mathbf {j}}+{\mathbf {k}}&{}\quad 2+{\mathbf {i}} +{\mathbf {j}}&{}\quad {\mathbf {i}}+3{\mathbf {k}}\\ -1-{\mathbf {i}}+{\mathbf {k}}&{}{\mathbf {k}}&{}\quad -2-{\mathbf {i}} \end{bmatrix},\\ A_{4}=&\,\begin{bmatrix} {\mathbf {j}}&{}\quad {\mathbf {k}}&{}\quad 1\\ 0&{}\quad 1&{}\quad {\mathbf {i}}\\ {\mathbf {j}}&{}\quad 1+{\mathbf {k}}&{}\quad 1+{\mathbf {i}} \end{bmatrix},~ B_{4}=\begin{bmatrix} 1&{}\quad {\mathbf {i}}+2{\mathbf {k}}&{}\quad 0\\ {\mathbf {j}}&{}\quad {\mathbf {k}}&{}\quad {\mathbf {i}}\\ 1+{\mathbf {j}}&{}\quad {\mathbf {i}}+3{\mathbf {k}}&{}\quad {\mathbf {i}} \end{bmatrix},\\ C_{4}=&\,\begin{bmatrix} 2&{}\quad 1&{}\quad {\mathbf {k}}\\ {\mathbf {j}}&{}\quad 0&{}\quad 1\\ 2+{\mathbf {j}}&{}\quad 1&{}\quad 1+{\mathbf {k}} \end{bmatrix},~D_{4}= \begin{bmatrix} 2{\mathbf {i}}+{\mathbf {k}}&{}\quad {\mathbf {j}}&{}\quad 1\\ 0&{}\quad {\mathbf {i}}&{}\quad {\mathbf {k}}\\ 2{\mathbf {i}}+{\mathbf {k}}&{}\quad {\mathbf {i}}+{\mathbf {j}}&{}\quad 1+{\mathbf {k}} \end{bmatrix},\\ P=&\,P^{{\mathbf {j}}*}= \begin{bmatrix} -1+11{\mathbf {i}}+7{\mathbf {k}}&{}\quad 2+3{\mathbf {i}} +3{\mathbf {j}}-{\mathbf {k}}&{}\quad 1+14{\mathbf {i}}+3{\mathbf {j}}+6{\mathbf {k}}\\ 2+3{\mathbf {i}}-3{\mathbf {j}}-{\mathbf {k}}&{}\quad -3 +{\mathbf {i}}&{}\quad -1+4{\mathbf {i}}-3{\mathbf {j}}-{\mathbf {k}}\\ 1+14{\mathbf {i}}-3{\mathbf {j}}+6{\mathbf {k}}&{}\quad -1+4{\mathbf {i}} +3{\mathbf {j}}-{\mathbf {k}}&{}\quad 18{\mathbf {i}}+5{\mathbf {k}} \end{bmatrix},\\ Q=&\,Q^{{\mathbf {j}}*}= \begin{bmatrix} 3+13{\mathbf {i}}+3{\mathbf {k}}&{}\quad -7-{\mathbf {i}}-3{\mathbf {j}} -7{\mathbf {k}}&{}\quad -4+12{\mathbf {i}}-3{\mathbf {j}}-4{\mathbf {k}}\\ -7-{\mathbf {i}}+3{\mathbf {j}}-7{\mathbf {k}}&{}\quad {\mathbf {i}} -3{\mathbf {k}}&{}\quad -7+3{\mathbf {j}}-10{\mathbf {k}}\\ -4+12{\mathbf {i}}+3{\mathbf {j}}-4{\mathbf {k}} &{}\quad -7-3{\mathbf {j}}-10{\mathbf {k}}&{}\quad -11+12{\mathbf {i}}-14{\mathbf {k}} \end{bmatrix}. \end{aligned}$$

Now, we consider the \({\mathbf {j}}\)-Hermitian solution to system (3.1), where \(\eta ={\mathbf {j}}.\) Note that the rank of a quaternion matrix A can be quickly calculated by using the following property (see [42])

$$\begin{aligned} r(A)=\frac{1}{2}r\begin{bmatrix}A_{1}&{}A_{2}\\ -\overline{A_{2}}&{}\overline{A_{1}}\end{bmatrix}, \end{aligned}$$

where \(A=A_{1}+A_{2}{\mathbf {j}},\) \(A_{1}\) and \(A_{2}\) are complex matrices, \(\overline{A_{1}}\) means the conjugate of the matrix \(A_{1}\). The Moore–Penrose inverse of a quaternion matrix A can be calculated in MATLAB by using SVD, i.e. \(A^{\dag }=V^{*}\begin{bmatrix}D_{r}^{-1}&{}0\\ 0&{}0\end{bmatrix}U^{*},\) where U and V are unitary quaternion matrices, \(D_{r}=\text{ diag }\{d_{1},\ldots ,d_{r}\}\) and the \(d^{,}\)s are the positive singular values of A. Note that

$$\begin{aligned}&r\begin{bmatrix}A_{j}&{}C_{j}\\ B_{1}^{{\mathbf {j}}*}&{}D_{1}^{{\mathbf {j}}*} \end{bmatrix}=r\begin{bmatrix}A_{j}\\ B_{1}^{{\mathbf {j}}*}\end{bmatrix} =3,~ \begin{bmatrix} A_{j}C_{j}^{{\mathbf {j}}*}&{}A_{j}D_{j}\\ B_{j}^{{\mathbf {j}}*}C_{j}^{{\mathbf {j}}*}&{}B_{j}^{{\mathbf {j}}*}D_{j} \end{bmatrix}= \begin{bmatrix} C_{j}A_{j}^{{\mathbf {j}}*}&{}C_{j}B_{j}\\ D_{j}^{{\mathbf {j}}*}A_{j}^{{\mathbf {j}}*}&{}D_{j}^{{\mathbf {j}}*}B_{j} \end{bmatrix},~(j=1,2,3),\\&r\begin{bmatrix} P&{}A_{4}&{}C_{4}\\ C_{1}A_{4}^{{\mathbf {j}}*}&{}A_{1}&{}0\\ D_{1}^{{\mathbf {j}}*}A_{4}^{{\mathbf {j}}*}&{}B_{1}^{{\mathbf {j}}*}&{}0\\ C_{2}C_{4}^{{\mathbf {j}}*}&{}0&{}A_{2}\\ D_{2}^{{\mathbf {j}}*}C_{4}^{{\mathbf {j}}*}&{}0&{}B_{2}^{{\mathbf {j}}*}\end{bmatrix}= r\begin{bmatrix} A_{4}&{}C_{4}\\ A_{1}&{}0\\ B_{1}^{{\mathbf {j}}*}&{}0\\ 0&{}A_{2}\\ 0&{}B_{2}^{{\mathbf {j}}*}\end{bmatrix}=6,\\&r\begin{bmatrix} P&{}A_{4}&{}C_{4}C_{2}^{{\mathbf {j}}*}&{}C_{4}D_{2}\\ C_{4}^{{\mathbf {j}}*}&{}0&{}A_{2}^{{\mathbf {j}}*}&{}B_{2}\\ C_{1}A_{4}^{{\mathbf {j}}*}&{}A_{1}&{}0&{}0\\ D_{1}^{{\mathbf {j}}*}A_{4}^{{\mathbf {j}}*}&{}B_{1}^{{\mathbf {j}}*}&{}0&{}0\end{bmatrix}= r\begin{bmatrix} A_{1}\\ B_{1}^{{\mathbf {j}}*}\\ A_{4}\end{bmatrix}+r\begin{bmatrix} A_{2}\\ B_{2}^{{\mathbf {j}}*}\\ C_{4}\end{bmatrix}=6,\\&r\begin{bmatrix} Q&{}B_{4}&{}D_{4}\\ C_{3}B_{4}^{{\mathbf {j}}*}&{}A_{3}&{}0\\ D_{3}^{{\mathbf {j}}*}B_{4}^{{\mathbf {j}}*}&{}B_{3}^{{\mathbf {j}}*}&{}0\\ C_{2}D_{4}^{{\mathbf {j}}*}&{}0&{}A_{2}\\ D_{2}^{{\mathbf {j}}*}D_{4}^{{\mathbf {j}}*}&{}0&{}B_{2}^{{\mathbf {j}}*}\end{bmatrix}= r\begin{bmatrix} B_{4}&{}D_{4}\\ A_{3}&{}0\\ B_{3}^{{\mathbf {j}}*}&{}0\\ 0&{}A_{2}\\ 0&{}B_{2}^{{\mathbf {j}}*}\end{bmatrix}=6,\\&r\begin{bmatrix} Q&{}B_{4}&{}D_{4}C_{2}^{{\mathbf {j}}*}&{}D_{4}D_{2}\\ D_{4}^{{\mathbf {j}}*}&{}0&{}A_{2}^{{\mathbf {j}}*}&{}B_{2}\\ C_{3}B_{4}^{{\mathbf {j}}*}&{}A_{3}&{}0&{}0\\ D_{3}^{{\mathbf {j}}*}B_{4}^{{\mathbf {j}}*}&{}B_{3}^{{\mathbf {j}}*}&{}0&{}0\end{bmatrix}= r\begin{bmatrix} A_{3}\\ B_{3}^{{\mathbf {j}}*}\\ B_{4}\end{bmatrix}+r\begin{bmatrix} A_{2}\\ B_{2}^{{\mathbf {j}}*}\\ D_{4}\end{bmatrix}=6,\\&r\begin{bmatrix} 0&{}-C_{4}^{{\mathbf {j}}*}&{}D_{4}^{{\mathbf {j}}*}&{}0&{}0&{}A_{2}^{{\mathbf {j}}*}&{}B_{2}\\ C_{4}&{}P&{}0&{}A_{4}&{}0&{}0&{}0\\ D_{4}&{}0&{}Q&{}0&{}B_{4}&{}D_{4}C_{2}^{{\mathbf {j}}*}&{}D_{4}D_{2}\\ A_{2}&{}C_{2}C_{4}^{{\mathbf {j}}*}&{}0&{}0&{}0&{}0&{}0\\ B_{2}^{{\mathbf {j}}*}&{}D_{2}^{{\mathbf {j}}*}C_{4}^{{\mathbf {j}}*}&{}0&{}0&{}0&{}0&{}0\\ 0&{}C_{1}A_{4}^{{\mathbf {j}}*}&{}0&{}A_{1}&{}0&{}0&{}0\\ 0&{}D_{1}^{{\mathbf {j}}*}A_{4}^{{\mathbf {j}}*}&{}0&{}B_{1}^{{\mathbf {j}}*}&{}0&{}0&{}0\\ 0&{}0&{}C_{3}B_{4}^{{\mathbf {j}}*}&{}0&{}A_{3}&{}0&{}0\\ 0&{}0&{}D_{3}^{{\mathbf {j}}*}B_{4}^{{\mathbf {j}}*}&{}0&{}B_{3}^{{\mathbf {j}}*}&{}0&{}0 \end{bmatrix}=r\begin{bmatrix}C_{4}\\ D_{4}\\ A_{2}\\ B_{2}^{{\mathbf {j}}*}\end{bmatrix}+ r\begin{bmatrix}C_{4}&{}A_{4}&{}0\\ D_{4}&{}0&{}B_{4}\\ A_{2}&{}0&{}0\\ B_{2}^{{\mathbf {j}}*}&{}0&{}0\\ 0&{}A_{1}&{}0\\ 0&{}B_{1}^{{\mathbf {j}}*}&{}0\\ 0&{}0&{}A_{3}\\ 0&{}0&{}B_{3}^{{\mathbf {j}}*}\end{bmatrix}=12, \end{aligned}$$
$$\begin{aligned}&r\begin{bmatrix} 0&{}-C_{4}^{{\mathbf {j}}*}&{}D_{4}^{{\mathbf {j}}*}&{}0&{}A_{2}^{{\mathbf {j}}*}&{}B_{2}&{}0&{}0\\ C_{4}&{}P&{}0&{}A_{4}&{}0&{}0&{}0&{}0\\ D_{4}&{}0&{}Q&{}0&{}D_{4}C_{2}^{{\mathbf {j}}*}&{}D_{4}D_{2}&{} B_{4}C_{3}^{{\mathbf {j}}*}&{}B_{4}D_{3}\\ A_{2}&{}C_{2}C_{4}^{{\mathbf {j}}*}&{}0&{}0&{}0&{}0&{}0&{}0\\ B_{2}^{{\mathbf {j}}*}&{}D_{2}^{{\mathbf {j}}*}C_{4}^{{\mathbf {j}}*}&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}C_{1}A_{4}^{{\mathbf {j}}*}&{}0&{}A_{1}&{}0&{}0&{}0&{}0\\ 0&{}D_{1}^{{\mathbf {j}}*}A_{4}^{{\mathbf {j}}*}&{}0&{}B_{1}^{{\mathbf {j}}*}&{}0&{}0&{}0&{}0\\ 0&{}0&{}B_{4}^{{\mathbf {j}}*}&{}0&{}0&{}0&{}A_{3}^{{\mathbf {j}}*}&{}B_{3} \end{bmatrix}=r\begin{bmatrix}C_{4}&{}A_{4}\\ D_{4}&{}0\\ A_{2}&{}0\\ B_{2}^{{\mathbf {j}}*}&{}0\\ 0&{}A_{1}\\ 0&{}B_{1}^{{\mathbf {j}}*}\end{bmatrix}\\&\qquad +r\begin{bmatrix} C_{4}&{}0\\ D_{4}&{}B_{4}\\ A_{2}&{}0\\ B_{2}^{{\mathbf {j}}*}&{}0\\ 0&{}A_{3}\\ 0&{}B_{3}^{{\mathbf {j}}*}\end{bmatrix}=12. \end{aligned}$$

All equalities in (3.13)–(3.19) hold. By Theorem 3.1, we can conclude that system (3.1) has a \({\mathbf {j}}\)-Hermitian solution (XYZ),  where

$$\begin{aligned} X=&\,X^{{\mathbf {j}}*}= \begin{bmatrix}{\mathbf {k}}&{}{\mathbf {j}} &{}{\mathbf {j}}+{\mathbf {k}}\\ -{\mathbf {j}}&{}{\mathbf {i}}&{}0\\ -{\mathbf {j}}+{\mathbf {k}}&{}0&{}2\end{bmatrix},\\ Y=&\,Y^{{\mathbf {j}}*}=\begin{bmatrix}0&{}{\mathbf {i}}&{}2+{\mathbf {j}}\\ {\mathbf {i}}&{}2{\mathbf {k}}&{}0\\ 2-{\mathbf {j}}&{}0&{}1\end{bmatrix},\\ Z=&\,Z^{{\mathbf {j}}*}=\begin{bmatrix}{\mathbf {i}}&{}1+2{\mathbf {j}} &{}{\mathbf {i}}\\ 1-2{\mathbf {j}}&{}{\mathbf {k}}&{}0\\ {\mathbf {i}}&{}0&{}-1\end{bmatrix}. \end{aligned}$$

5 Conclusions

We have derived some practical necessary and sufficient conditions for the existence of an \(\eta \)-Hermitian solution (XYZ) to the system of constrained two-sided coupled real quaternion matrix equations (1.3). We have also given the general \(\eta \)-Hermitian solution to system (1.3) when the solvability conditions are satisfied. An algorithm and a numerical example have been provided to illustrate the main result.