1 Introduction

Let \(H(\mathbb {D})\) be the space of analytic functions on the open unit disk \({\mathbb D}\) in the complex plane \({\mathbb C}\). Let \(\alpha >0\). The Bloch-type space, denoted by \(\mathcal {B}^\alpha \), consists of all \(f \in H(\mathbb {D})\) such that (see [42])

$$\begin{aligned} \Vert f\Vert _{\mathcal {B}^\alpha }=|f(0)|+\sup _{z \in \mathbb {D}}(1-|z|^2)^\alpha |f'(z)|<\infty . \end{aligned}$$

\(\mathcal {B}^\alpha \) is a Banach space with the above norm. Let \(\mathcal {B}^\alpha _0\) denote the space of \(f \in \mathcal {B}^\alpha \) for which \(\lim _{|z| \rightarrow 1}(1-|z|^2)^\alpha |f'(z)|= 0.\)\(\mathcal {B}_0^\alpha \) is called the little Bloch-type space. \(\mathcal {B}^1 \) is the well-known Bloch space, which always denoted by \( \mathcal {B}\).

Let \(\beta > 0\). The Zygmund-type space, denoted by \(\mathcal {Z}^\beta \), consists of all \(f\in H({\mathbb D})\) such that

$$\begin{aligned} \Vert f\Vert _{\mathcal {Z}^\beta }=|f(0)|+|f'(0)|+\sup _{z \in \mathbb {D}}(1-|z|^2)^\beta |f''(z)|<\infty . \end{aligned}$$

It is easy to check that \(\mathcal {Z}^\beta \) is a Banach space with the norm \( \Vert \cdot \Vert _{\mathcal {Z}^\beta }\). When \(\beta =1\), \(\mathcal {Z}^1=\mathcal {Z}\) is the classical Zygmund space. When \(\beta >1\), the space \(\mathcal {Z}^\beta \) coincides with \(\mathcal {B}^{\beta -1}\). See [3, 10, 11, 18, 30,31,32,33, 40] for the study of related operators mapping into the Zygmund space or into some of its generalizations.

Let \(\varphi \) be an analytic self-maps of \(\mathbb {D}\). The composition operator \(C_\varphi \) with the symbol \(\varphi \) is defined by

$$\begin{aligned} (C_\varphi f)(z) = f (\varphi (z)), ~f \in H(\mathbb {D}). \end{aligned}$$

See [4, 42] for the study of this operator. Let \(u \in H(\mathbb {D})\) and n be a nonnegative integer. The generalized weighted composition operator, denoted by \(D^n_{\varphi , u}\), is defined as follows (see [43, 44]).

$$\begin{aligned} (D^n_{\varphi , u} f)(z) =u(z)\cdot f^{(n)}(\varphi (z)) , \ \ f \in H(\mathbb {D}), ~~z\in \mathbb {D}. \end{aligned}$$

If \(n=0\), then \( D^n_{\varphi , u}\) is just the weighted composition operator and always denoted by \(uC_\varphi \), recently, some important and interest results of the weighted composition operator have appeared, for example [1, 27]. When \(n=0\) and \(u(z)= 1\), then \( D^n_{\varphi , u}\) is just the composition operator \(C_\varphi \). If \(n=1\), \(u(z)=\varphi '(z)\), then \( D^n_{\varphi , u}= DC_\varphi \), which was studied, for example, in [8, 12, 17, 18, 28, 29, 34, 35]. When \(u(z)=1\), \(D^n_{\varphi , u}= C_\varphi D^n\), which was studied in [8, 20, 37]. See, e.g., [9, 10, 19, 32, 33, 39, 43, 44] for the study of the operator \(D^n_{\varphi , u}\) on various function spaces.

Various properties of composition operators, as well as weighted composition operators mapping into Bloch-type spaces were studied in [4,5,6, 13,14,15,16,17, 22,23,26, 33, 36, 38, 41]. In particular, Tjani [36] showed that \(C_\varphi : \mathcal {B} \rightarrow \mathcal {B} \) is compact if and only if \(\lim _{|a|\rightarrow 1} \Vert C_\varphi \sigma _a \Vert _ \mathcal {B} =0,\) where \(\sigma _a(z)=(a-z)/(1-\overline{a}z)\) is a Möbius transformation of \({\mathbb D}\). Wulan et al. [38] proved that \(C_\varphi :\mathcal {B}\rightarrow \mathcal {B}\) is compact if and only if

$$\begin{aligned} \lim _{j\rightarrow \infty }\Vert C_\varphi I^j \Vert _\mathcal {B}=\lim _{j\rightarrow \infty }\Vert \varphi ^j \Vert _\mathcal {B}=0. \end{aligned}$$

Here \( I_j(z)=z^j\). Wu and Wulan extend the above two characterizations to the operator \(C_\varphi D^m\) in [37]. Among others, they proved \(C_\varphi D^m: \mathcal {B} \rightarrow \mathcal {B} \) is compact if and only if \(\lim _{j\rightarrow \infty }\Vert C_\varphi D^m(I^j)\Vert _ \mathcal {B} =0\). In [9], the authors studied the boundedness, compactness and the essential norm of the operator \(D^n_{\varphi ,u}: \mathcal {B} \rightarrow \mathcal {Z} \). For example, they proved that \(D^n_{\varphi ,u}: \mathcal {B} \rightarrow \mathcal {Z} \) is bounded if and only if \(u, u\varphi , u\varphi ^2\in \mathcal {Z} \) and

$$\begin{aligned} \max \big \{\sup \limits _{a\in \mathbb {D}}\Vert D^n_{\varphi ,u} k_{a}\Vert _{\mathcal {Z} }, \sup \limits _{a\in \mathbb {D}}\Vert D^n_{\varphi ,u} p_{a}\Vert _{\mathcal {Z} }, \sup \limits _{a\in \mathbb {D}}\Vert D^n_{\varphi ,u}q_{a}\Vert _{\mathcal {Z} }\big \} <\infty . \end{aligned}$$

Here

$$\begin{aligned} k_a(z)= \frac{ 1-|a|^{2} }{ 1- \overline{a}z } ,\,~p_a(z)= \frac{ (1-|a|^2)^2}{(1-\overline{a}z)^2} , ~~q_a(z)=\frac{ (1-|a|^2)^3}{(1-\overline{a}z)^3},~~ z\in \mathbb {D}. \end{aligned}$$

Motivated by these observations, in this work we give a new characterization for the operator \(D^n_{\varphi ,u}: \mathcal {B} \rightarrow \mathcal {Z} \). More generally, we study the boundedness, compactness and essential norm of the operator \(D^n_{\varphi ,u} : \mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \). For example, we show that \(D^n_{\varphi ,u} : \mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \) is bounded (respectively, compact) if and only if the sequence \((j^{\alpha -1}\Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta })_{j=n}^\infty \) is bounded (respectively, convergent to 0 as \(j\rightarrow \infty \)).

Throughout the paper, we denote by C a positive constant which may differ from one occurrence to the next. In addition, we say that \(P\lesssim Q\) if there exists a constant C such that \(P\le CQ\). The symbol \(P\approx Q\) means that \(P \lesssim Q \lesssim P\).

2 Boundedness of \(D^n_{\varphi ,u}:\mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \)

Now we are in a position to state and proof the main result in this section.

Theorem 1

Let \(0<\alpha ,\beta <\infty \), \(\varphi \) be an analytic self-map of \({\mathbb D}\), \(u\in H(\mathbb {D})\) and n be a positive integer. Then the operator \(D^n_{\varphi ,u}: \mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \) is bounded if and only if

$$\begin{aligned} M:=\sup _{j\ge n} j^{ \alpha -1}\Vert D^n_{\varphi , u}I^j \Vert _{\mathcal {Z}^\beta }<\infty , \end{aligned}$$

where \( I^j(z)=z^j.\)

Proof

First we assume that \(D^n_{\varphi ,u}: \mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \) is bounded. For any \(j\in \mathbb {N}\), the function \(j^{ \alpha -1} I^j\) is bounded in \(\mathcal {B}^\alpha \) and \(j^{ \alpha -1}\Vert I^j\Vert _{\mathcal {B}^\alpha } \approx 1\) (see [41]). By the boundedness of \(D^n_{\varphi ,u}: \mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \) we get the desired result.

Conversely, assume that \(M<\infty \). Applying the operator \(D^n_{\varphi , u}\) to \(I^j\) with \(j=n, n+1, n+2\), we see that \(u, u\varphi , u\varphi ^2\in \mathcal {Z}^\beta \). For \(a\in {\mathbb D}\), motivated by [2] (see also [7, 21]), we define

$$\begin{aligned} f_a(z)= \frac{ 1-|a|^{2} }{(1- \overline{a}z )^{\alpha } } ,\,~g_a(z)= \frac{ (1-|a|^2)^2}{(1-\overline{a}z)^{\alpha +1}} , ~~h_a(z)=\frac{ (1-|a|^2)^3}{(1-\overline{a}z)^{\alpha +2}},~~ z\in \mathbb {D}. \end{aligned}$$

It is easy to see that \(f_a\), \(g_a\) and \(h_a\) have bounded norms in \(\mathcal {B}^\alpha \). Moreover,

$$\begin{aligned} f_a(z)= & {} (1-|a|^2)\sum _{j=0}^\infty \frac{\Gamma (j+\alpha )}{j!\Gamma (\alpha )}\overline{a}^jz^j, ~~ g_a(z)=(1-|a|^2)^2\sum _{j=0}^\infty \frac{\Gamma (j+1+\alpha )}{j!\Gamma (\alpha +1)}\overline{a}^jz^j,\\ h_a(z)= & {} (1-|a|^2)^3\sum _{j=0}^\infty \frac{\Gamma (j+2+\alpha )}{j!\Gamma (\alpha +2)}\overline{a}^jz^j. \end{aligned}$$

By Stirling’s formula, we have \(\frac{\Gamma (j+\alpha )}{j!\Gamma (\alpha )}\approx j^{\alpha -1} \) as \(j\rightarrow \infty .\) Since a is fixed, by using pointwise estimate we get

$$\begin{aligned} \Vert D^n_{\varphi ,u}f_a\Vert _{\mathcal {Z}^\beta }\lesssim & {} (1-|a|^2)\sum _{j=0}^\infty |a|^j j^{\alpha -1}\Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta } \lesssim M , \\ \Vert D^n_{\varphi ,u}g_a\Vert _{\mathcal {Z}^\beta }\lesssim & {} (1-|a|^2)^2\sum _{j=0}^\infty j|a|^j j^{\alpha -1}\Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta }\lesssim M \hbox { and }\\ \Vert D^n_{\varphi ,u}h_a\Vert _{\mathcal {Z}^\beta }\lesssim & {} (1-|a|^2)^3\sum _{j=0}^\infty j(j+1) |a|^j j^{\alpha -1}\Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta }\lesssim M. \end{aligned}$$

Therefore, by the arbitrary of \(a\in {\mathbb D}\), we get

$$\begin{aligned} Q_3:=\max \big \{\sup \limits _{a\in \mathbb {D}}\Vert D^n_{\varphi ,u} f_{a}\Vert _{\mathcal {Z}^\beta }, \sup \limits _{a\in \mathbb {D}}\Vert D^n_{\varphi ,u} g_{a}\Vert _{\mathcal {Z}^\beta }, \sup \limits _{a\in \mathbb {D}}\Vert D^n_{\varphi ,u}h_{a}\Vert _{\mathcal {Z}^\beta }\big \} <\infty . \end{aligned}$$

Set \(q_0=\prod _{j=0}^{n-1}(\alpha +j ), ~q_1= \prod _{j=0}^{n}(\alpha +j ) ,~~q_2= \prod _{j=0}^{n+1}(\alpha +j ) ,\)\(v(z)=2u'(z)\varphi '(z)+u(z)\varphi ''(z)\). A calculation shows that

$$\begin{aligned} f_a^{(n)}(a)= & {} q_0\frac{\overline{a}^n}{(1-|a|^2)^{\alpha +n-1}}, \,\, g_a^{(n)}(a)= \frac{q_1}{\alpha } \frac{ \overline{a}^n}{(1-|a|^2)^{\alpha +n-1}} , \end{aligned}$$
(2.1)
$$\begin{aligned} h_a^{(n)}(a)= & {} \frac{q_2}{\alpha (\alpha +1)}\frac{ \overline{a}^n}{(1-|a|^2)^{\alpha +n-1}} . \end{aligned}$$
(2.2)

From (2.1) and (2.2), for \(w\in \mathbb {D}\), we have

$$\begin{aligned} (D^n_{\varphi ,u} f_{\varphi (w)} )''(w)= & {} q_0 \frac{u''(w)\overline{\varphi (w)}^{n}}{(1-|\varphi (w)|^2)^{\alpha +n-1}}+ q_1 \frac{v(w)\overline{\varphi (w)}^{n+1}}{(1-|\varphi (w)|^2)^{\alpha +n}} \nonumber \\&+q_2\frac{u(w)(\varphi '(w))^2\overline{\varphi (w)}^{n+2}}{(1-|\varphi (w)|^2)^{\alpha +n+1}}, \end{aligned}$$
(2.3)
$$\begin{aligned} (D^n_{\varphi ,u} g_{\varphi (w)} )''(w)= & {} \frac{q_1}{\alpha }\frac{u''(w)\overline{\varphi (w)}^{n}}{(1-|\varphi (w)|^2)^{\alpha +n-1}} + \frac{q_2}{\alpha } \frac{v(w)\overline{\varphi (w)}^{n+1}}{(1-|\varphi (w)|^2)^{\alpha +n}} \nonumber \\&+\frac{(\alpha +n+2)q_2}{\alpha } \frac{u(w)(\varphi '(w))^2\overline{\varphi (w)}^{n+2}}{(1-|\varphi (w)|^2)^{\alpha +n+1}} \end{aligned}$$
(2.4)

and

$$\begin{aligned} (D^n_{\varphi ,u} h_{\varphi (w)} )''(w)= & {} \frac{q_2}{\alpha (\alpha +1)} \frac{u''(w)\overline{\varphi (w)}^{n}}{(1-|\varphi (w)|^2)^{\alpha +n-1}} +\frac{(\alpha +n+2)q_2}{\alpha (\alpha +1)}\frac{v(w)\overline{\varphi (w)}^{n+1}}{(1-|\varphi (w)|^2)^{\alpha +n}} \nonumber \\&+\frac{(\alpha +n+2)(\alpha +n+3)q_2}{\alpha (\alpha +1)}\frac{u(w)(\varphi '(w))^2\overline{\varphi (w)}^{n+2}}{(1-|\varphi (w)|^2)^{\alpha +n+1}}. \end{aligned}$$
(2.5)

Multiplying (2.3) by \(-(\alpha +n)\) and (2.4) by \(\alpha \), respectively, we obtain

$$\begin{aligned}&-(\alpha +n)(D^n_{\varphi ,u} f_{\varphi (w)} )''(w) +\alpha (D^n_{\varphi ,u} g_{\varphi (w)} )''(w)\nonumber \\&\quad =q_1\frac{v(w)\overline{\varphi (w)}^{n+1}}{(1-|\varphi (w)|^2)^{\alpha +n}}+2q_2 \frac{u(w)(\varphi '(w))^2\overline{\varphi (w)}^{n+2}}{(1-|\varphi (w)|^2)^{\alpha +n+1}}. \end{aligned}$$
(2.6)

Multiplying (2.3) by \(-(\alpha +n)(\alpha +n+1)\) and (2.5) by \(\alpha (\alpha +1)\), respectively, we obtain

$$\begin{aligned}&-(\alpha +n)(\alpha +n+1)(D^n_{\varphi ,u} f_{\varphi (w)} )''(w) +(\alpha +1)\alpha (D^n_{\varphi ,u} h_{\varphi (w)} )''(w)\nonumber \\&\quad =\frac{2q_2v(w)\overline{\varphi (w)}^{n+1}}{(1-|\varphi (w)|^2)^{\alpha +n}}+ \frac{(4\alpha +4n+6)q_2u(w)(\varphi '(w))^2\overline{\varphi (w)}^{n+2}}{(1-|\varphi (w)|^2)^{\alpha +n+1}}. \end{aligned}$$
(2.7)

Multiplying (2.6) by \(2(\alpha +n+1)\), we get

$$\begin{aligned}&-2(\alpha +n)(\alpha +n+1)(D^n_{\varphi ,u} f_{\varphi (w)} )''(w) +2\alpha (\alpha +n+1)(D^n_{\varphi ,u} g_{\varphi (w)} )''(w)\nonumber \\&\quad =\frac{2q_2v(w)\overline{\varphi (w)}^{n+1}}{(1-|\varphi (w)|^2)^{\alpha +n}}+ \frac{(4\alpha +4n+4)q_2u(w)(\varphi '(w))^2\overline{\varphi (w)}^{n+2}}{(1-|\varphi (w)|^2)^{\alpha +n+1}}. \end{aligned}$$
(2.8)

Subtracting (2.8) from (2.7), we obtain

$$\begin{aligned} \frac{2q_2u(w)(\varphi '(w))^2\overline{\varphi (w)}^{n+2}}{(1-|\varphi (w)|^2)^{\alpha +n+1}}= & {} (\alpha +n)(\alpha +n+1)(D^n_{\varphi ,u} f_{\varphi (w)} )''(w) \nonumber \\&-2\alpha (\alpha +n+1)(D^n_{\varphi ,u} g_{\varphi (w)} )''(w) \nonumber \\&+ \alpha (\alpha +1)(D^n_{\varphi ,u} h_{\varphi (w)} )''(w), \end{aligned}$$
(2.9)

which implies that

$$\begin{aligned}&\frac{ (1-|w|^2)^\beta |u(w)(\varphi '(w))^2||\varphi (w)|^{n+2}}{(1-|\varphi (w)|^2)^{\alpha +n+1}}\nonumber \\&\quad \le \frac{(\alpha +n)(\alpha +n+1)}{2q_2} \Vert D^n_{\varphi ,u} f_{\varphi (w)} \Vert _{\mathcal {Z}^\beta } + \frac{\alpha (\alpha +n+1)}{q_2} \Vert D^n_{\varphi ,u} g_{\varphi (w)} \Vert _{\mathcal {Z}^\beta } \nonumber \\&\qquad + \frac{\alpha (\alpha +1)}{2q_2} \Vert D^n_{\varphi ,u} h_{\varphi (w)} \Vert _{\mathcal {Z}^\beta } \end{aligned}$$
(2.10)
$$\begin{aligned}&\quad \le \frac{(\alpha +n)(\alpha +n+1)+ \alpha (3\alpha +2n+3) }{2q_2}Q_3 . \end{aligned}$$
(2.11)

From (2.7) and (2.9), we get

$$\begin{aligned} q_2 \frac{v(w)\overline{\varphi (w)}^{n+1}}{(1-|\varphi (w)|^2)^{\alpha +n}}= & {} - (\alpha +n)(\alpha +n+1)(\alpha +n+2)(D^n_{\varphi ,u} f_{\varphi (w)} )''(w) \nonumber \\&+ \alpha (\alpha +n+1)(2\alpha +2n+3) (D^n_{\varphi ,u} g_{\varphi (w)} )''(w) \nonumber \\&- (\alpha +1)\alpha (\alpha +n+1) (D^n_{\varphi ,u} h_{\varphi (w)} )''(w). \end{aligned}$$
(2.12)

It follows from (2.12) that

$$\begin{aligned}&\frac{ (1-|w|^2)^\beta |v(w) ||\varphi (w)|^{n+1}}{(1-|\varphi (w)|^2)^{\alpha +n}}\nonumber \\&\quad \le \frac{(\alpha +n)(\alpha +n+1)(\alpha +n+2)}{q_2} \Vert D^n_{\varphi ,u} f_{\varphi (w)} \Vert _{\mathcal {Z}^\beta } \nonumber \\&\quad + \frac{\alpha (\alpha +n+1)(2\alpha +2n+3)}{q_2} \Vert D^n_{\varphi ,u} g_{\varphi (w)} \Vert _{\mathcal {Z}^\beta } \nonumber \\&\quad + \frac{\alpha (\alpha +1)(\alpha +n+1)}{q_2} \Vert D^n_{\varphi ,u} h_{\varphi (w)} \Vert _{\mathcal {Z}^\beta } \end{aligned}$$
(2.13)
$$\begin{aligned}&\quad \le \frac{(\alpha +n+1)[(\alpha +n+2)(\alpha +n)+\alpha (2\alpha +2n+3)+\alpha (\alpha +1) ]}{q_2}Q_3 .\nonumber \\ \end{aligned}$$
(2.14)

From (2.3), (2.9) and (2.12), we get

$$\begin{aligned} q_0 \frac{u''(w)\overline{\varphi (w)}^{n}}{(1-|\varphi (w)|^2)^{\alpha +n-1}}= & {} \frac{2+(\alpha +n)(\alpha +n+3)}{2} (D^n_{\varphi ,u} f_{\varphi (w)} )''(w) \nonumber \\&- \alpha (\alpha +n+2) (D^n_{\varphi ,u} g_{\varphi (w)} )''(w)\nonumber \\&+ \frac{\alpha (\alpha +1)}{2} (D^n_{\varphi ,u} h_{\varphi (w)} )''(w), \end{aligned}$$
(2.15)

which implies that

$$\begin{aligned}&\frac{ (1-|w|^2)^\beta |u''(w) ||\varphi (w)|^{n}}{(1-|\varphi (w)|^2)^{\alpha +n-1}}\le \frac{2+(\alpha +n)(\alpha +n+3)}{2q_0}\Vert D^n_{\varphi ,u} f_{\varphi (w)} \Vert _{\mathcal {Z}^\beta }\nonumber \\&\quad +\frac{\alpha (\alpha +n+2) }{ q_0} \Vert D^n_{\varphi ,u} g_{\varphi (w)} \Vert _{\mathcal {Z}^\beta } + \frac{ \alpha (\alpha +1) }{2q_0} \Vert D^n_{\varphi ,u} h_{\varphi (w)} \Vert _{\mathcal {Z}^\beta } \end{aligned}$$
(2.16)
$$\begin{aligned}&\quad \le \frac{4\alpha ^2+4n\alpha +8\alpha +n^2+3n+2}{2q_0} Q_3. \end{aligned}$$
(2.17)

If \(|\varphi (w)|\le 1/2\), from the fact that \(u\in \mathcal {Z}^\beta \), we get

$$\begin{aligned} \frac{(1-|w|^2)^\beta |u''(w)| }{(1-|\varphi (w)|^2)^{ \alpha +n-1}} \le \left( \frac{4}{3}\right) ^{ \alpha +n-1} \sup _{z\in \mathbb {D}} (1-|z|^{2})^\beta |u''(z)| <\infty . \end{aligned}$$
(2.18)

On the other hand, if \(|\varphi (w)|>1/2\), then from (2.17) we obtain

$$\begin{aligned} \frac{ (1-|w|^2)^\beta |u''(w)| }{(1-|\varphi (w)|^2)^{ \alpha +n-1}} \le \frac{2^{n-1}(4\alpha ^2+4n\alpha +8\alpha +n^2+3n+2)}{q_0}Q_3 < \infty .\nonumber \\ \end{aligned}$$
(2.19)

From (2.18) and (2.19) we see that

$$\begin{aligned} M_1:=\sup _{z\in \mathbb {D}}\frac{(1-|z|^{2})^\beta |u''(z)| }{(1-|\varphi (z)|^2)^{\alpha +n-1} } <\infty . \end{aligned}$$
(2.20)

By the fact that \(u, u\varphi \in \mathcal {Z}^\beta \), we get

$$\begin{aligned} N_2:=\sup _{z\in \mathbb {D}} (1-|z|^2)^\beta |2u'(z)\varphi '(z)+u(z)\varphi ''(z)| <\infty . \end{aligned}$$
(2.21)

Using (2.14), (2.21) and similar arguments as above, we see that

$$\begin{aligned} M_2:=\sup _{z\in \mathbb {D}}\frac{(1-|z|^2)^\beta |2u'(z)\varphi '(z)+u(z)\varphi ''(z)|}{(1-|\varphi (z)|^2)^{\alpha +n} } <\infty . \end{aligned}$$
(2.22)

By the fact that \(u, u\varphi , u\varphi ^2 \in \mathcal {Z}^\beta \), we get

$$\begin{aligned} N_1:=\sup _{z\in \mathbb {D}}(1-|z|^{2})^\beta |u(z)||\varphi '(z)|^2 <\infty . \end{aligned}$$
(2.23)

Using (2.11), (2.23) and similar arguments, we get

$$\begin{aligned} M_3:=\sup _{z\in \mathbb {D}}\frac{(1-|z|^{2})^\beta |u(z)||\varphi '(z)|^2 }{ (1-|\varphi (z)|^2)^{\alpha +n+1} }<\infty . \end{aligned}$$
(2.24)

From [42], we see that for any positive integer n and \(f\in \mathcal {B}^\alpha \), there is a positive constant C independent of f such that

$$\begin{aligned} | f^{(n)}(z)|\le C\frac{\Vert f\Vert _{\mathcal {B}^\alpha }}{(1-|z|^2)^{\alpha +n-1}}. \end{aligned}$$
(2.25)

Hence for any \(f\in \mathcal {B}^\alpha \) and arbitrary \(z\in \mathbb {D}\), we have \(|(D^n_{\varphi ,u} f)(0)| \lesssim \frac{ |u(0)|\Vert f\Vert _{ \mathcal {B}^\alpha }}{ (1-|\varphi (0)|^2)^{\alpha +n-1} },\)

$$\begin{aligned} |(D^n_{\varphi ,u} f)'(0)| \lesssim \Big (\frac{ |u'(0)| }{ (1-|\varphi (0)|^2)^{\alpha +n-1} } + \frac{ |u(0)\varphi '(0)|}{ (1-|\varphi (0)|^2)^{\alpha +n} }\Big ) \Vert f\Vert _{\mathcal {B}^\alpha }, \end{aligned}$$

and

$$\begin{aligned}&(1-|z|^{2})^\beta |(D^n_{\varphi ,u} f)''(z)|\nonumber \\&\quad \le (1-|z|^{2})^\beta |u''(z)||f^{(n)}(\varphi (z))|+(1-|z|^{2})^\beta |f^{(n+2)}(\varphi (z))||u(z)(\varphi '(z) )^2 |\nonumber \\&\quad + (1-|z|^{2})^\beta |f^{(n+1)}(\varphi (z))||2u'(z)\varphi '(z)+u(z)\varphi ''(z) |\nonumber \\&\quad \lesssim \frac{(1-|z|^{2})^\beta |u''(z)|}{(1-|\varphi (z)|^2)^{\alpha +n-1} }\Vert f\Vert _{ \mathcal {B}^\alpha } + \frac{ (1-|z|^2)^\beta |2u'(z)\varphi '(z)+u(z)\varphi ''(z) |}{(1-|\varphi (z)|^2)^{\alpha +n} }\Vert f\Vert _{\mathcal {B}^\alpha } \nonumber \\&\quad + \frac{(1-|z|^{2})^\beta |u(z)||\varphi '(z)|^2 }{(1-|\varphi (z)|^2)^{\alpha +n+1} }\Vert f\Vert _{ \mathcal {B}^\alpha }\nonumber \\&\quad \lesssim (M_1+M_2+M_3) \Vert f\Vert _{ \mathcal {B}^\alpha }. \end{aligned}$$
(2.26)

Taking the supremum in (2.26) over \(\mathbb {D}\) we see that \(D^n_{\varphi ,u} :\mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \) is bounded. The proof is complete. \(\square \)

3 Essential Norm and Compactness of \(D^n_{\varphi ,u}:\mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \)

Theorem 2

Let \(0<\alpha ,\beta <\infty \), \(\varphi \) be an analytic self-map of \({\mathbb D}\), \(u\in H(\mathbb {D})\) and n be a positive integer such that \(D^n_{\varphi ,u}:\mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \) is bounded. Then

$$\begin{aligned} \Vert D^n_{\varphi ,u}\Vert _{e, \mathcal {B} ^\alpha \rightarrow \mathcal {Z}^\beta } \approx \limsup _{j \rightarrow \infty }j^{\alpha -1} \Vert D^n_{\varphi , u} I^j\Vert _{\mathcal {Z}^\beta } . \end{aligned}$$

Proof

For each nonnegative integer j, then \( \{j^{\alpha -1}I^j\} \in \mathcal {B} ^\alpha \) and \(\Vert j^{\alpha -1}I^j\Vert _{ \mathcal {B} ^\alpha } \lesssim 1\) for all j and converges uniformly to 0 on compact subsets of \({\mathbb D}\). By Proposition 1.2 in [4] we see that \(\{j^{\alpha -1}I^j\} \) converges to 0 weakly in \( \mathcal {B} ^\alpha _0\) as \(j \rightarrow \infty \). By Hahn–Banach theorem we see that \(\{j^{\alpha -1}I^j\} \) converges to 0 weakly in \( \mathcal {B} ^\alpha \) as \(j \rightarrow \infty \). Thus for any compact operator \(K: \mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \), we have that \(\lim _{j \rightarrow \infty } \Vert K(j^{\alpha -1}I^j)\Vert _{\mathcal {Z}^\beta }=0.\) Hence

$$\begin{aligned} \Vert D^n_{\varphi , u}\Vert _{e, \mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta }= & {} \inf _{K}\Vert D^n_{\varphi , u}-K\Vert _{\mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta }\\\gtrsim & {} \inf _{K}\limsup _{j \rightarrow \infty }\Vert (D^n_{\varphi , u}-K)(j^{\alpha -1}I^j)\Vert _{\mathcal {Z}^\beta }\\\gtrsim & {} \limsup _{j \rightarrow \infty }j^{\alpha -1} \Vert D^n_{\varphi , u} I^j\Vert _{\mathcal {Z}^\beta }. \end{aligned}$$

Next we prove that

$$\begin{aligned} \Vert D^n_{\varphi , u}\Vert _{e, \mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta } \lesssim \limsup _{j \rightarrow \infty }j^{\alpha -1} \Vert D^n_{\varphi , u} I^j\Vert _{\mathcal {Z}^\beta }. \end{aligned}$$

For this purpose, we first prove that

$$\begin{aligned} \Vert D^n_{\varphi ,u}\Vert _{e, \mathcal {B} ^\alpha \rightarrow \mathcal {Z}^\beta } \lesssim \max \big \{ A, B, E \big \} , \end{aligned}$$

where

$$\begin{aligned} A:= & {} \limsup _{|a|\rightarrow 1}\left\| D^n_{\varphi ,u}f_a \right\| _{\mathcal {Z}^\beta }, \,\,\, B:= \limsup _{|a|\rightarrow 1}\left\| D^n_{\varphi ,u}g_a\right\| _{\mathcal {Z}^\beta },\\ E:= & {} \limsup _{|a|\rightarrow 1}\left\| D^n_{\varphi ,u}h_a \right\| _{\mathcal {Z}^\beta }. \end{aligned}$$

For \(r\in [0,1)\), define

$$\begin{aligned} (K_r f)(z)=f_r(z)=f(rz), ~~f\in H(\mathbb {D}). \end{aligned}$$

It is clear that \(f_r-f\rightarrow 0\) uniformly on compact subsets of \(\mathbb {D}\) as \(r\rightarrow 1\). Moreover, the operator \(K_r\) is compact on \( \mathcal {B} ^\alpha \) and \( \Vert K_r\Vert _{ \mathcal {B} ^\alpha \rightarrow \mathcal {B} ^\alpha }\le 1\) (see [22]). Let \(\{r_j\}\subset (0,1)\) be a sequence such that \(r_j\rightarrow 1\) as \(j\rightarrow \infty \). Then for all positive integer j, the operator \(D^n_{\varphi ,u} K_{r_j}: \mathcal {B} ^\alpha \rightarrow \mathcal {Z}^\beta \) is compact. Hence

$$\begin{aligned} \Vert D^n_{\varphi ,u}\Vert _{e, \mathcal {B} ^\alpha \rightarrow \mathcal {Z}^\beta } \le \limsup _{j\rightarrow \infty }\Vert D^n_{\varphi ,u}- D^n_{\varphi ,u} K_{r_j}\Vert _{ \mathcal {B} ^\alpha \rightarrow \mathcal {Z}^\beta }. \end{aligned}$$
(3.1)

Therefore, we only need to prove that

$$\begin{aligned} \limsup _{j\rightarrow \infty }\Vert D^n_{\varphi ,u}- D^n_{\varphi ,u} K_{r_j}\Vert _{ \mathcal {B} ^\alpha \rightarrow \mathcal {Z}^\beta }\lesssim \max \big \{ A, B, E \big \}. \end{aligned}$$
(3.2)

Let \(f\in \mathcal {B} ^\alpha \) with \(\Vert f\Vert _{ \mathcal {B} ^\alpha }\le 1\). It is clear that

$$\begin{aligned} \lim _{j\rightarrow \infty }|u(0)f^{(n)}(\varphi (0))-r_j^nu(0)f^{(n)}(r_j\varphi (0))|=0 \end{aligned}$$
(3.3)

and

$$\begin{aligned} \lim _{j\rightarrow \infty }|u'(0)(f-f_{r_j})^{(n)}(\varphi (0))+u(0)(f-f_{r_j})^{(n+1)}(\varphi (0))\varphi '(0)|=0. \end{aligned}$$
(3.4)

Hence

$$\begin{aligned}&\Vert ( D^n_{\varphi ,u}- D^n_{\varphi ,u} K_{r_j})f\Vert _{\mathcal {Z}^\beta }\nonumber \\&\quad =\Vert u\cdot (f-f_{r_j})^{(n)}\circ \varphi \Vert _*+ |u(0)f^{(n)}(\varphi (0))-r_j^nu(0)f^{(n)}(r_j\varphi (0))|\nonumber \\&\quad +|u'(0)(f-f_{r_j})^{(n)}(\varphi (0))+u(0)(f-f_{r_j})^{(n+1)}(\varphi (0))\varphi '(0)|\nonumber \\&\quad = \limsup _{j\rightarrow \infty }\Vert u\cdot (f-f_{r_j})^{(n)} \circ \varphi \Vert _*\nonumber \\&\quad \le \limsup _{j\rightarrow \infty }\sup _{|\varphi (z)|\le r_N}(1-|z|^2)^\beta |(f-f_{r_j})^{(n+1)}(\varphi (z))||v(z)|\nonumber \\&\quad + \limsup _{j\rightarrow \infty }\sup _{|\varphi (z)|> r_N}(1-|z|^2)^\beta |(f-f_{r_j})^{(n+1)}(\varphi (z))||v(z)| \nonumber \\&\quad +\limsup _{j\rightarrow \infty }\sup _{|\varphi (z)|\le r_N}(1-|z|^2)^\beta |(f-f_{r_j})^{(n)}(\varphi (z))||u''(z)| \nonumber \\&\quad + \limsup _{j\rightarrow \infty }\sup _{|\varphi (z)|> r_N}(1-|z|^2)^\beta |(f-f_{r_j})^{(n)}(\varphi (z))||u''(z)|\nonumber \\&\quad +\limsup _{j\rightarrow \infty }\sup _{|\varphi (z)|\le r_N}(1-|z|^2)^\beta |(f-f_{r_j})^{(n+2)}(\varphi (z))||\varphi '(z)|^2|u(z)| \nonumber \\&\quad + \limsup _{j\rightarrow \infty }\sup _{|\varphi (z)|> r_N}(1-|z|^2)^\beta |(f-f_{r_j})^{(n+2)}(\varphi (z))||\varphi '(z)|^2|u(z)|\nonumber \\&\quad := P_1+P_2+P_3+P_4+P_5+P_6, \end{aligned}$$
(3.5)

where \(N\in \mathbb {N }\) is large enough such that \(r_j\ge \frac{1}{2}\) for all \(j\ge N\) and \(v(z)=2u'(z)\varphi '(z)+u(z)\varphi ''(z) \), \( \Vert f\Vert _{*}=\sup _{z \in \mathbb {D}}(1-|z|^2)^\beta |f''(z)|.\) Since \(r^{n}_jf^{(n)}_{r_j}-f^{(n)}\rightarrow 0\), uniformly on compact subsets of \({\mathbb D}\) as \(j\rightarrow \infty \), by the fact that \(u, u\varphi , u\varphi ^2\in \mathcal {Z}^\beta \), we have

$$\begin{aligned} P_1= & {} \limsup _{j\rightarrow \infty }\sup _{|\varphi (z)|\le r_N}(1-|z|^2)^\beta |(f-f_{r_j})^{(n+1)}(\varphi (z))||v(z)|\nonumber \\\le & {} (\Vert u\Vert _{\mathcal {Z}^\beta }+\Vert u\varphi \Vert _{\mathcal {Z}^\beta }) \limsup _{j\rightarrow \infty }\sup _{|w|\le r_N} |f^{(n+1)}(w)- r^{n+1}_jf^{(n+1)} (r_j w)|\nonumber \\= & {} 0, \end{aligned}$$
(3.6)
$$\begin{aligned} P_3= & {} \limsup _{j\rightarrow \infty }\sup _{|\varphi (z)|\le r_N}(1-|z|^2)^\beta |(f-f_{r_j})^{(n)}(\varphi (z))||u''(z)|\nonumber \\\le & {} \Vert u\Vert _{\mathcal {Z}^\beta }\limsup _{j\rightarrow \infty }\sup _{|w|\le r_N} |f^{(n)}(w)- r^{n}_jf^{(n)} (r_j w)| =0 \end{aligned}$$
(3.7)

and

$$\begin{aligned} P_5= & {} \limsup _{j\rightarrow \infty }\sup _{|\varphi (z)|\le r_N}(1-|z|^2)^\beta |(f-f_{r_j})^{(n+2)}(\varphi (z))||\varphi '(z)|^2|u(z)|\nonumber \\\le & {} (\Vert u\Vert _{\mathcal {Z}^\beta }\!+\!\Vert u\varphi \Vert _{\mathcal {Z}^\beta }+\Vert u\varphi ^2 \Vert _{\mathcal {Z}^\beta }) \limsup _{j\rightarrow \infty }\sup _{|w|\le r_N} |f^{(n+2)}(w)- r^{n+2}_jf^{(n+2)} (r_j w)| \nonumber \\= & {} 0. \end{aligned}$$
(3.8)

To estimate \(P_2\), using the fact that \(\Vert f\Vert _{ \mathcal {B} ^\alpha }\le 1\) and (2.25), we have

$$\begin{aligned} P_2= & {} \limsup _{j\rightarrow \infty }\sup _{|\varphi (z)|> r_N}(1-|z|^2)^\beta |(f-f_{r_j})^{(n+1)}(\varphi (z))||v(z)|\\\lesssim & {} \limsup _{j\rightarrow \infty } \frac{(\alpha +n+2) \Vert f-f_{r_j}\Vert _{ \mathcal {B} ^\alpha } }{q_0r_N^{n+1}}\sup _{|\varphi (z) |>r_N} \frac{q_0 |\varphi (z)|^{n+1} (1-|z|^2)^\beta |v(z)|}{(\alpha +n+2)(1-|\varphi (z)|^2)^{n+\alpha }} \\\lesssim & {} \sup _{|\varphi (z) |>r_N} \frac{q_0 |\varphi (z)|^{n+1}(1-|z|^2)^\beta |v(z)| }{(\alpha +n+2)(1-|\varphi (z)|^2)^{n+\alpha }} \\\lesssim & {} \sup _{|a |>r_N} \left\| D^n_{\varphi ,u}\left( f_a- \frac{\alpha (2\alpha +2n+3)g_a}{(\alpha +n)(\alpha +n+2)} +\frac{\alpha (\alpha +1)}{(\alpha +n)(\alpha +n+2)} h_a \right) \right\| _{\mathcal {Z}^\beta } \\\lesssim & {} \sup _{|a |>r_N} \left\| D^n_{\varphi ,u} f_a \right\| _{\mathcal {Z}^\beta }+ \frac{\alpha (2\alpha +2n+3)}{(\alpha +n)(\alpha +n+2)} \sup _{|a |>r_N} \left\| D^n_{\varphi ,u} g_a \right\| _{\mathcal {Z}^\beta } \\&+\frac{\alpha (\alpha +1)}{(\alpha +n)(\alpha +n+2)} \sup _{|a |>r_N} \left\| D^n_{\varphi ,u} h_a \right\| _{\mathcal {Z}^\beta }. \end{aligned}$$

Taking the limit as \(N\rightarrow \infty \) we obtain

$$\begin{aligned} P_2\lesssim & {} \limsup _{|a|\rightarrow 1}\left\| D^n_{\varphi ,u} f_a \right\| _{\mathcal {Z}^\beta }+ \limsup _{|a|\rightarrow 1}\left\| D^n_{\varphi ,u} g_a \right\| _{\mathcal {Z}^\beta } + \limsup _{|a|\rightarrow 1}\left\| D^n_{\varphi ,u} h_a \right\| _{\mathcal {Z}^\beta } \nonumber \\= & {} A+B+E \lesssim \max \big \{ A, B , E\big \} . \end{aligned}$$
(3.9)

Similarly,

$$\begin{aligned} P_4= & {} \limsup _{j\rightarrow \infty }\sup _{|\varphi (z)|> r_N}(1-|z|^2)^\beta |(f-f_{r_j})^{(n)}(\varphi (z))||u''(z)| \\\lesssim & {} \sup _{|\varphi (z) |>r_N} \frac{2q_0}{2+(\alpha +n)(\alpha +n+3)} \frac{(1-|z|^2)^\beta |u''(z)| |\varphi (z)|^n }{(1-|\varphi (z)|^2)^{\alpha +n-1} } \\\lesssim & {} \sup _{|a|>r_N} \left\| D^n_{\varphi ,u} f_a \right\| _{\mathcal {Z}^\beta }+ \frac{2\alpha (\alpha +n+2)}{2+(\alpha +n)(\alpha +n+3)} \sup _{|a |>r_N} \left\| D^n_{\varphi ,u} g_a \right\| _{\mathcal {Z}^\beta } \\&+ \frac{\alpha (\alpha +1)}{2+(\alpha +n)(\alpha +n+3)} \sup _{|a |>r_N} \left\| D^n_{\varphi ,u} h_a \right\| _{\mathcal {Z}^\beta }, \end{aligned}$$

which yields

$$\begin{aligned} P_4 \lesssim A+B+E\lesssim \max \big \{ A, B , E\big \} . \end{aligned}$$
(3.10)

Similarly,

$$\begin{aligned} P_6= & {} \limsup _{j\rightarrow \infty }\sup _{|\varphi (z)|> r_N}(1-|z|^2)^\beta |(f-f_{r_j})^{(n+2)}(\varphi (z))||\varphi '(z)|^2|u(z)|\\\lesssim & {} \sup _{|\varphi (z) |>r_N} (1-|z|^2)^\beta |\varphi '(z)|^2|u(z)| \frac{ 2q_0|\varphi (z)|^{n+2} }{(1-|\varphi (z)|^2)^{\alpha +n+1}} \\\lesssim & {} \sup _{|a |>r_N} \left\| D^n_{\varphi ,u}\left( f_a- \frac{2\alpha }{\alpha +n} g_a+ \frac{\alpha (\alpha +1)}{(\alpha +n)(\alpha +n+1)} h_a \right) \right\| _{\mathcal {Z}^\beta } \\\lesssim & {} \sup _{|a |>r_N} \left\| D^n_{\varphi ,u} f_a \right\| _{\mathcal {Z}^\beta }+ \frac{2\alpha }{\alpha +n} \sup _{|a |>r_N} \left\| D^n_{\varphi ,u} g_a \right\| _{\mathcal {Z}^\beta } \\&+ \frac{\alpha (\alpha +1)}{(\alpha +n)(\alpha +n+1)} \sup _{|a |>r_N} \left\| D^n_{\varphi ,u} h_a \right\| _{\mathcal {Z}^\beta } , \end{aligned}$$

which implies that

$$\begin{aligned} P_6 \lesssim A+B+E \lesssim \max \big \{ A, B , E\big \} . \end{aligned}$$
(3.11)

Hence, by (3.5)–(3.11) we obtain

$$\begin{aligned}&\limsup _{j\rightarrow \infty }\Vert D^n_{\varphi ,u}- D^n_{\varphi ,u} K_{r_j}\Vert _{ \mathcal {B} ^\alpha \rightarrow \mathcal {Z}^\beta } \nonumber \\&\quad =\limsup _{j\rightarrow \infty }\sup _{ \Vert f\Vert _{ \mathcal {B} ^\alpha } \le 1}\Vert (D^n_{\varphi ,u}- D^n_{\varphi ,u} K_{r_j})f\Vert _{\mathcal {Z}^\beta } \nonumber \\&\quad =\limsup _{j\rightarrow \infty }\sup _{ \Vert f\Vert _{ \mathcal {B} ^\alpha } \le 1} \Vert u\cdot (f-f_{r_j})^{(n)}\circ \varphi \Vert _* \lesssim \max \big \{ A, B, E \big \}. \end{aligned}$$
(3.12)

Therefore, by (3.1) and (3.12), we obtain \( \Vert D^n_{\varphi ,u}\Vert _{e, \mathcal {B} ^\alpha \rightarrow \mathcal {Z}^\beta } \lesssim \max \big \{ A, B, E \big \} . \)

For \(a\in \mathbb {D}\), we know that

$$\begin{aligned} f_a(z)=(1-|a|^2)\sum _{j=0}^\infty \frac{\Gamma (j+\alpha )}{j!\Gamma (\alpha )} \overline{a}^jz^j . \end{aligned}$$

Since \(D^n_{\varphi , u} : \mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \) is bounded, from Theorem 1 we known that \(M=\displaystyle \sup _{j\ge n} j^{ \alpha -1}\Vert D^n_{\varphi , u} I^j \Vert _{\mathcal {Z}^\beta }<\infty \). For fixed positive integer \(N\ge 1\), we obtain

$$\begin{aligned}&\Vert D^n_{\varphi ,u}f_{a}\Vert _{\mathcal {Z}^\beta } \lesssim (1-|a|^2)\sum _{j=0}^\infty |a|^jj^{\alpha -1}\Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta } \\&\quad \lesssim (1-|a|^2)\bigg (\sum _{j=0}^{N-1} |a|^jj^{\alpha -1}\Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta } + \sum _{j=N}^{\infty } |a|^jj^{\alpha -1}\Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta } \bigg ) \\&\quad \lesssim M(1-|a|^N) +\sup _{j\ge N} j^{\alpha -1}\Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta } . \end{aligned}$$

Letting \(|a| \rightarrow 1\) in the last inequality. We get

$$\begin{aligned} \limsup _{|a| \rightarrow 1}\Vert D^n_{\varphi ,u}f_{a}\Vert _{\mathcal {Z}^\beta }\lesssim \sup _{j\ge N} j^{\alpha -1}\Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta }. \end{aligned}$$

Thus,

$$\begin{aligned} A=\limsup _{|a| \rightarrow 1}\Vert D^n_{\varphi ,u}f_{a}\Vert _{\mathcal {Z}^\beta } \lesssim \limsup _{j \rightarrow \infty }j^{\alpha -1}\Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta } . \end{aligned}$$

Similarly, we have

$$\begin{aligned} B \lesssim \limsup _{j \rightarrow \infty }j^{\alpha -1}\Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta } , \, \, \, E \lesssim \limsup _{j \rightarrow \infty }j^{\alpha -1}\Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta } . \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert D^n_{\varphi ,u}\Vert _{e, \mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta } \lesssim \max \big \{ A, B, E \big \}\lesssim \limsup _{j \rightarrow \infty }j^{\alpha -1} \Vert D^n_{\varphi ,u}I^j\Vert _{\mathcal {Z}^\beta } . \end{aligned}$$

The proof is complete. \(\square \)

From Theorem 2, we get the following characterization of compactness of the operator \(D^n_{\varphi ,u} : \mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \).

Corollary 1

Let \(0<\alpha ,\beta <\infty \), \(\varphi \) be an analytic self-map of \({\mathbb D}\), \(u\in H(\mathbb {D})\) and n be a positive integer such that \(D^n_{\varphi ,u}:\mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \) is bounded. Then the operator \(D^n_{\varphi ,u} :\mathcal {B}^\alpha \rightarrow \mathcal {Z}^\beta \) is compact if and only if

$$\begin{aligned} \limsup \limits _{j\rightarrow \infty }j^{\alpha -1}\Vert D^n_{\varphi , u} I^j \Vert _{\mathcal {Z}^\beta }=0 . \end{aligned}$$