1 Introduction and Preliminaries

Let \(\mathcal {A}\) be the class of all analytic functions \(f:\mathbb {D}\rightarrow \mathbb {C}\) of the form \(f(z)= z+ a_2 z^2 + a_3 z^3 + \cdots \), where \(\mathbb {D}\) denotes the unit disc in \(\mathbb {C}\). Let \(\mathcal {S}\) denote the subclass of \(\mathcal {A}\) consisting of univalent functions. Let \(\mathcal {P}\) denote the class of all analytic functions \(p:\mathbb {D}\rightarrow \mathbb {C}\) with \(p(0)=1\) and \({{\mathrm{Re\,}}}p(z) >0\). We denote the subclasses of \(\mathcal {S}\) consisting of starlike and convex functions by \(\mathcal {S}^*\) and \(\mathcal {C}\), respectively. Let us recall that an analytic function f is said to be subordinate to an analytic function g, written \( f \prec g\), if \(f=g\circ w\) for some analytic function \(w:\mathbb {D}\rightarrow \mathbb {D}\) with \(w(0)=0\). If g is univalent, then \(f \prec g\) is equivalent to \(f(0)=g(0)\) and \(f(\mathbb {D}) \subset g(\mathbb {D})\). For \(-1 \le B < A \le 1\), Janowski [10] introduced the classes:

$$\begin{aligned} \mathcal {P}[A,B] =&\left\{ p \in \mathcal {P}: p(z) \prec \frac{1+ A z}{1+ B z}\right\} \quad \text {and}\\ \mathcal {S}^*[A,B]=&\left\{ f \in \mathcal {S}: \frac{ z f'(z)}{f(z) }\in \mathcal {P}[A,B]\right\} . \end{aligned}$$

Tuan and Anh [26] put some restriction on the initial coefficient of functions in these classes and considered the following subclasses for a fixed b, \(0 \le b \le 1\):

$$\begin{aligned}&\mathcal {P}_b[A,B]= \big \{ p \in \mathcal {P}[A,B]: p'(0)= b(A-B)\big \} \end{aligned}$$

and

$$\begin{aligned}&\mathcal {S}^*_b[A,B]= \{ f \in \mathcal {S}^*[A,B]: f''(0)= 2b (A-B), z f'(z)/f(z) \in \mathcal {P}_b[A,B] \}. \end{aligned}$$

For \(0 < \alpha \le 1\), Nunokawa et al. [15] considered the class \(\mathcal {G}(\alpha )\) of functions \(f \in \mathcal {A}\) satisfying

$$\begin{aligned} {{\mathrm{Re\,}}}\left( 1 + \dfrac{z f''(z)}{f'(z)} \right) < 1+ \dfrac{\alpha }{2} \quad (z \in \mathbb {D}). \end{aligned}$$

For \(f \in \mathcal {G}(\alpha )\), Jovanović and Obradović [11] have shown that \(\mathcal {G}(\alpha ) \subset \mathcal {S}^*[1,1/(1+ \alpha )]\). Also, Obradović et al. [16] gave the sharp coefficient bounds \(|a_n| \le \alpha /\big (n(n-1)\big )\) for \(f(z)= z + \sum _{n=2}^\infty a_n z^n \in \mathcal {G}(\alpha )\). Similarly, for \(0 \le b \le 1\), one can study the subclass \(\mathcal {G}_b(\alpha )\) of \(\mathcal {G}(\alpha )\) consisting of functions \(f \in \mathcal {G}(\alpha )\) such that \(f''(0)= b \alpha \). Let \(\mathcal {U}\) denote the subclass of \(\mathcal {A}\) consisting of functions f satisfying \(|U_f(z)| <1\) for \(z \in \mathbb {D}\), where \(U_f(z)= f'(z)(z/f(z))^2-1\). This class was introduced by Ozaki and Nunokawa [18] and the authors showed that \(\mathcal {U} \subset \mathcal {S}\). For a property \(\mathfrak {P}\) and a set of functions \(\mathfrak {M}\), the radius problem is to determine the largest radius \(R_\mathfrak {P}\) such that every \(f \in \mathfrak {M}\) has the property \(\mathfrak {P}\) in the disc \(\mathbb {D}_r:=\{z \in \mathbb {C}: |z| < r\}\) for each \(r < R_\mathfrak {P}\) and for \(r > R_\mathfrak {P}\), at least one f in \(\mathfrak {M}\) does not have the property \(\mathfrak {P}\) in \(\mathbb {D}_r\). Recently, several authors have studied the radius problems of different well-known classes, for example, see [1, 2, 14, 20, 23].

In this paper, we give the sharp upper bound of \(|p(z)- z p'(z)-1|\) for \(p \in \mathcal {P}[A,B]\), the radius of starlikeness and the \(\mathcal {U}\)-radius of the function \(F(z):= f(z)/f'(z)\) for \(f \in \mathcal {S}^*[A,B]\) or \(f \in \mathcal {S}_b^*[A,B]\). As corollaries, we give the radius of starlikeness and the \(\mathcal {U}\)-radius in certain special cases. Also, we give an upper bound of \(|z p'(z)|/{{\mathrm{Re\,}}}p(z)\) for \(p \in \mathcal {P}[A,B]\) which coincides with the bound given in [7, Theorem 1, p. 113] for \(A=1, B=-1\). Apart from the radius problems, we give the sharp coefficient bounds of F when f is a Janowski starlike function and a sufficient condition for starlikeness of f when F is a Janowski starlike function. Some of our results improve the corresponding results in [17].

2 Estimations over \(\mathcal {P}[A,B]\)

By [6, Theorem 5, p. 742], \(|c_n| \le A-B\) for \(p(z)=1+ \sum _{n=1}^{\infty } c_n z^n \in \mathcal {P}[A,B]\) and therefore, we have \(|p(z) - z p'(z) -1| \le (A-B) |z|^2/(1-|z|)^2 \). In general, this bound is not sharp but for \(p \in \mathcal {P}(\alpha ):=\mathcal {P}[1-2 \alpha ,-1]\), we obtain the sharp upper bound \(|p(z) - z p'(z) -1| \le 2(1- \alpha ) |z|^2/(1-|z|)^2 \). By using Dieudonné’s Lemma [8, p. 25] that

$$\begin{aligned} |z w'(z) - w(z)| \le \dfrac{|z|^2 - |w(z)|^2}{1- |z|^2} \end{aligned}$$

for an analytic function w defined on \(\mathbb {D}\) with \(w(0)=0\), \(|w(z)|<1\), and the technique employed by Anh and Tuan in [4], we prove the following sharp version of the above result.

Lemma 2.1

If \(p \in \mathcal {P}[A,B]\) then for \(0<r= |z| < 1\), we have

$$\begin{aligned} |p(z)- z p'(z) -1| \le {\left\{ \begin{array}{ll} M(r;A,B), &{}\text { either } |B| < 0.8, r \in [0,1),\\ &{}\text { or, }0.8 \le |B| < 1 , r \in (0,r_0) \cup (\tilde{r}_0,1),\\ \dfrac{|B|(A-B) r^2}{(1- |B| r)^2}, &{} 0.8 \le |B| \le 1, r \in [r_0,\tilde{r}_0],\\ \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned}&M(r;A,B):=\dfrac{\big (A-B\big ) r^2 \big (1-|B| + |B|(2-|B|) r^2 + B^2 r^4\big )}{(1- |B|) (1- r^2)(1+ |B| r^2)^2} \end{aligned}$$
(2.1)

and

$$\begin{aligned}&r_0:= \dfrac{2(1-|B|)}{|B|+ \sqrt{|B|(5 |B| -4)}}, \quad \tilde{r}_0:= \dfrac{|B| + \sqrt{|B|(5 |B| -4)}}{2 |B|}. \end{aligned}$$
(2.2)

The result is sharp.

Proof

Since \(p \in \mathcal {P}[A,B]\), \(p(z)= \big (1+ A w(z)\big )/\big (1+ B w(z)\big )\) for some analytic function \(w: \mathbb {D} \rightarrow \mathbb {D}\) with \(w(0)=0\). This gives

$$\begin{aligned} w(z)= \dfrac{p(z)-1}{A- B p(z)}. \end{aligned}$$
(2.3)

By using [8, Dieudonné’s lemma, p. 25] and Eq. (2.3), we have

$$\begin{aligned} | p(z)- z p'(z) -1|&\le \dfrac{|z|^2 |A- B p(z)|^2 - |p(z) -1|^2 \big (1- |B| (1- |z|^2)\big )}{(A-B)(1- |z|^2)}. \end{aligned}$$
(2.4)

Since \(p \in \mathcal {P}[A,B]\), the subordination principle shows that the image of \(|z| \le r\) under p(z) is contained in the disc \(|p(z)-a| \le d\), where \(a= (1- A B r^2)/(1- B^2 r^2)\), \(d= (A-B) r/(1- B^2 r^2)\). Put \(|z|=r\) and \(p(z)= R e^{i \theta }\), \(R \in [a-d,a+d]\), \( \theta \in (-\pi /2,\pi /2)\), then the right-hand side of the inequality (2.4) becomes

$$\begin{aligned} S(R, \theta ):= \dfrac{g(R,\theta )}{(A-B)(1-r^2)}, \end{aligned}$$
(2.5)

where

$$\begin{aligned} g(R,\theta )&:= \big (r^2 A^2 -1 + |B| - |B| r^2 \big ) - (1- |B|)\big (1+ |B| r^2\big )R^2 \\&\qquad + \, 2 R\big (- A B r^2 + 1 - |B|+ |B| r^2\big )\cos {\theta }. \end{aligned}$$

Since \(S(R, \theta )\) is an even function of \(\theta \), it is enough to consider \(\theta \in [0, \pi /2)\).

Since we have

$$\begin{aligned} \dfrac{\partial {S(R,\theta )}}{\partial {\theta }}= -\dfrac{2 R \big ((|B|- A B) r^2 + 1- |B| \big )\sin {\theta }}{(A-B)(1- r^2)} \end{aligned}$$

and \((|B|- A B) r^2 + 1- |B|>0\), the function \(S(R, \theta )\) is a decreasing function in \([0,\pi /2)\) and hence it attains maximum at \(\theta =0\). Thus we have \(| p(z)- z p'(z) -1| \le S(R,0)\). Also,

$$\begin{aligned} \dfrac{\partial {S(R,0)}}{\partial {R}}&= \dfrac{ 2\big ( R (1+ |B| r^2)(-1+ |B|) + 1 - |B| + (|B|- A B) r^2\big )}{(A-B)(1-r^2)}, \end{aligned}$$

and

$$\begin{aligned} \dfrac{\partial ^2{S(R,0)}}{\partial {R}^2}&=-\dfrac{ 2(1+ |B| r^2)(1- |B|)}{(A-B) (1-r^2)} \le 0. \end{aligned}$$

Now, for \(B \ne -1\), \(\partial {S(R,0)}/ \partial {R}=0 \) gives

$$\begin{aligned} R_0:=\dfrac{1- |B| + (|B| - A B )r^2}{(1- |B|)(1+ |B| r^2)}. \end{aligned}$$
(2.6)

Since S(R, 0) is a concave function, it attains its maximum M(rAB), given by (2.1), at \(R_0\) if \(R_0 \in (a-d,a+d)\) and otherwise the maximum is attained either at \(a-d\) or \(a+d\).

Let \(B \ne -1\), then

$$\begin{aligned}&a-d< R_0 \text { and } R_0 < a+d \text { are equivalent to } \phi (r,B):= |B| r^2 - B r + 1- |B| {>}0 \nonumber \\&\quad \text { and } \psi (r,B):= - |B| r^2 - B r -1 + |B|<0, \ \text {respectively} . \end{aligned}$$
(2.7)

Note that for \(B\ge 0\), \(\psi (r,B) <0\) and for \(B\le 0\), \(\phi (r,B) >0\) holds true. Therefore, we have

$$\begin{aligned} R_0 < a+d \ \text {for}\ B\ge 0 \quad \text {and} \quad R_0 > a-d \ \text {for} \ B \le 0. \end{aligned}$$
(2.8)
  1. (i)

    For \(0< B < 0.8\), \(\phi (r,B)\) does not have any real zero and \(\phi (0,B) >0\), and therefore \(\phi (r,B) >0\) for \(r \in (0,1)\) and hence in view of (2.7) and (2.8), \(R_0 \in (a-d,a+d)\). For \(-0.8 < B <0\), \(\psi (r,B)\) does not have any real zero and \(\psi (0,B)<0\), and therefore \(\psi (r,B) <0\) for \( r \in (0,1)\) and hence in view of (2.7) and (2.8), \(R_0 \in (a-d,a+d)\). For \(B=0\), \(R_0 = 1\) and in view of (2.8), we have \(R_0 \in (a-d, a+d)\).

    Thus, for \(|B| < 0.8\), \(S(R,0) \le S(R_0,0)=:M(r;A,B)\), where M(rAB) is given by (2.1).

    For \( 0 \le B < 0.8 \) and \( -0.8 < B \le 0\), the result is sharp for the functions \(p_1(z) = \big (1+ A w_1(z)\big )/\big (1+ B w_1(z)\big )\) and \(p_2(z) = \big (1+ A w_2(z)\big )/\big (1+ B w_2(z)\big )\), respectively, where \(w_1(z) = - z(z- c_1)/(1- c_1 z)\) and \(w_2(z) = z(z- c_2)/(1- c_2 z)\) with \(c_i\) \((i=1,2)\) determined from the equation

    $$\begin{aligned} {{\mathrm{Re\,}}}\dfrac{1+ A w_i(z)}{1+ B w_i(z)}= \dfrac{1- |B| + (|B| - A B )r^2}{(1- |B|)(1+ |B| r^2)} \text { at } z=r\ (i=1,2). \end{aligned}$$
    (2.9)
  2. (ii)

    For \(0.8 < B <1\), \(\phi (r,B)\) has two distinct zeros \(r_0\) and \(\tilde{r}_0\), given by (2.2), in (0, 1) and \(\phi (0,B) >0\), hence \(\phi (r,B) >0\) in \((0,r_0) \cup (\tilde{r}_0,1)\). For \(B =0.8\), \(\phi (r,B)\) has a zero of multiplicity two, \(r_0 = \tilde{r}_0= 1/2\), in (0, 1) and hence \(\phi (r,B) >0\) in \((0,1/2) \cup (1/2,1)\). Therefore, in view of (2.7) and (2.8), for \( r \in (0,r_0) \cup (\tilde{r}_0,1)\), \( 0.8 \le B <1\), we have \(R_0 \in (a-d,a+d)\).

    Also, for \(-1 < B < -0.8\), \(\psi (r,B)\) has two distinct zeros \(r_0\) and \(\tilde{r}_0\), given by (2.2), in (0, 1) and \(\psi (0,B) <0\), hence \(\psi (r,B) <0\) in \((0,r_0) \cup (\tilde{r}_0,1)\). For \(B = -0.8\), \(\psi (r,B)\) has a zero of multiplicity two, \(r_0 = \tilde{r}_0= 1/2\), in (0, 1) and hence \(\psi (r,B)<0\) in \((0,1/2)\cup (1/2,1)\). Therefore, in view of (2.7) and (2.8), for \( r \in (0,r_0) \cup (\tilde{r}_0,1)\), \(-1<B \le -0.8\), we have \(R_0 \in (a-d,a+d)\).

    Thus, for \(0.8 \le |B| < 1 \) and \(r \in (0,r_0) \cup (\tilde{r}_0,1)\), we have \(S(R,0) \le S(R_0,0)=:M(r;A,B)\), where M(rAB) is given by (2.1). For \( 0.8 \le B <1\) and \(-1 < B \le -0.8\), the sharpness follows for the functions \(p_1\) and \(p_2\), respectively, defined in case (i).

  3. (iii)

    By case (ii), for \( 0.8 \le B <1\), \(\phi (r,B) \le 0\) in \([r_0, \tilde{r}_0]\) and therefore, in view of (2.7) and (2.8), \(a-d \ge R_0\). Thus, \(S(R,0) \le S(a-d,0)= B(A-B)r^2/(1-B r)^2\) for \( 0.8 \le B <1\) and \(r \in [r_0, \tilde{r}_0]\). The bound is sharp for the function \(p_3(z)= (1+Az)/(1+Bz)\) at \(z=-r\).

    For \(-1 < B \le -0.8\), by case (ii), \(\psi (r,B) \ge 0\) in \([r_0, \tilde{r}_0]\) and hence, in view of (2.7) and (2.8), \( R_0 \ge a+d\). Also, for \(B=-1\), \(\partial {S(R,0)}/ \partial {R}= 2(1+A) r^2 >0\). Thus, \(S(R,0) \le S(a+d,0)= -B(A-B)r^2/(1+B r)^2\) for \(-1 \le B \le -0.8\) and \( r \in [r_0, \tilde{r}_0]\). The bound is sharp for the function \(p_3(z)= (1+Az)/(1+Bz)\) at \(z=r\).\(\square \)

For a function with positive real part, it is known [7, Theorem 1, p. 113] that

$$\begin{aligned} \frac{|z p'(z)|}{ {{\mathrm{Re\,}}}p(z)}\le \frac{2|z|}{1-|z|^2} \end{aligned}$$

This result is extended to the class \(\mathcal {P}[A,B]\) in the following lemma.

Lemma 2.2

Let \(p \in \mathcal {P}[A,B]\) and \(0<r=|z|<1\). Then the upper bound of \(|z p'(z)|/ {{\mathrm{Re\,}}}p(z)\) is

  1. (a)

    P(rAB) if \(-1< B < A < 1\) and \(r>r_0\);

  2. (b)

    Q(rAB) if the following holds:

    1. (i)

      \(-1< B < A < 1\), \(A+B >0\), \(r\le r_0\),

    2. (ii)

      \(A=1\), \(-1 \le B < 1\) and

  3. (c)

    L(rAB) if \(-1 \le B < A < 1\), \(A+B <0\), \(r\le r_0\),

where

$$\begin{aligned} P(r;A,B)&:=\left( \dfrac{1- A B - \sqrt{(1-A^2)(1-B^2)}}{A-B} \right) \left( \dfrac{2r}{1-r^2}\right) , \end{aligned}$$
(2.10)
$$\begin{aligned} Q(r;A,B)&:= \dfrac{(A-B) r}{(1- A r)(1- B r)}, \quad L(r;A,B):=\dfrac{(A-B) r}{(1+ A r)(1+ B r)}, \end{aligned}$$
(2.11)

and

$$\begin{aligned} r_0&:= \dfrac{|A+B|}{1+ A B + \sqrt{(1-A^2)(1-B^2)}}. \end{aligned}$$
(2.12)

The result is sharp for the cases (b) and (c).

Proof

Since \(p \in \mathcal {P}[A,B]\), \(p(z) = \big (1+A w(z)\big )/\big (1+ B w(z)\big )\) for some analytic function \(w: \mathbb {D} \rightarrow \mathbb {D}\) with \(w(0)=0\). This gives

$$\begin{aligned} p'(z)&= \dfrac{(A-B) w'(z)}{\big (1+ B w(z)\big )^2},\quad \text {and} \quad {{\mathrm{Re\,}}}p(z)= \dfrac{1+ A B |w(z)|^2 + (A+B) {{\mathrm{Re\,}}}w(z)}{|1+ B w(z)|^2}. \end{aligned}$$

Therefore, by using Carathéodary’s inequality \(|w'(z)| \le (1- |w(z)|^2)/(1-|z|^2)\) for an analytic function w defined on \(\mathbb {D}\) with \(|w(z)| \le 1\) and Eq. (2.3), we have

$$\begin{aligned}&\dfrac{|z p'(z)|}{{{\mathrm{Re\,}}}p(z)}\\&\le \dfrac{(A-B)|z| \big (|A{-}B p(z)|^2{-}|p(z)-1|^2\big )}{(1{-} |z|^2)\big (|A-B p(z)|^2 {+} A B |p(z) -1|^2 {+}(A{+}B) {{\mathrm{Re\,}}}\big ((p(z) {-}1)(A- B \overline{p(z)}\big )\big )}. \end{aligned}$$

Substituting \(|z|=r\), \(p(z) = R e^{i \theta }\) where \(R \in [a-d,a+d]\), \(\theta \in (-\pi /2,\pi /2)\), \(a= (1- A B r^2)/(1- B^2 r^2)\) and \(d= (A-B) r/(1- B^2 r^2)\), in the above inequality and proceeding as in the previous lemma, we find that the right-hand side of the above inequality

$$\begin{aligned} S(R, \theta ):= \dfrac{r\big (A^2-1 +(B^2-1)R^2 + 2 R \cos {\theta }(1-A B)\big )}{(1-r^2)(A-B) R \cos {\theta }} \end{aligned}$$

as a function of \(\theta \) would attain its maximum at \(\theta =0\) except for the case \(A = 1\) and \(B = -1\). Therefore, we have \(S(R,\theta ) \le S(R,0)\) except for the case \(A = 1\) and \(B = -1\). For \(A = 1\) and \(B = -1\), \(S(R, \theta )= 2 r/(1-r^2)\) which is the required bound and coincides with the bound given in [7, Theorem 1, p. 113]. In this case, the sharpness follows at \(z=-r\) for the function \(p_0:\mathbb {D} \rightarrow \mathbb {C}\) defined by

$$\begin{aligned} p_0(z):= (1+ A z)/(1+ B z). \end{aligned}$$
(2.13)

Now, it is left to maximize S(R, 0) except for the case \(A = 1\) and \(B = -1\). Clearly,

$$\begin{aligned} \dfrac{\partial {S(R,0)}}{\partial {R}}&= \dfrac{r(-(A^2-1)+(B^2-1)R^2)}{(1-r^2)(A-B)R^2} \end{aligned}$$

and

$$\begin{aligned} \dfrac{\partial ^2{S(R,0)}}{\partial {R}^2}&= \dfrac{2 r(A^2-1)}{(1-r^2)(A-B)R^3} \le 0. \end{aligned}$$

Also, for \(-1 < B <A \le 1\),

$$\begin{aligned} \dfrac{\partial {S(R,0)}}{\partial {R}}=0 \quad \text {if} \quad R =:R_0= \sqrt{\dfrac{1-A^2}{1-B^2}}. \end{aligned}$$

Since S(R, 0) is a concave function, it attains its maximum P(rAB), given by (2.10), at \(R_0\) if \(R_0 \in (a-d,a+d)\); otherwise, the maximum is attained either at \(a-d\) or \(a+d\).

  1. (a)

    Let \(-1 < B < A <1\). If \(A+B=0\), then \(R_0=1\) and since \(a-d<1\) and \(a+d >1\), \(R_0 \in (a-d,a+d)\).

    Let \(A+B >0\). Since \(\psi (r;A,B):= -(A+B) - 2(1+A B )r - (A+B) r^2 <0\), \(R_0 < a+d\). Also, we see that \( \phi (r;A,B):= A+B - 2(1+ A B) r + (A+B) r^2\) has a unique zero \(r_0\) in (0, 1) given by (2.12) and \( \phi (0;A,B)>0\), so \( \phi (r;A,B)<0\) for \(r > r_0\). Therefore, \(a-d < R_0\) for \(r >r_0\) and hence for \(r>r_0\), we have \(R_0 \in (a-d,a+d)\).

    Further, if \(A+B <0\), clearly \(\phi (r;A,B):= A+B - 2(1+ A B) r + (A+B) r^2<0\) and so \(a-d < R_0\). Since \( \psi (r;A,B):= -(A+B) - 2(1+A B )r - (A+B) r^2 \) has a unique zero \(r_0\) in (0, 1) given by (2.12) and \( \psi (0;A,B)>0\), \( \psi (r;A,B)<0\) for \(r >r_0\). Therefore, \( R_0 < a+d \) for \(r >r_0\) and hence for \(r>r_0\), we have \(R_0 \in (a-d,a+d)\).

    Thus, in this case, \(S(R,0) \le S(R_0,0)=:P(r;A,B)\), where P(rAB) is given by (2.10).

  2. (b)

    For \(A=1\), \(-1 < B <1\), S(R, 0) is a decreasing function of R and hence \(S(R,0) \le S(a-d,0)=: Q(r;A,B)\), where Q(rAB) is given by (2.11).

    Also, by case (a), for \(A+B >0\), \(-1 < B < A <1\), \(\phi (r;A,B) \ge 0\) for \(r \le r_0\) and so \(a-d \ge R_0\) for \(r \le r_0\). Therefore, \(S(R,0) \le S(a-d,0)=:Q(r;A,B)\).

    The result is sharp for the function \(p_0\), given by (2.13), at \(z=-r\).

  3. (c)

    For \(-1 < A <1\), \(B=-1\), S(R, 0) is an increasing function of R and therefore \(S(R,0) \le S(a+d,0)=:L(r;A,B)\), where L(rAB) is given by (2.11).

    By case (a), for \(A+B <0\), \(-1 < B < A <1\), \(\psi (r;A,B) \ge 0\) for \(r \le r_0\) and so \( R_0 \ge a+d \) for \(r \le r_0\). Therefore, \(S(R,0) \le S(a+d,0)=:L(r;A,B)\).

    The result is sharp for the function \(p_0\), given by (2.13), at \(z=r\). \(\square \)

3 Radius of Starlikeness and \(\mathcal {U}\)-Radius of \(F:=f/f'\)

We observe that \(\mathcal {U} \subset \mathcal {S}\), see [18, Theorem 2, p. 394] and the Koebe function \(k(z)=z/(1-z)^2\) is starlike but the function \(F(z)=k(z)/k'(z)=(z-z^2)/(1+z)\) is not even univalent in \(\mathbb {D}\) as \(F'(\sqrt{2}-1)=0\). This motivates us to investigate the radius of starlikeness and the \(\mathcal {U}\)-radius of \(F(z)=f(z)/f'(z)\) when f belongs to some well-known class of functions. In the following theorems, we consider the function f to belong to the class of Janowski starlike functions.

Theorem 3.1

Let \(f \in \mathcal {S}^*[A,B]\), \(F(z):= f(z)/f'(z)\) \((z \in \mathbb {D})\) and \(0<r=|z|<1\). Let \(\hat{r}^{**}\) be the unique zero in (0, 1] of the polynomial \(\hat{g}(r;A,B):= A B r^4- 2 A B r^3 -(2 A + 2 B + A B + 1)r^2 - 2 r +1\). Then

  1. (a)

    if either of the following holds:

    1. (i)

      \(0 \le B < 1\),

    2. (ii)

      \(-1 < B <0, -1/\big (B\big (1 + \sqrt{-(A-B)/B}\big )\big ) \notin (0,\hat{r}^{**}]\), then

    the radius of starlikeness of F is

    $$\begin{aligned} R&:= \sqrt{\dfrac{2\sqrt{1+B}}{(1+A) \sqrt{1+ B} + \sqrt{(1+A)(1+A + A B - 3 B)}}}. \end{aligned}$$
    (3.1)
  2. (b)

    if \(-1 \le B <0, -1/\big (B\big (1 + \sqrt{-(A-B)/B}\big )\big ) \in (0,\hat{r}^{**}]\), then the radius of starlikeness of F is \(-1/\big (B\big (1 + \sqrt{-(A-B)/B}\big )\big )\).

The following lemma is used to prove the result.

Lemma 3.2

[10, Theorem 3, p. 314] For all \(p \in \mathcal {P}[A,B]\) and \(|z| = r\), \(0 < r < 1\),

$$\begin{aligned} {{\mathrm{Re\,}}}\dfrac{z p'(z)}{p(z)} \le {\left\{ \begin{array}{ll} Y_1(r; -A,-B), &{}0 < r \le \hat{r}^{**}; \\ Y_2(r; -A,-B), &{}\hat{r}^{**} < r < 1, \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned} \ Y_1(r; A, B)&= -\dfrac{(A-B)r}{(1- A r)(1- B r)},\\ Y_2(r; A, B)&= \dfrac{2 \big (\sqrt{(1-B)(1+B r^2)(1-A)(1+ A r^2)}-(1- A B r^2)\big )}{(A-B)(1- r^2)}+ \dfrac{A+B}{A-B}, \end{aligned}$$

and \(\hat{r}^{**}\) is the unique zero of the polynomial \(\hat{g}(r;A,B):= A B r^4- 2 A B r^3 -(2 A + 2 B + A B + 1)r^2 - 2 r +1\) in (0, 1]. The bound is sharp.

Proof of Theorem 3.1

Since \(f \in \mathcal {S}^*[A,B]\), \(p(z):= z f'(z)/f(z) \in \mathcal {P}[A,B]\). Since \(F(z)= z/p(z)\), we have

$$\begin{aligned} \dfrac{z F'(z)}{F(z)}= 1- \dfrac{z p'(z)}{p(z)}. \end{aligned}$$

By Lemma 3.2, it follows that

$$\begin{aligned} {{\mathrm{Re\,}}}\dfrac{z F'(z)}{F(z)} \ge {\left\{ \begin{array}{ll} J_1(r; A, B), &{}0<r \le \hat{r}^{**};\\ J_2(r;A,B), &{} \hat{r}^{**} < r < 1, \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned} J_1(r; A, B)&:= \dfrac{A B r^2 + 2 B r +1}{(1+ A r)(1+ B r)}, \\ J_2(r; A, B)&:= \dfrac{-2 B}{A-B}+ \dfrac{2\big (\sqrt{(1+B)(1- B r^2)(1+A)(1-Ar^2)}- (1- A B r^2)\big )}{(A-B)(1-r^2)}. \end{aligned}$$

Note that \(J_1(r; A, B)= J_2(r; A, B)\) in (0, 1] only at \(\hat{r}^{**}\) and \(\hat{r}^{**}=1\) only for \(B =-1\).

It is easy to see that, for \( -1 < B <1\),

$$\begin{aligned} J_2(r; A, B)>0 \ \text {if and only if } \ \phi (r; A, B) >0, \end{aligned}$$
(3.2)

where \(\phi (r;A,B):= (A-B)\big ((1+B) - (1+A)(1+B) r^2 +(1+A) B r^4\big ).\)

  1. (a)

    Let \(0\le B<1\). In this case, \(J_1(r; A, B)>0\) for \(0<r<1\). Also, if \(-1 < B <0\) and \(-1/\big (B\big (1 + \sqrt{-(A-B)/B}\big )\big ) \notin (0,\hat{r}^{**}]\), then \(J_1(r;A,B)\ne 0\) in \((0,\hat{r}^{**}]\); since \(J_1(0;A,B)> 0\), therefore \(J_1(r;A,B)>0\) in \((0,\hat{r}^{**}]\).

    Now, \(J_2(\hat{r}^{**}; A, B)= J_1(\hat{r}^{**}; A, B)>0\), therefore by (3.2), \(\phi (\hat{r}^{**}; A, B) >0\). Also, \(\phi (1; A, B) = -(A-B)^2 <0\), therefore, the bi-quadratic polynomial \(\phi (r; A, B)\) has a unique zero R in \((\hat{r}^{**},1)\) given by (3.1). So, we have \(\phi (r; A, B)>0\) for \(r<R\). Thus, in view of (3.2), \(J_2(r; A, B)>0\) for \(r < R\) and hence \({{\mathrm{Re\,}}}z F'(z)/F(z)>0\) in \(|z| < R\). The sharpness follows for the function \(f_0:\mathbb {D} \rightarrow \mathbb {C}\) defined by

    $$\begin{aligned} \dfrac{z f_0'(z)}{f_0(z)}= \dfrac{\big (1-(1+A) d z + A z^2\big )}{\big (1-(1+B)d z + B z^2\big )}, \end{aligned}$$

    where

    $$\begin{aligned}&d = \dfrac{(1+ B r^2)s_1 - (1+ A r^2)}{r\big ((1+ B)s_1 - (1+A)\big )}, \quad s_1 = \sqrt{\frac{(1+A)(1-A r^2)}{(1+B)(1-Br^2)}}. \end{aligned}$$
  2. (b)

    Let \(-1 \le B <0\). If \( -1/\big (B\big (1 + \sqrt{-(A-B)/B}\big )\big ) \in (0,\hat{r}^{**}]\), then \(J_1(r;A,B) >0\) if \(r < -1/\big (B\big (1 + \sqrt{-(A-B)/B}\big )\big ) \). Therefore, \({{\mathrm{Re\,}}}z F'(z)/F(z)>0 \) in \(|z| < -1/\big (B\big (1 + \sqrt{-(A-B)/B}\big )\big ) \). Define a function \(f_1: \mathbb {D} \rightarrow \mathbb {C}\) by \(z f_1'(z)/f_1(z) =(1+ A z)/(1+ B z)\). The result is sharp for the function \(f_1\).\(\square \)

The following classes are well known (for example, see [9, 13, 19, 21, 22, 25]):

  1. (i)

    \(\mathcal {P}[1,-1]=\mathcal {P}\), \(\mathcal {S}^*[1,-1]= \mathcal {S}^*\), \(\mathcal {P}_b[1,-1]=: \mathcal {P}_b\), \(\mathcal {S}^*_b[1,-1] =: \mathcal {S}^*_b;\)

  2. (ii)

    for \(0 \le \alpha <1\), \(\mathcal {P}[1-2 \alpha ,-1]=:\mathcal {P}(\alpha )\), \(\mathcal {S}^*[1-2 \alpha ,-1]=: \mathcal {S}^*(\alpha )\), \(\mathcal {P}_b[1-2 \alpha ,-1]=: \mathcal {P}_b(\alpha )\), \(\mathcal {S}^*_b[1-2 \alpha ,-1] =: \mathcal {S}^*_b(\alpha );\)

  3. (iii)

    for \(M > 1/2\), \(\mathcal {P}[1,1/M-1]=:\mathcal {P}(M)\), \(\mathcal {S}^*[1,1/M-1]=: \mathcal {S}^*(M)\), \(\mathcal {P}_b[1,1/M-1]=: \mathcal {P}_b(M)\), \(\mathcal {S}^*_b[1,1/M-1] =: \mathcal {S}^*_b(M);\)

  4. (iv)

    for \(0 < \beta \le 1 \), \(\mathcal {P}[\beta , -\beta ]=:\mathcal {P}^{(\beta )}\), \(\mathcal {S}^*[\beta ,-\beta ]=: \mathcal {S}^{*^{(\beta )}}\), \(\mathcal {P}_b[\beta ,-\beta ]=: \mathcal {P}_b^{(\beta )}\), \(\mathcal {S}^*_b[\beta ,-\beta ] =: \mathcal {S}^{*^{(\beta )}}_b;\) and

  5. (v)

    for \( 0 \le \beta < 1\), \(\mathcal {P}[1- \beta ,0]=:\mathcal {P}_{1-\beta }\), \(\mathcal {S}^*[1- \beta ,0]=: \mathcal {S}^{*}_{1-\beta }\), \(\mathcal {P}_b[1-\beta ,0]=: \mathcal {P}_{b,{1-\beta }}\), \(\mathcal {S}^*_b[1-\beta ,0] =: \mathcal {S}^{*}_{b,1-\beta }.\)

For some of these classes, we have the following results.

Corollary 3.3

Let \(F(z):= f(z)/f'(z), z \in \mathbb {D}\). Then,

  1. (a)

    the radius of starlikeness of F is

    1. (i)

      \(1/\big (1 + \sqrt{2(1-\alpha )}\big )\) if \(f \in \mathcal {S}^*(\alpha )\), \((0 \le \alpha < 1)\)

    2. (ii)

      \( 1/\sqrt{2-\beta }\) if \(f \in \mathcal {S}^*_{1-\beta }\), \((0 \le \beta < 1)\);

  2. (b)

    if \(f \in \mathcal {S}^{*{(\beta )}}\), \((0< \beta \le 1)\), the radius of starlikeness of F is

    $$\begin{aligned} {\left\{ \begin{array}{ll} \sqrt{\dfrac{2 \sqrt{1- \beta }}{\sqrt{1- \beta } (1+ \beta ) + \sqrt{(1+ \beta )(1+ 4 \beta - {\beta }^2)}}}, &{}0 < \beta < 0.800199,\\ \dfrac{\sqrt{2}-1}{\beta }, &{}\beta \ge 0.800199; \end{array}\right. } \end{aligned}$$
  3. (c)

    if \(f \in \mathcal {S}^{*}(M)\), \((M > 1/2)\), the radius of starlikeness of F is

    $$\begin{aligned} {\left\{ \begin{array}{ll} \sqrt{\dfrac{1}{1 + \sqrt{2 M -1}}}, &{}1/2 < M < 5,\\ \dfrac{M}{\sqrt{(2 M-1)(M-1)}+M-1 }, &{}M \ge 5 ~and \end{array}\right. } \end{aligned}$$
  4. (d)

    if \(f \in \mathcal {G}(\alpha )\), \((0 < \alpha \le 1)\), then \({{\mathrm{Re\,}}}(zF'(z)/F(z))>0\) in

    $$\begin{aligned} |z| < \sqrt{\big (2 + \alpha - \sqrt{\alpha (2 + \alpha )}\big )/2}. \end{aligned}$$

Proof

Clearly, (a)–(c) follow from the Theorem 3.1 by substituting the values of A and B. By [11, Theorem 1, p. 70], \(\mathcal {G}(\alpha ) \subset \mathcal {S}^*[1,1/(1+\alpha )]\), and hence part (d) follows. \(\square \)

The part (d) of the above corollary provides an improved version of [17, Theorem 3.10, p. 138].

Theorem 3.4

If \(f \in \mathcal {S}^*[A,B]\), \(F(z):= f(z)/f'(z)\) \((z \in \mathbb {D})\) and \(0<r=|z|<1\), then the \( \mathcal {U}\)-radius of F is

  1. (a)

    \( R_1\) if either of the following holds:

    1. (i)

      \(0 \le B < 0.8\),

    2. (ii)

      \(0.8 \le B < 1\), \(R_1 \in (0,r_0]\),

    3. (iii)

      \(0.8 \le B < 1\), \(R_1 \notin (0,r_0]\) and \(G_3(r;A,B)\) has no zero in \([r_0,\tilde{r}_0]\);

  2. (b)

    \(R_3\) if \(0.8 \le B <1\), \(R_1 \notin (0,r_0]\) and \(G_3(r;A,B)\) has a zero in \([r_0,\tilde{r}_0]\);

  3. (c)

    \(R_2\) if either of the following holds:

    1. (i)

      \(-0.8 < B \le 0\),

    2. (ii)

      \(-1 < B \le -0.8\), \(R_2 \in (0,r_0]\),

    3. (iii)

      \(-1 < B \le -0.8\), \(R_2 \notin (0,r_0]\) and \(G_4(r;A,B)\) has no zero in \([r_0,\tilde{r}_0]\);

  4. (d)

    \( R_4\) if either of the following holds:

    1. (i)

      \(-1 < B \le -0.8\), \(R_2 \notin (0,r_0]\) and \(G_4(r;A,B)\) has a zero in \([r_0,\tilde{r}_0]\),

    2. (ii)

      \(B=-1\),

where for \(-1<B<1\),

$$\begin{aligned} R_1&:= \sqrt{\dfrac{2\sqrt{1-B}}{(1+A - 2 B) \sqrt{1-B} + \sqrt{(1+A -2 B)\big (1+ A(1-B) + B(1+ 2 B)\big )}}} \end{aligned}$$
(3.3)

and \(R_2\) is given by (3.1); for \(0.8 \le B <1\),

$$\begin{aligned} R_3&:= \dfrac{1}{\sqrt{B}\big (\sqrt{B}+ \sqrt{A-B}\big )} \end{aligned}$$
(3.4)

is the smallest zero in \([r_0,\tilde{r}_0]\) of the polynomial

$$\begin{aligned} G_3(r;A,B)&:= (A B - 2 B^2)r^2+ 2 B r -1. \end{aligned}$$
(3.5)

For \(-1 \le B \le -0.8\),

$$\begin{aligned} R_4:= \dfrac{1}{\sqrt{-B}\big (\sqrt{-B}+ \sqrt{A-B}\big )} \end{aligned}$$
(3.6)

is the smallest zero in \([r_0,\tilde{r}_0]\) of the polynomial

$$\begin{aligned} G_4(r;A,B)&:=- A B r^2- 2 B r -1; \end{aligned}$$
(3.7)

and \(r_0\), \(\tilde{r}_0\) are given by the Eq. (2.2).

Proof

Let \(p(z)=z f'(z)/f(z)\). Then \(F(z)= z/p(z)\) and \(F'(z)= (p(z)- z p'(z))/p^2(z)\). Now, \(U_F(z)= F'(z)(z/F(z))^2-1=p(z)- z p'(z) -1\). By using Lemma 2.1, we have

$$\begin{aligned} |U_F(z)|\le {\left\{ \begin{array}{ll} M(r;A,B), &{}\text {either } |B| < 0.8, r \in [0,1),\\ &{}\text { or, }0.8 \le |B| <1, r \in (0, r_0) \cup (\tilde{r}_0,1),\\ \dfrac{|B|(A-B) r^2}{(1- |B|r)^2}, &{}0.8 \le |B| \le 1, r \in [r_0, \tilde{r}_0], \end{array}\right. } \end{aligned}$$

where M(rAB) and \(r_0\), \( \tilde{r_0}\) are given by (2.1) and (2.2), respectively. Now,

$$\begin{aligned} M(r;A,B) <1 \text { if and only if } {\left\{ \begin{array}{ll} G_1(r;A,B)<0,&{}0 \le B<1,\\ G_2(r;A,B)<0,&{}-1< B \le 0, \end{array}\right. } \end{aligned}$$
(3.8)

where

$$\begin{aligned} G_1(r;A,B)&:= -1 + B -(1+A -2 B)(-1 +B) r^2 + B(1 + A - 2 B) r^4 \end{aligned}$$

and

$$\begin{aligned} G_2(r;A,B)&:= -1 - B + (1+A)(1+B) r^2 - B(1 + A) r^4. \end{aligned}$$

Also,

$$\begin{aligned} \dfrac{|B|(A-B) r^2}{(1- |B|r)^2} <1 \text { if and only if } {\left\{ \begin{array}{ll} G_3(r;A,B)<0,&{}0<B<1,\\ G_4(r;A,B)<0,&{}-1 \le B<0, \end{array}\right. } \end{aligned}$$
(3.9)

where \(G_3(r;A,B)\) and \(G_4(r;A,B) \) are given by Eqs. (3.5) and (3.7), respectively.

Since for \(0\le B<1\), \(G_1(0;A,B)= -(1-B)<0\) and \(G_1(1;A,B)= A-B >0\), the bi-quadratic polynomial \(G_1(r;A,B)\) has a unique zero \(R_1\) in (0, 1) given by (3.3). Similarly, for \(-1<B\le 0\), the bi-quadratic polynomial \(G_2(r;A,B)\) has a unique zero \(R_2\) in (0, 1) given by (3.1).

  1. (a)

    Clearly, if either \(0 \le B < 0.8\) or \(0.8 \le B <1\), \(R_1 \in (0,r_0]\), then in view of (3.8), \(M(r;A,B) <1\) for \(r<R_1\).

    Let \(0.8 \le B <1\), \(R_1 \notin (0,r_0]\) and \(G_3(r;A,B)\) has no zero in \([r_0,\tilde{r}_0]\).

    In view of (2.7) and (2.8), for \(B>0\), \(R_0 =a-d\) if and only if \(\phi (r,B):= B r^2 - B r + 1- B =0\). Therefore, for \(B>0\), \(S(R_0,0)=:M(r;A,B)\) and \(S(a-d,0)= B(A-B)r^2/(1- B r)^2 \) are equal at the zeros \(r=r_0\) and \( r=\tilde{r}_0\) in (0, 1) of \(\phi (r,B)\), where S, \(R_0\) and \(r_0\), \(\tilde{r}_0\) are given by (2.5), (2.6) and (2.2), respectively. Hence, in view of (3.8) and (3.9), we have \(G_1(r_0;A,B)= G_3(r_0;A,B)\) and \(G_1(\tilde{r}_0;A,B)= G_3(\tilde{r}_0;A,B)\).

    Since \(G_1(r;A,B)\) has no zero in \((0,r_0]\) and \(G_1(0;A,B)= -(1-B)<0\), therefore \(G_1(r_0;A,B)<0\) which implies \(G_3(r_0;A,B)<0\).

    Further, since \(G_3(r;A,B)\) has no zero in \([r_0,\tilde{r}_0]\), we have \(G_3(r;A,B)<0\) in \([r_0,\tilde{r}_0]\) and so \(G_1(\tilde{r}_0;A,B) = G_3(\tilde{r}_0;A,B)<0\). Thus, \(G_1(r;A,B)<0\) for \(r < R_1 \in (\tilde{r}_0,1)\) and hence, in view of (3.8), we have \(M(r;A,B) <1\) for \(r<R_1\).

  2. (b)

    Let \(0.8 \le B <1\), \(R_1 \notin (0,r_0]\) and \(G_3(r;A,B)\) has a zero in \([r_0,\tilde{r}_0]\). As in part (a), \(G_3(r_0;A,B)<0\) and thus \(G_3(r;A,B)<0\) for \(r < R_3\), where \(R_3\) is the smallest zero of \(G_3(r;A,B)\) in \([r_0,\tilde{r}_0]\) given by (3.4).

  3. (c)

    If either \(-0.8 < B \le 0\), or \(-1 < B \le -0.8\), \(R_2 \in (0,r_0]\), then in view of (3.8), \(M(r;A,B) <1\) for \(r<R_2\).

    Let \(-1 < B \le -0.8\), \(R_2 \notin (0,r_0]\) and \(G_4(r;A,B)\) has no zero in \([r_0,\tilde{r}_0]\). Similarly as in part (a), in view of (2.7) and (2.8), for \(B<0\), \(R_0 =a+d\) if and only if \(\psi (r,B):= B r^2 - B r -1 -B =0\). Therefore, for \(B<0\), \(M(r,A,B) = -B(A-B)r^2/(1+ B r)^2\) at the zeros \(r=r_0\) and \(r=\tilde{r}_0\) in (0, 1) of \(\psi (r,B)\), where \(r_0\), \(\tilde{r}_0\) are given by (2.2) and hence, in view of (3.8) and (3.9), we have \(G_2(r;A,B)= G_4(r;A,B)\) at \(r=r_0\) and \(r=\tilde{r}_0\). Since \(G_2(r;A,B)\) has no zero in \((0,r_0]\) and \(G_2(0;A,B)= -(1+B)<0\), therefore \(G_2(r_0;A,B)<0\) and hence \(G_4(r_0;A,B)<0\). Further, since \(G_4(r;A,B)\) has no zero in \([r_0,\tilde{r}_0]\), we have \(G_4(r;A,B)<0\) in \([r_0,\tilde{r}_0]\) which implies \(G_2(\tilde{r}_0;A,B) = G_4(\tilde{r}_0;A,B)<0\). Thus, in view of (3.8), \(M(r;A,B) <1\) for \(r<R_2 \in (\tilde{r}_0,1)\).

  4. (d)

    Let \(-1 < B \le -0.8\), \(R_2 \notin (0,r_0]\) and \(G_4(r;A,B)\) has a zero in \([r_0,\tilde{r}_0]\). As in part (c), \(G_4(r_0;A,B)<0\) and hence \(G_4(r;A,B)<0\) for \(r < R_4\), where \(R_4\) is the smallest zero of \(G_4(r;A,B)\) in \([r_0,\tilde{r}_0]\), given by (3.6). Also, for \(B=-1\), \(G_4(r;A,B)\) has a unique zero in (0, 1) namely \(1/\big (1+ \sqrt{1+A}\big )\) and hence \(G_4(r;A,B)<0\) for \(r < 1/\big (1+ \sqrt{1+A}\big )\).

In the cases (a) and (c), the sharpness follows for the functions \(f_1: \mathbb {D} \rightarrow \mathbb {C}\) and \(f_2: \mathbb {D} \rightarrow \mathbb {C}\), respectively defined by \(z f_i'(z)/f_i(z)= \big (1+ A w_i(z)\big )/\big (1+B w_i(z)\big ), (i=1,2)\), where \(w_i(z)= (-1)^i z (z-c_i)/(1- c_i z), (i=1,2)\) with \(c_i\) being determined from the Eq. (2.9). In the cases (b) and (d), the result is sharp for the function \(f_3: \mathbb {D} \rightarrow \mathbb {C}\) defined by \(z f_3'(z)/f_3(z) = (1+ A z)/(1+ B z)\). \(\square \)

Corollary 3.5

Let \(F(z):= f(z)/f'(z), z \in \mathbb {D}\). Then

  1. (a)

    the \(\mathcal {U}\)-radius of F is

    1. (i)

      \(1/\big (1+ \sqrt{2(1-\alpha )}\big ) \) if \(f \in \mathcal {S}^*(\alpha )\), \((0 \le \alpha < 1)\),

    2. (ii)

      \(1/\sqrt{2 -\beta }\) if \(f \in \mathcal {S}^*_{1-\beta }\), \((0 \le \beta < 1)\).

  2. (b)

    if \(f \in \mathcal {S}^{*{(\beta )}}\) \((0< \beta \le 1)\), the \(\mathcal {U}\)-radius of F is

    $$\begin{aligned} {\left\{ \begin{array}{ll} \sqrt{\dfrac{2 \sqrt{1- \beta }}{\sqrt{1- \beta } (1+ \beta ) + \sqrt{(1+ \beta )(1+ 4 \beta - {\beta }^2)}}}, &{}0 < \beta < 0.800199,\\ \dfrac{\sqrt{2}-1}{\beta }, &{}\beta \ge 0.800199. \end{array}\right. } \end{aligned}$$
  3. (c)

    if \(f \in \mathcal {G}(\alpha )\), \((0 < \alpha \le 1)\), \( F \in \mathcal {U}\) in

    $$\begin{aligned} |z| < {\left\{ \begin{array}{ll} \dfrac{(1+ \alpha )}{(1+ \sqrt{\alpha })}, &{}0 < \alpha \le 0.141441,\\ \sqrt{\dfrac{-\alpha + \sqrt{(1+ \alpha )^2 +1}}{2}}, &{}0.141441 < \alpha \le 1. \end{array}\right. } \end{aligned}$$
  4. (d)

    if \(f \in \mathcal {S}^{*}(M)\), \((M > 1/2)\), the \(\mathcal {U}\)-radius of F is

    $$\begin{aligned} {\left\{ \begin{array}{ll} \dfrac{M}{\sqrt{(2 M-1)(1-M)} + 1- M}, &{} 0.5 < M \le 0.533025 ,\\ \sqrt{\dfrac{M}{2M-1+ \sqrt{1- 2 M +2 M^2}}}, &{} 0.533025 < M \le 1 ,\\ \sqrt{\dfrac{1}{1 + \sqrt{2 M -1}}}, &{}1 \le M \le 5,\\ \dfrac{ M }{\sqrt{(2 M -1)(M-1)} + M-1}, &{}M > 5. \end{array}\right. } \end{aligned}$$

Proof

Clearly, (a), (b) and (d) follow from the Theorem 3.4 by substituting the values of A and B. By [11, Theorem 1, p. 70], \(\mathcal {G}(\alpha ) \subset \mathcal {S}^*[1,1/(1+\alpha )]\), and hence part (c) follows. \(\square \)

The part (c) of the above corollary provides an improved version of [17, Theorem 3.14, p. 139], while (i) of part (a) is the same as [17, Theorem 3.3, p. 135].

Corollary 3.6

Let \(f \in \mathcal {S}^*(\alpha )\). Then the radius of univalence of \(F(z):=f(z)/f'(z) \) \((z \in \mathbb {D})\) is \( 1/\big (1+ \sqrt{2(1-\alpha )}\big ) \).

Proof

Since \(f \in \mathcal {S}^*(\alpha )\), by (i) of part (a) of the Corollary 3.5, the \( \mathcal {U}\)-radius of F is \( 1/(1+ \sqrt{2(1-\alpha )})\). Also, [18, Theorem 2, p. 394] gives \( \mathcal {U} \subset \mathcal {S}\), and therefore, \(F \in \mathcal {S}\) in \(|z| < 1/\big (1+ \sqrt{2(1-\alpha )}\big )\). The sharpness follows for the function \(f_0: \mathbb {D} \rightarrow \mathbb {C}\) defined by

$$\begin{aligned} \dfrac{z f_0'(z)}{f_0(z)} = \dfrac{1 + (1- 2 \alpha ) z}{1- z}. \end{aligned}$$

Corresponding to the function \(f_0\), we have \(F_0(z)= f_0(z)/f_0'(z)= z(1- z)/(1+ (1- 2 \alpha ) z)\). Clearly, \(F_0'(1/(1+ \sqrt{2(1-\alpha )}))= 0\), and thus \(F_0\) is not univalent in \(|z|<r\), \(r > 1/(1+ \sqrt{2(1-\alpha )}).\)

Note that the above corollary can also be obtained by an application of Lemma 2.2 and the fact that if \(p \in \mathcal {P}[A,B]\) \( (-1\le B < A \le 1)\), then \(q(z):= 1/p(z) \in \mathcal {P}[-B,-A]\) \( (-1\le -A < -B \le 1)\). Precisely, for \(f \in \mathcal {S}^*(\alpha )\), we have \(F(z)= z q(z)\), \(q(z):= f(z)/(z f'(z)) \in \mathcal {P}[1,-(1-2 \alpha )]\) and by Lemma 2.2, for \(r=|z|<1\),

$$\begin{aligned} {{{\mathrm{Re\,}}}}\! F'(z)\ge {{{\mathrm{Re\,}}}}\! q(z) - |z q'(z)| \ge {{{\mathrm{Re\,}}}}\! q(z) \left( \dfrac{1- 2 r -(1-2 \alpha )r^2}{(1-r)(1+(1-2 \alpha )r)}\right) >0 \end{aligned}$$

if \(r < 1/\big (1+ \sqrt{2(1-\alpha )}\big ) \).

Theorem 3.7

If \(f \in \mathcal {A }\) satisfies \(F:= f/f' \in \mathcal {S}^*[A,B]\), \(-1 \le B < A \le 1\), then for \(z \in \mathbb {D}\),

$$\begin{aligned} \dfrac{z f'(z)}{f(z)} \prec {\left\{ \begin{array}{ll} (1+ Bz)^{-(A-B)/B}, &{}B \ne 0,\\ e^{- A z}, &{}B=0. \end{array}\right. } \end{aligned}$$

Proof

Let \(p(z):= zf'(z)/f(z)\). Then \(F(z)= z/p(z)\) and \(z F'(z)/F(z) = 1- zp'(z)/p(z)\). Since \(F \in \mathcal {S}^*[A,B]\), we have

$$\begin{aligned} -\dfrac{z p'(z)}{(A-B)p(z)} \prec \dfrac{z}{1+ B z}. \end{aligned}$$

Also, since \(-1 \le B < A \le 1\),

$$\begin{aligned} g(z):= \int _0^z \dfrac{1}{1+ B t} \, dt= {\left\{ \begin{array}{ll} \big (1/B\big ) \log {(1+ B z)}, &{}B \ne 0,\\ z, &{}B=0 \end{array}\right. } \end{aligned}$$
(3.10)

is analytic in \(\mathbb {D}\) such that \(g(0)=0\) and \(g'(0)=1\). Clearly, for \(B=0\), g is a convex function. Let \(B \ne 0\). Then

$$\begin{aligned} 1+ \dfrac{z g''(z)}{g'(z)} = \dfrac{1}{1+ B z}. \end{aligned}$$

For \(B =-1\), \( {{\mathrm{Re\,}}}(1/(1+ B z)) = {{\mathrm{Re\,}}}( 1/(1-z)) >1/2 >0.\) For \(-1 < B <1\) \((B \ne 0)\), the image of \(\mathbb {D}\) under \(w(z):=1/(1+ B z)\) is the disc \(|w - 1/(1- B^2)| < |B|/(1- B^2)\), and therefore \({{\mathrm{Re\,}}}(1/(1+ B z)) > 1/(1+ |B|) >0\) and hence g is a convex function.

By using [24, Theorem 3, p. 777], we conclude that

$$\begin{aligned} \left( -\dfrac{1}{A-B}\right) \log {p(z)}= \left( -\dfrac{1}{A-B}\right) \int _0^z \dfrac{p'(t)}{p(t)}\,dt \prec \int _0^z \dfrac{1}{1+ B t} \, dt. \end{aligned}$$

By using (3.10), the required result follows. \(\square \)

Since, for \( B \ne 0\),

$$\begin{aligned} {{\mathrm{Re\,}}}\left( \dfrac{1}{1+B z}\right) ^{(A-B)/B}= \left| \dfrac{1}{1+B z}\right| ^{(A-B)/B} \cos {\left( \dfrac{(A-B)}{B} \arg {\dfrac{1}{1+ B z}}\right) } \end{aligned}$$

and \(\arg {(1/(1+Bz))} \in (-\pi /2,\pi /2)\), we have the following simple deduction:

Corollary 3.8

If \(f \in \mathcal {A }\) satisfies \(F:= f/f' \in \mathcal {S}^*[A,B]\), \(-1 \le B < A \le 1\), and \(0<A/B<2\), then \(f \in \mathcal {S}^*\).

Note that if \(p \in \mathcal {P}[A,B]\) \( (-1\le B < A \le 1)\), then \(q(z):= 1/p(z) \in \mathcal {P}[-B,-A]\) \( (-1\le -A < -B \le 1)\). Using this fact, we prove the following:

Theorem 3.9

If \(f \in \mathcal {S}^*[A,B]\) and \(F(z):= f(z)/f'(z) = z + \sum _{n=2}^\infty A_n z^n\), \(z \in \mathbb {D}\) then for all n, \(|A_n| \le A-B\). The result is sharp.

Proof

Since \(f \in \mathcal {S}^*[A,B]\), \(p(z):= z f'(z) /f(z) \in \mathcal {P}[A,B]\). Now, \(F(z) = z P(z)\), where \(P(z) = 1/p(z) \in \mathcal {P}[-B,-A]\). Let \(P(z) = 1+ c_1 z + c_2 z^2 + \cdots \), then for each \(n \ge 2\), \( A_n = c_{n-1}\). By using [6, Theorem 5, p. 742], \(|c_n| \le A-B\) for all \(n \ge 1\), and so \(|A_n| \le A-B\). The result is sharp for the function \(f_n: \mathbb {D} \rightarrow \mathbb {C}\) satisfying

$$\begin{aligned} \dfrac{z f_n'(z)}{f_n(z)} =\dfrac{1+ A z^{n-1}}{1+ B z^{n-1}}. \end{aligned}$$

Corresponding to the function \(f_n\), the function \(F_n(z)= f_n(z)/f_n'(z)\) is given by

$$\begin{aligned} F_n(z) = \dfrac{z(1+ B z^{n-1})}{1+A z^{n-1}} = z - (A-B) z^n + (A^2-A B)z^{2 n -1} + \cdots .\qquad \qquad \square \end{aligned}$$

4 Radius of Starlikeness of \(F:=f/f'\) with Fixed Second Coefficient

The second coefficient of univalent functions gives information about the function; indeed, the bound \(|a_2|\le 2\) for \(f\in \mathcal {S}\) gives the growth and distortion estimates of these functions. Therefore, the study of functions with fixed initial coefficients plays an important role in the function theory. See [1] for a brief history on functions with fixed initial coefficients. In this section, we first generalize Theorem 3.1 for \(f \in \mathcal {S}_b^*[A,B]\). In fact, for \(b=1\), the following theorem reduces to Theorem 3.1 but we kept the proof of Theorem 3.1 for the sake of explicitness.

Theorem 4.1

Let \(f \in \mathcal {S}_b^*[A,B]\), \(F(z):= f(z)/f'(z) (z \in \mathbb {D})\) and \(0 < r=|z| <1\). Then the radius of starlikeness of F is given by

$$\begin{aligned} r_{\mathcal {S}_b^*} = {\left\{ \begin{array}{ll} R_b, &{}\phi _b(r;A,B) \text { has a zero in } (0,\hat{r_b}],\\ R, &{}\phi _b(r;A,B) \text { has no zero in } (0,\hat{r_b}], \end{array}\right. } \end{aligned}$$

where \(\hat{r_b}\) is the unique zero of the polynomial

$$\begin{aligned} G_b(r;A,B):=&-1+\big (3 + A + B + b^2 (1+A)(1+B)\big )r^2+ 4 b (1+A) (1+B) r^3 \nonumber \\&+ \big (A+ B+ 3A B + b^2 (1+A)(1+B)\big )r^4-A B r^6 \end{aligned}$$
(4.1)

in (0, 1]; R , given by (3.1), is the unique zero of the polynomial

$$\begin{aligned} \tilde{\phi }(r;A,B)&:= (1+B) -(1+A)(1+B) r^2 + (1+A)B r^4 \end{aligned}$$
(4.2)

in \(( \hat{r_b},1)\); and \(R_b\) is the smallest zero of

$$\begin{aligned} \phi _b(r;A,B)&:= 1+ 2b(1+B) r +\big (-A + 3 B + b^2(1+A)(1+B)\big )r^2 \nonumber \\&\qquad + 2 b (1+A)B r^3 + A B r^4 \end{aligned}$$
(4.3)

in \((0,\hat{r_b}]\).

The proof of our result requires the following lemma.

Lemma 4.2

[26, Theorem 2.1, p. 305] Let \(\alpha \ge 0, \beta \ge 0\). If \(p \in \mathcal {P}_b[A,B]\), then for \(|z|=r <1\), we have

where \( R_1 = (L_1/K_1)^{1/2}, R_2' = (1- A C)/(1- B C), L_1= \beta (1-A)(1+A r^2), K_1=\alpha (A-B)(1-r^2)+ \beta (1-B) (1+B r^2) \text { and } C = r(r+b)/(1+b r)\). The result is sharp.

Proof of Theorem 4.1

Since \(f \in \mathcal {S}_b^*[A,B]\), \(p(z) = z f'(z)/f(z) \in \mathcal {P}_b[A,B]\). Also, \(F(z) = z/p(z)\) which gives

$$\begin{aligned} \dfrac{z F'(z)}{F(z)}=1- \dfrac{z p'(z)}{p(z)}. \end{aligned}$$

An application of Lemma 4.2 to \(q(z):=1/p(z)\) and use of the fact that if \(p \in \mathcal {P}[A,B]\) \( (-1\le B < A \le 1)\) then \( 1/p \in \mathcal {P}[-B,-A]\) \( (-1\le -A < -B \le 1)\) and \(zq'(z)/q(z)= -z p'(z)/p(z)\) gives

$$\begin{aligned} {{\mathrm{Re\,}}}\dfrac{z F'(z)}{F(z)}\ge {\left\{ \begin{array}{ll} X_b(r;A,B), &{}G_b(r;A,B) \le 0,\\ Y(r;A,B), &{}G_b(r;A,B) \ge 0, \end{array}\right. } \end{aligned}$$
(4.4)

where

$$\begin{aligned} X_b(r;A,B)&= \dfrac{\phi _b(r;A,B)}{\big (1+ r(b + A b + A r)\big )\big (1+ r(b + B b + B r)\big )},\end{aligned}$$
(4.5)
$$\begin{aligned} Y(r;A,B)&= \dfrac{-2\big (1+B -(1+A) B r^2 - \sqrt{(1+A)(1+B)(1-A r^2)(1-Br^2)}\big )}{(A-B)(1-r^2)}, \end{aligned}$$
(4.6)

\(G_b(r;A,B)\) and \(\phi _b(r;A,B)\) are given by (4.1) and (4.3), respectively. We first show that for \(B \ne -1\), \(G_b(r;A,B)\) is a strictly increasing function of r in (0, 1). For this, it is sufficient to show that \(G_b'(r;A,B) >0\) in (0, 1). Let \(B \ne -1\). Consider

$$\begin{aligned} G_b'(r;A,B)&=2 r \Big (3 + A + B + b^2(1+A)(1+B) + 6 b(1+A)(1+B) r \nonumber \\&\quad +\, 2\big (A + B + 3 A B + b^2(1+A)(1+B)\big )r^2 - 3 A B r^4\Big ) \nonumber \\&\ge 2 r I_b(r;A,B), \end{aligned}$$
(4.7)

where \( I_b(r;A,B):= 3 + A + B + b^2(1+A)(1+B)+ 2\big (A + B + 3 A B + b^2(1+A)(1+B)\big )r^2 - 3 A B r^4.\)

If \( B=0\) then \(A>0\) and consequently, \( I_b(r;A,0)= 3 + A + b^2(1+A) + 2\big (A+ b^2(1+A)\big )r^2 >0\), hence \( G_b'(r;A,0)>0\). For \(A \ne 0\), \( B \ne 0\), \( I_b'(r;A,B) =0\) implies \(r=0, \pm r_0\), where

$$\begin{aligned} r_0=\sqrt{\dfrac{A+B+3 A B + b^2(1+B)(1+A)}{3 A B}}. \end{aligned}$$

Clearly,

$$\begin{aligned} I_b(0;A,B)&= 3+ A + B + b^2(1+A)(1+B)>0 \end{aligned}$$
(4.8)

and

$$\begin{aligned} I_b(1;A,B)&= 3(1+A)(1+B)(1+b^2)>0. \end{aligned}$$
(4.9)

If \(B>0\) then \(I_b'(r;A,B) = 4 r (A + B + b^2(1+A)(1+B)+ 3 A B(1- r^2))>0\). Therefore, in this case, \(I_b(r;A,B)\) is an increasing function of r in (0, 1) and hence, in view of (4.7) and (4.8), we have \(G_b'(r;A,B) \ge 2 r I_b(0;A,B)>0\).

If \(-1 < B <0\) and \(A<0\) then \(AB>0\). In this case, \(r_0 \in (0,1)\) if and only if \(A+ B + 3 A B + b^2(1+A)(1+B)>0\) and \(A+ B + b^2(1+A)(1+B) <0\). So, if \(r_0 \in (0,1)\) then \(I_b''(r_0;A,B)= -8(A+B+3 A B + b^2(1+B)(1+A))<0\) and therefore, either \( I_b(r;A,B) \ge I_b(0;A,B)\) or \( I_b(r;A,B) \ge I_b(1;A,B)\) and hence, in view of (4.7), (4.8) and (4.9), \(G_b'(r;A,B) >0\). Also, if \(r_0 \notin (0,1)\) then either \( I_b(r;A,B) \ge I_b(0;A,B)\) or \( I_b(r;A,B) \ge I_b(1;A,B)\) and hence in view of (4.7), (4.8) and (4.9), \(G_b'(r;A,B) >0\).

If \(-1< B<0\) and \(A>0\), then \(A B <0\). In this case, \(r_0 \in (0,1)\) if and only if \(A+B+3 A B + b^2(1+B)(1+A) <0\) and \(A + B + b^2(1+A)(1+B) >0\). So, if \(r_0 \in (0,1)\) then \(I_b''(r_0;A,B)= -8(A+B+3 A B + b^2(1+B)(1+A))>0\) and hence \( I_b(r;A,B) \ge \min \{I_b(r_0;A,B),I_b(0;A,B), I_b(1;A,B)\}\). Also,

$$\begin{aligned} I_b(r_0;A,B)= & {} 3 + A + B + b^2(1+A)(1+B) \nonumber \\&+ \dfrac{(A + B + 3 A B + b^2(1+A)(1+B))^2}{3 A B} \nonumber \\> & {} 2( A + B + b^2(1+A)(1+B)) + 3(1+ A B) >0. \end{aligned}$$
(4.10)

Therefore, in view of (4.7), (4.8), (4.9) and (4.10), \(G_b'(r;A,B) >0\). If \(r_0 \notin (0,1)\) then either \( I_b(r;A,B) \ge I_b(0;A,B)\) or \( I_b(r;A,B) \ge I_b(1;A,B)\) and hence, in view of (4.7), (4.8) and (4.9), \(G_b'(r;A,B) >0\).

Now, let us consider the case when \(A=0\) and \(-1< B<0\). Then \( I_b(r;0,B):= 3 + B + b^2(1+B)+ 2( B + b^2(1+B))r^2\) and \(I'_b(r;0,B)= 4( B + b^2(1+B))r\) which implies that \( I_b(r;0,B) \ge I_b(0;0,B) >0 \) if \( B + b^2(1+B) \ge 0\) and \( I_b(r;0,B) \ge I_b(1;0,B) >0 \) if \( B + b^2(1+B) \le 0\). Therefore, in view of (4.7), \(G_b'(r;0,B) >0\).

Thus, we have seen that for \(B \ne -1\), \(G_b(r;A,B)\) is a strictly increasing function of r in (0, 1). Also, \(G_b(0;A,B)=-1<0\) and \(G_b(1;A,B)=2(1+A)(1+B)(1+b^2)>0\). Therefore, \(G_b(r;A,B)\) has a unique zero, say, \(\hat{r_b}\) in (0, 1). Also, \(G_b(r;A,-1)\) has a unique zero \(r=1\) in (0, 1]. Therefore, the inequality (4.4) becomes

$$\begin{aligned} {{\mathrm{Re\,}}}\dfrac{z F'(z)}{F(z)}\ge {\left\{ \begin{array}{ll} X_b(r;A,B), &{}r \le \hat{r_b} ,\\ Y(r;A,B), &{}r \ge \hat{r_b} , \end{array}\right. } \end{aligned}$$

where \(\hat{r_b} \) is the unique zero of \(G_b(r;A,B)\) in (0, 1]; \(X_b(r;A,B)\) and Y(rAB) are given by (4.5) and (4.6), respectively.

Note that \(X_b( r;A,B)= Y( r;A,B)\) at \(r= \hat{r_b}\) only and \(\hat{r_b}=1\) only for \(B=-1\).

For \(B=-1\), \(\phi _b'(r;A,-1)= -2 r(1+A + 2(1+Ar^2) + 3(1+A)br) <0\); \(\phi _b(0;A,-1)=1>0\) and \(\phi _b(1;A,-1)= -2(1+A)(1+b) <0\), therefore \(\phi _b(r;A,-1)\) has a unique zero in (0, 1).

It is easy to see that, for \(-1<B<1\),

$$\begin{aligned} Y(r;A,B) >0 \text { if and only if } \tilde{\phi }(r;A,B) >0, \end{aligned}$$
(4.11)

where \(\tilde{\phi }(r;A,B)\) is given by (4.2).

  1. (i)

    If \(\phi _b(r;A,B)\) has a zero in \((0,\hat{r_b}]\), then \({{\mathrm{Re\,}}}z F'(z)/F(z) >0\) in \(|z| < R_b\) where \(R_b\) is the smallest zero of \(\phi _b(r;A,B)\) in \((0,\hat{r_b}]\).

  2. (ii)

    If \(\phi _b(r;A,B)\) has no zero in \((0,\hat{r_b}]\), then we must have \(-1<B<1\). Since \(\phi _b(0;A,B) =1 >0\), therefore \(\phi _b(r;A,B)>0\) in \((0,\hat{r_b}]\) and hence \( X_b(r;A,B)>0\) in \((0,\hat{r_b}]\). Since \( Y( \hat{r_b};A,B)= X_b( \hat{r_b};A,B)>0\), therefore by (4.11), \(\tilde{\phi }(\hat{r_b};A,B)>0\). Also, \(\tilde{\phi }(1;A,B)= -(A-B) <0 \). Therefore, the bi-quadratic polynomial \( \tilde{\phi }(r;A,B)\) has a unique zero R, given by (3.1), in \(( \hat{r_b},1)\). Thus, \( \tilde{\phi }(r;A,B) >0 \) for \(r < R\). In view of (4.11), we have \(Y(r;A,B) >0\) and hence \({{\mathrm{Re\,}}}z F'(z)/F(z)>0\) in \(|z| < R\).

The sharpness follows immediately from the sharpness of Lemma 4.2. \(\square \)

Corollary 4.3

Let \(F(z):= f(z)/f'(z), z \in \mathbb {D}\). Then

  1. (a)

    the radius of starlikeness of F is

    1. (i)

      \(\sqrt{1/\big (2 - \alpha + \sqrt{5- 6 \alpha + \alpha ^2}\big )} \) if \(f \in \mathcal {S}_0^*(\alpha )\), \((0 \le \alpha < 1)\),

    2. (ii)

      \( 1/\sqrt{2- \beta }\) if \(f \in \mathcal {S}^*_{0,1-\beta }\), \((0 \le \beta < 1)\);

  2. (b)

    if \(f \in \mathcal {S}_0^{*{(\beta )}}\), \((0< \beta \le 1)\), the radius of starlikeness of F is

    $$\begin{aligned} {\left\{ \begin{array}{ll} \sqrt{\dfrac{2 \sqrt{1- \beta }}{\sqrt{1- \beta } (1+ \beta ) + \sqrt{(1+ \beta )(1+ 4 \beta - {\beta }^2)}}}, &{}0 < \beta < 0.618034,\\ \sqrt{\dfrac{\sqrt{5}-2}{\beta }}, &{}\beta \ge 0.618034; \end{array}\right. } \end{aligned}$$
  3. (c)

    if \(f \in \mathcal {S}_0^{*}(M)\), \((M > 1/2)\), the radius of starlikeness of F is

    $$\begin{aligned} {\left\{ \begin{array}{ll} \sqrt{\dfrac{1}{1+ \sqrt{2 M-1}}}, &{} 0.5 < M < 2.5 ,\\ \sqrt{\dfrac{2 M}{ 4 M-3 + \sqrt{9 - 28 M + 20 M^2}}}, &{}M \ge 2.5 ~and \end{array}\right. } \end{aligned}$$
  4. (d)

    if \(f \in \mathcal {G}_0(\alpha )\), \((0 < \alpha \le 1)\), then \(F \in \mathcal {S}^*\) in \(|z| < \sqrt{\big (2+ \alpha - \sqrt{\alpha (2 + \alpha )}\big )/2}\).

Proof

Clearly, (a)–(c) follow from the Theorem 4.1 by substituting the values of A and B. By using [11, Theorem 1, p. 70] and the definitions of \( \mathcal {G}_b(\alpha )\) and \(\mathcal {S}_b^*(\alpha )\), we can easily see that for \(0 \le b \le 1\), \( \mathcal {G}_b(\alpha ) \subset \mathcal {S}_{\frac{b(1+ \alpha )}{2}}^*[1,1/(1+\alpha )]\) and so \( \mathcal {G}_0(\alpha ) \subset \mathcal {S}_0^*[1,1/(1+\alpha )]\), hence part (d) follows. \(\square \)

The part (i) of (a), for \(\alpha =1/2\), of the above corollary provides the sharp version of [17, Corollary 3.7, p. 137], while part (d) provides an improved version of [17, Corollary 3.12, p. 139].

The following theorem gives the \(\mathcal {S}^*_{b,{1-\beta }}-\)radius of \(F:= f/f'\) for \(f \in \mathcal {S}_b^*(\alpha )\) where \(0 \le b \le 1\), \( 0 \le \beta <1\). To prove our result, we need the following lemma.

Lemma 4.4

[13, Theorem 2, p. 213] If \(p \in \mathcal {P}_b(\alpha )\), \( 0 \le b \le 1\), then

$$\begin{aligned} \left| \dfrac{p'(z)}{p(z)}\right| \le \dfrac{2(1- \alpha )\big (b |z|^2 + 2 |z| +b \big )}{(1- |z|^2)\big ((1-2 \alpha ) |z|^2 + 2 b(1-\alpha )|z| +1 \big )}. \end{aligned}$$

Theorem 4.5

If \(f \in \mathcal {S}_b^*(\alpha )\) and \(F(z):=f(z)/f'(z)\) \((z \in \mathbb {D})\), then for \(r=|z|<1\), \( 0 \le \beta <1\),

$$\begin{aligned} \left| \frac{z F'(z)}{F(z)}-1 \right| < 1- \beta \ \text {in}\ |z|< R, \end{aligned}$$

where \(0<R < 1\) is the smallest positive zero of the polynomial

$$\begin{aligned}&-1 + \beta + 2 b (1- \alpha ) \beta r + 2 (2 - \alpha - \alpha \beta ) r^2 \nonumber \\&\quad + 2 b (1- \alpha )(2- \beta ) r^3 + (1-2 \alpha ) (1-\beta ) r^4. \end{aligned}$$
(4.12)

The result is sharp.

Proof

Let \(p(z) = zf'(z)/f(z)\). Then \(F(z)=z/p(z)\). Since \(f \in \mathcal {S}_b^*(\alpha )\), \(p \in \mathcal {P}_b(\alpha )\) and thus, by using Lemma 4.4, we have

$$\begin{aligned} \left| \frac{z F'(z)}{F(z)}-1 \right| = \left| \frac{z p'(z)}{p(z)} \right| \le \frac{2(1-\alpha )(br^2 + 2 r + b) r}{(1-r^2)\big ((1-2 \alpha ) r^2 + 2(1- \alpha ) b r +1\big )} < 1- \beta \end{aligned}$$

in \(|z| < R\).

Define a function \(f_0\) by

$$\begin{aligned} \dfrac{z f_0'(z)}{f_0(z)}= \dfrac{1+ 2b(1-\alpha )z + (1-2 \alpha )z^2}{1-z^2}, \end{aligned}$$

then \(f_0 \in \mathcal {S}_b^*(\alpha ).\) Corresponding to the function \(f_0\), \(F_0(z)= f_0(z)/f_0'(z)\) is given by

$$\begin{aligned} F_0(z)= \dfrac{z(1-z^2)}{1+ 2 b(1- \alpha )z + (1-2 \alpha )z^2}. \end{aligned}$$

A calculation shows that

$$\begin{aligned} \frac{z F_0'(z)}{F_0(z)}-1 = \frac{-2(1- \alpha )z(b+2z + bz^2)}{(1-z^2)(1+2b(1-\alpha )z + (1-2 \alpha ) z^2)}, \end{aligned}$$

and hence, by using (4.12) at \(z=R\), we have

$$\begin{aligned} \left| \frac{z F_0'(z)}{F_0(z)}-1 \right| = \frac{2(1- \alpha )R(b+2R + bR^2)}{(1-R^2)(1+2b(1-\alpha )R + (1-2 \alpha ) R^2)}= 1- \beta . \end{aligned}$$

\(\square \)

Corollary 4.6

Let \(F(z):=f(z)/f'(z)\), \(z \in \mathbb {D}\). Then

  1. (i)

    for \(f \in \mathcal {S}_0^*(\alpha )\), \(|z F'(z)/F(z)-1| < 1 \) in \(|z| < \sqrt{1/(2- \alpha + \sqrt{5 - 6 \alpha + \alpha ^2})}.\)

  2. (ii)

    for \(f \in \mathcal {S}_1^*(\alpha )\), \(|z F'(z)/F(z)-1| < 1 \) in \(|z| < 1/(1 + \sqrt{2(1- \alpha )}).\)