1 Introduction

We consider the following generalized MHD system:

$$\begin{aligned}&u_t+u\cdot \nabla u+\nabla p+\Lambda ^{2\alpha }u-b\cdot \nabla b=0,\quad (x,t)\in \mathbb {R}^3\times \mathbb {R}^+ , \end{aligned}$$
(1.1)
$$\begin{aligned}&b_t+u\cdot \nabla b+\Lambda ^{2\beta } b -b\cdot \nabla u=0, \quad (x,t)\in \mathbb {R}^3\times \mathbb {R}^+ ,\end{aligned}$$
(1.2)
$$\begin{aligned}&\mathrm {div} u=\mathrm {div} b=0,\quad (x,t)\in \mathbb {R}^3\times \mathbb {R}^+,\end{aligned}$$
(1.3)
$$\begin{aligned}&(u,b)(x,0)=(u_0,b_0),\quad x\in \mathbb {R}^3, \end{aligned}$$
(1.4)

here \(u = u(x,t)\in \mathbb {R}^3,~ b = b(x,t)\in \mathbb {R}^3,~ p = p(x, t)\in \mathbb {R}\) represent the unknown velocity field, the magnetic field, and the pressure, respectively. \(\alpha \ge 0, \beta \ge 0\) are real parameters. We identify the case \(\alpha =\beta =0\) as the GMHD system with zero magnetic and zero velocity diffusivity. \(\Lambda =(-\Delta )^\frac{1}{2}\) is defined in terms of Fourier transform by \(\widehat{\Lambda f}(\xi )=|\xi |\hat{f}(\xi )\).

The existence of weak solutions for (1.1)–(1.4) is given in [29] for any \(u_0, b_0\in L^2(\mathbb {R}^3)\) with \(\mathrm {div} u_0 = \mathrm {div} b_0 = 0\) in \(\mathbb {R}^3\). It is showed that if \(\alpha \ge \frac{1}{2}+\frac{N}{4}, \alpha +\beta \ge 1+\frac{N}{2}\), then the solution (ub)(xt) remains smooth for all time (refer [29, 30] for details). The special case \(\alpha =\beta =\frac{5}{4}\) for 3D can also be found in [33] via a different approach. For the 2D case, global existence results were established in [14, 19, 24]. In [33], Zhou also proved that if \(1\le \alpha =\beta <\frac{5}{4}\)

$$\begin{aligned} u(x,t)\in L^p(0,T;L^q), \quad with \quad \frac{2\alpha }{p}+\frac{3}{q}\le 2\alpha -1, \quad \frac{3}{2\alpha -1}<q\le \infty \end{aligned}$$

or

$$\begin{aligned} \Lambda ^\alpha u(x,t)\in L^p(0,T;L^q), \quad with \quad \frac{2\alpha }{p}+\frac{3}{q}\le 3\alpha -1, \quad \frac{3}{3\alpha -1}<q\le \frac{3}{\alpha -1}, \end{aligned}$$

then the solution remains smooth on (0, T]. Other regularity criteria were shown in [9, 11, 18]

When \(\alpha =\beta =1\), the system (1.1)–(1.4) is reduced to the classical MHD system

$$\begin{aligned}&u_t+u\cdot \nabla u+\nabla p-\Delta u-b\cdot \nabla b=0,\quad (x,t)\in \mathbb {R}^3\times \mathbb {R}^+ , \\&b_t+u\cdot \nabla b-\Delta b -b\cdot \nabla u=0, \quad (x,t)\in \mathbb {R}^3\times \mathbb {R}^+ , \\&\mathrm {div} u=\mathrm {div} b=0, \quad (x,t)\in \mathbb {R}^3\times \mathbb {R}^+, \\&(u,b)(x,0)=(u_0,b_0),\quad x\in \mathbb {R}^3. \end{aligned}$$

In [22], it was proved that the classical MHD system is locally well posed for any given initial datum \(u_0, b_0\in H^s, s\ge 3\). Recently, some regularity criteria for Navier-Stokes equations [1, 23] have been extended to the MHD system in [16, 21, 31]. Later, Zhou established some Serrin-type regularity criteria on the pressure in [32]. The Beale-Kato-Majda-type regularity criterion(\(curl\, u, curl\, b\in L^1(0,T;L^\infty )\)) was given in [3] for the ideal MHD (\(\alpha =\beta =0\)) system. From [33] (or [2] for the Navier-Stokes equations), we know that if \(\alpha =\beta \) and (ub) is a solution to the system (1.1)–(1.4), then \((u_\lambda , b_\lambda )\) with any \(\lambda >0\) is also a solution, where \(u_\lambda (x,t)=\lambda ^{2\alpha -1}u(\lambda x,\lambda ^{2\alpha }t)\) and \(b_\lambda (x,t)=\lambda ^{2\alpha -1}b(\lambda x,\lambda ^{2\alpha }t)\). By direct calculation, we obtain that the norms \(\Vert u\Vert _{L^{p,q}}\) and \(\Vert \Lambda ^\gamma u\Vert _{L^{p,q}}\) are scaling dimension zero for \(\frac{2\alpha }{p}+\frac{3}{q}=2\alpha -1\) and \(\frac{2\alpha }{p}+\frac{3}{q}=2\alpha +\gamma -1\), respectively.

Very recently, Jiang and Zhou proved the local existence and uniqueness of strong solutions for the generalized MHD system as follows

Theorem 1.1

[17] For \(s>\max \{\frac{n}{2}+1-\alpha ,1\}\), and initial data \((u_0,b_0)\in H^s(\mathbb {R}^n)\) with \(div u_0=div b_0=0\), there exists a time \(T_*\) such that (1.1)–(1.2) have a unique solution \((u,b)\in C(0,T_*;H^s(\mathbb {R}^n))\).

The generalized 3D Hall-MHD system reads

$$\begin{aligned}&u_t+u\cdot \nabla u+\Lambda ^{2\alpha } u+\nabla P=(\nabla \times B)\times B, \end{aligned}$$
(1.5)
$$\begin{aligned}&B_t -\nabla \times (u\times B)+\nabla \times ((\nabla \times B)\times B)+\Lambda ^{2\beta } B=0,\end{aligned}$$
(1.6)
$$\begin{aligned}&\mathrm {div}\,u=\mathrm {div}\,B=0. \end{aligned}$$
(1.7)

One can rewrite (1.5)–(1.7) as

$$\begin{aligned}&u_t+u\cdot \nabla u+\Lambda ^{2\alpha } u+\nabla \left( P+\frac{|B|^2}{2}\right) = B\cdot \nabla B,\end{aligned}$$
(1.8)
$$\begin{aligned}&B_t+ u\cdot \nabla B+\nabla \times ((\nabla \times B)\times B)= B\cdot \nabla u-\Lambda ^{2\beta } B,\end{aligned}$$
(1.9)
$$\begin{aligned}&\mathrm {div}\,u=\mathrm {div}\,B=0. \end{aligned}$$
(1.10)

From (1.8)–(1.10), we know that the generalized Hall-MHD system is reduced to the GMHD system (1.1)–(1.4) when the Hall term \(\nabla \times ((\nabla \times B)\times B)\) is neglected. Chae and his collaborators got the local existence and uniqueness of smooth solutions in [4, 8]. A blow-up criterion as

$$\begin{aligned} \int _0^T \Vert \omega \Vert _{\dot{B}_{\infty ,\infty }^0}+\frac{1+\Vert u\Vert _{L^\infty }+\Vert B\Vert _{L^\infty }+\Vert \nabla B\Vert _{L^\infty }}{1+\log (1+\Vert u\Vert _{L^\infty }+\Vert B\Vert _{L^\infty }+\Vert \nabla B\Vert _{L^\infty })}d\tau \end{aligned}$$

was also established. Later, Chae and Lee [5] proved the Serrin-type criterion

$$\begin{aligned} u\in L^p(0,T;L^q),~ \nabla B\in L^t(0,T;L^s)~~ with ~~ 2/p+3/q\le 1 ~~and ~~ 2/t+3/s\le 1 \end{aligned}$$

and the criterion in the BMO space

$$\begin{aligned} (u,~ \nabla B)\in L^2(0,T; BMO). \end{aligned}$$

Other regularity criterions can be found in [10, 12, 13, 15, 2528]. The temporal decay and singularity formation are investigated in [6, 7].

Now, we introduce some notations which will be used in this paper. We use \(\Vert \cdot \Vert _{L^p}\) to denote the \(L^p(\mathbb {R}^3)\) norm. Throughout this paper, C denotes a generic positive constant (generally large), it may be different from line to line. We use \(\hat{f}\) to denote the Fourier transform of f. We introduce the norm \(L^{p,q}\)

$$\begin{aligned}\Vert f\Vert _{L^{p,q}}={\left\{ \begin{array}{ll} \left( \int _0^t\Vert f(\cdot ,\tau )\Vert _{L^q}^pd\tau \right) ^{\frac{1}{p}}, \,\,\,\, if\,\, 1\le p<\infty ,\\ {ess sup}_{~0<\tau <t}~\Vert f\Vert _{L^q},\,\,\,\, if\,\, p=\infty .\end{array}\right. } \end{aligned}$$

The rest of the paper is organized as follows. In Sect. 2, regularity criteria for the generalized MHD equation will be established. In Sect. 3, some regularity criteria and a global regularity are established for the generalized Hall-MHD system.

2 Regularity criteria for the generalized MHD equation

This section devotes to obtain some scaling invariant regularity criteria for the generalized system (1.1)–(1.4) when \(0\le \alpha ,~\beta <1\). Our main results are the following Theorems. The first one is for large \(\alpha \) and \(\beta \).

Theorem 2.1

For \(1>\alpha ,~\beta \ge \frac{3}{4}\), assume that the initial velocity and magnetic field \(u_0,b_0\in H^s(\mathbb {R}^3), s>\frac{5}{2}-\alpha \) and (ub)(xt) is a local strong solution of the system (1.1)–(1.4). If (ub)(xt) satisfies

$$\begin{aligned}&u(x,t)\in L^{p,q}, \quad with \quad \frac{2\alpha }{p}+\frac{3}{q}\le 2\alpha -1, \quad \frac{3}{2\alpha -1}<q\le \frac{6\alpha }{2\alpha -1}, \end{aligned}$$
(2.1)
$$\begin{aligned}&b(x,t)\in L^{p_1,q_1}, \quad with \quad \frac{2\beta }{p_1}+\frac{3}{q_1}\le 2\beta -1, \quad \frac{3}{2\beta -1}<q_1\le \frac{6\beta }{2\beta -1}\qquad \end{aligned}$$
(2.2)

or

$$\begin{aligned}&\Lambda ^{\alpha }u(x,t)\in L^{p,q}, \quad with \quad \frac{2\alpha }{p}+\frac{3}{q}\le 3\alpha -1, \quad \frac{3}{2\alpha -1}<q\le \frac{6\alpha }{3\alpha -1}, \end{aligned}$$
(2.3)
$$\begin{aligned}&\Lambda ^{\beta }b(x,t)\in L^{p_1,q_1}, \quad with \quad \frac{2\beta }{p_1}+\frac{3}{q_1}\le 3\beta -1, \quad \frac{3}{2\beta -1}<q_1\le \frac{6\beta }{3\beta -1},\qquad \qquad \end{aligned}$$
(2.4)

then, the solution remains smooth on (0, T].

The following theorems are established for the cases \(\alpha \) or \(\beta \) small.

Theorem 2.2

For \(0<\alpha =\beta <1\), assume that the initial velocity and magnetic field \(u_0,b_0\in H^s(\mathbb {R}^3), s>\frac{5}{2}-\alpha \) and (ub)(xt) is a local smooth solution of the system (1.1)–(1.4). If (ub)(xt) satisfies

$$\begin{aligned} \int _0^T\Vert \nabla u\Vert _{L^p}^\frac{1}{1-\nu }+\Vert \nabla b\Vert _{L^p}^\frac{1}{1-\nu }d\tau \le C(T), \end{aligned}$$
(2.5)

here \(\nu =\max \{\nu _1,\nu _2\}, \nu _1=\frac{3}{2p\alpha }, \nu _2=\frac{3}{2p\beta }, \max \{\frac{3}{2\alpha },\frac{3}{2\beta }\}<p\le \infty \). Then the solution remains smooth on (0, T].

Theorem 2.3

For \(\alpha =0,\beta >0\), assume that the initial velocity and magnetic field \(u_0,b_0\in H^s(\mathbb {R}^3), s>\frac{5}{2}-\alpha \) and (ub)(xt) is a local smooth solution of the system (1.1)–(1.4). If (ub)(xt) satisfies

$$\begin{aligned}&\int _0^T\Vert \nabla b\Vert _{L^\frac{3}{\beta }}^2+\Vert \nabla u\Vert _{L^\infty }^2d\tau \le C(T)\quad if \quad \beta <1, \end{aligned}$$
(2.6)
$$\begin{aligned}&\int _0^T\Vert \nabla u\Vert _{L^\infty }d\tau \le C(T)\quad if \quad \beta \ge 1. \end{aligned}$$
(2.7)

Then the solution remains smooth on (0, T].

Theorem 2.4

For \(\alpha >0,\beta =0\), assume that the initial velocity and magnetic field \(u_0,b_0\in H^s(\mathbb {R}^3), s>\frac{5}{2}-\alpha \) and (ub)(xt) is a local smooth solution of the system (1.1)–(1.4). If (ub)(xt) satisfies

$$\begin{aligned} \int _0^T\Vert \nabla u\Vert _{L^\infty }+\Vert \nabla b\Vert _{L^p}^\frac{2}{2-\theta }d\tau \le C(T), \end{aligned}$$
(2.8)

or

$$\begin{aligned} \int _0^T\Vert \nabla u\Vert _{L^\infty }+\Vert \nabla b\Vert _{L^{\frac{3}{\alpha }}}^2d\tau \le C(T). \end{aligned}$$
(2.9)

Here, \(\theta =\frac{3}{2p\alpha }\le 1\). Then the solution remains smooth on (0, T].

Remark 2.1

If \(\alpha =\beta \), the regularity criteria in Theorem 2.1 and 2.2 are all scaling invariant.

2.1 Proof of Theorem 2.1

In this section, we consider the case \(1> \alpha ,~~\beta \ge \frac{3}{4}\). Multiplying (1.1) and (1.2) by u and b, integrating over \(\mathbb {R}^3\) and adding the resulting equations together we obtain

$$\begin{aligned} \Vert u\Vert _{L^2}^2(t)+\Vert b\Vert _{L^2}^2(t)+2\int _0^t\Vert \Lambda ^{\alpha } u\Vert _{L^2}^2+\Vert \Lambda ^{\beta } b\Vert _{L^2}^2ds=\Vert u_0\Vert _{L^2}^2+\Vert b_0\Vert _{L^2}^2.\qquad \end{aligned}$$
(2.10)

Multiplying (1.1) and (1.2) by \(\Delta u\) and \(\Delta b\), after integration by parts and taking the divergence free property into account, we have

$$\begin{aligned}&\frac{1}{2}\frac{d}{dt}\left( \Vert \nabla u\Vert _{L^2}^2+\Vert \nabla b\Vert _{L^2}^2\right) +\Vert \Lambda ^{\alpha +1}u\Vert _{L^2}^2+\Vert \Lambda ^{\beta +1}b\Vert _{L^2}^2\nonumber \\&\le \int _{\mathbb {R}^3} u\cdot \nabla u \cdot \Delta u-b\cdot \nabla b\cdot \Delta u+u\cdot \nabla b \cdot \Delta b-b\cdot \nabla u \cdot \Delta bdx\nonumber \\&=I_1+I_2+I_3+I_4. \end{aligned}$$
(2.11)

Actually, for the \(H^1-\)estimates, we only need \(\alpha ,~\beta \ge \frac{1}{2}\). Due to \(\mathrm {div}~ u=\mathrm {div}~ b=0\), we can estimate the four terms as follows:

$$\begin{aligned} |I_1|\le & {} \Vert \nabla u\Vert _{L^3}^3\le C\Vert u\Vert _{L^q}^{(1-\theta )\delta }\Vert \Lambda ^{1+\alpha }u\Vert _{L^2}^{\theta \delta } \Vert \nabla u\Vert _{L^2}^{(1-\rho )(3-\delta )}\Vert \Lambda ^{1+\alpha }u\Vert _{L^2}^{\rho (3-\delta )}\\\le & {} C\Vert u\Vert _{L^q}^{\frac{2(1-\theta )\delta }{2-\theta \delta -\rho (3-\delta )}} \Vert \nabla u\Vert _{L^2}^{\frac{2(1-\rho )(3-\delta )}{2-\theta \delta -\rho (3-\delta )}}+ \frac{1}{4}\Vert \Lambda ^{1+\alpha }u\Vert _{L^2}^2. \end{aligned}$$

where we have used the Gagliardo–Nirenberg inequality:

$$\begin{aligned} \frac{1}{3}= & {} \frac{1}{3}+\left( \frac{1}{2}-\frac{1+\alpha }{3}\right) \theta +\frac{1-\theta }{q},\quad \frac{1}{1+\alpha }\le \theta \le 1,\\ \frac{1}{3}= & {} \left( \frac{1}{2}-\frac{\alpha }{3}\right) \rho +\frac{1-\rho }{2},\quad 0\le \rho \le 1. \end{aligned}$$

Let \(\frac{2(1-\rho )(3-\delta )}{2-\theta \delta -\rho (3-\delta )}=2\), then it yields

$$\begin{aligned} \delta =\frac{1}{1-\theta }. \end{aligned}$$

By direct calculation, we have \(\frac{2(1-\theta )\delta }{2-\theta \delta -\rho (3-\delta )}=\frac{2}{(1-\rho )(3-\delta )}=\frac{2\alpha }{2\alpha -1-\frac{3}{q}}\). Then

$$\begin{aligned} |I_1|\le C\Vert u\Vert _{L^q}^{\frac{2\alpha }{2\alpha -1-\frac{3}{q}}}\Vert \nabla u\Vert _{L^2}^2+\frac{1}{4}\Vert \Lambda ^{1+\alpha }u\Vert _{L^2}^2. \end{aligned}$$
(2.12)

Similarly, we can estimate the other three terms:

$$\begin{aligned} |I_2|+|I_3|+|I_4|\le & {} \Vert \nabla u\Vert _{L^3}\Vert \nabla b\Vert _{L^3}^2\le \Vert \nabla u\Vert _{L^3}^3+\Vert \nabla b\Vert _{L^3}^3\\\le & {} C\Vert u\Vert _{L^q}^{\frac{2\alpha }{2\alpha -1-\frac{3}{q}}}\Vert \nabla u\Vert _{L^2}^2 + C\Vert b\Vert _{L^{q_1}}^{\frac{2\beta }{2\beta -1-\frac{3}{q_1}}}\Vert \nabla b\Vert _{L^2}^2\\&+\, \frac{1}{4}\Vert \Lambda ^{1+\alpha }u\Vert _{L^2}^2+\frac{1}{2}\Vert \Lambda ^{1+\beta }b\Vert _{L^2}^2. \end{aligned}$$

Combining the above estimates to (2.11), we have

$$\begin{aligned}&\frac{d}{dt}\big (\Vert \nabla u\Vert _{L^2}^2+\Vert \nabla b\Vert _{L^2}^2\big )+\Vert \Lambda ^{\alpha +1}u\Vert _{L^2}^2+\Vert \Lambda ^{\beta +1}b\Vert _{L^2}^2\\&\le C\left( \Vert u\Vert _{L^q}^{\frac{2\alpha }{2\alpha -1-\frac{3}{q}}}+ \Vert b\Vert _{L^{q_1}}^{\frac{2\beta }{2\beta -1-\frac{3}{q_1}}}\right) \left( \Vert \nabla u\Vert _{L^2}^2+\Vert \nabla b\Vert _{L^2}^2\right) . \end{aligned}$$

Then (2.1), (2.2) and (2.10) guarantee the \(H^1-\)estimation

$$\begin{aligned}&u\in L^\infty (0,T;H^1(\mathbb {R}^3))\cap L^2(0,T;H^{1+\alpha }(\mathbb {R}^3)), \end{aligned}$$
(2.13)
$$\begin{aligned}&b\in L^\infty (0,T;H^1(\mathbb {R}^3))\cap L^2(0,T;H^{1+\beta }(\mathbb {R}^3)). \end{aligned}$$
(2.14)

On the other hand, we can give the \(H^1-\)estimate as follows:

$$\begin{aligned} |I_1|\le & {} \Vert \nabla u\Vert _{L^3}^3\le C\Vert \Lambda ^\alpha u\Vert _{L^q}^{(1-\theta )\delta }\Vert \Lambda ^{1+\alpha }u\Vert _{L^2}^{\theta \delta } \Vert \nabla u\Vert _{L^2}^{(1-\rho )(3-\delta )}\Vert \Lambda ^{1+\alpha }u\Vert _{L^2}^{\rho (3-\delta )}\\\le & {} C\Vert \Lambda ^\alpha u\Vert _{L^q}^{\frac{2(1-\theta )\delta }{2-\theta \delta -\rho (3-\delta )}} \Vert \nabla u\Vert _{L^2}^{\frac{2(1-\rho )(3-\delta )}{2-\theta \delta -\rho (3-\delta )}}+ \frac{1}{4}\Vert \Lambda ^{1+\alpha }u\Vert _{L^2}^2, \end{aligned}$$

where we have used the Gagliardo–Nirenberg inequality:

$$\begin{aligned}&\frac{1}{3}=\frac{1-\alpha }{3}+\left( \frac{1}{2}-\frac{1}{3}\right) \theta +\frac{1-\theta }{q},\quad 1-\alpha \le \theta \le 1,\\&\frac{1}{3}=\left( \frac{1}{2}-\frac{\alpha }{3}\right) \rho +\frac{1-\rho }{2},\quad 0\le \rho \le 1. \end{aligned}$$

Here we need \(\theta =\frac{1/q-\alpha /3}{1/q-1/6}\), that means \(q\le \frac{6\alpha }{3\alpha -1}\). Let \(\frac{2(1-\rho )(3-\delta )}{2-\theta \delta -\rho (3-\delta )}=2\), then it yields

$$\begin{aligned} \delta =\frac{1}{1-\theta }. \end{aligned}$$

By direct calculation, we have \(\frac{2(1-\theta )\delta }{2-\theta \delta -\rho (3-\delta )}=\frac{2}{(1-\rho )(3-\delta )}=\frac{2\alpha }{3\alpha -1-\frac{3}{q}}\). Then

$$\begin{aligned} |I_1|\le & {} \Vert \nabla u\Vert _{L^3}^3\le C\Vert u\Vert _{L^q}^{(1-\theta )\delta }\Vert \Lambda ^{1+\alpha }u\Vert _{L^2}^{\theta \delta } \Vert \nabla u\Vert _{L^2}^{(1-\rho )(3-\delta )}\Vert \Lambda ^{1+\alpha }u\Vert _{L^2}^{\rho (3-\delta )}\nonumber \\\le & {} C\Vert \Lambda ^\alpha u\Vert _{L^q}^{\frac{2\alpha }{3\alpha -1-\frac{3}{q}}}\Vert \nabla u\Vert _{L^2}^2+ \frac{1}{4}\Vert \Lambda ^{1+\alpha }u\Vert _{L^2}^2. \end{aligned}$$
(2.15)

Similarly, we can estimate the other three terms:

$$\begin{aligned} |I_2|+|I_3|+|I_4|\le & {} \Vert \nabla u\Vert _{L^3}\Vert \nabla b\Vert _{L^3}^2\le \Vert \nabla u\Vert _{L^3}^3+\Vert \nabla b\Vert _{L^3}^3\\\le & {} C\Vert \Lambda ^\alpha u\Vert _{L^q}^{\frac{2\alpha }{3\alpha -1-\frac{3}{q}}}\Vert \nabla u\Vert _{L^2}^2 + C\Vert \Lambda ^\beta b\Vert _{L^{q_1}}^{\frac{2\beta }{3\beta -1-\frac{3}{q_1}}}\Vert \nabla b\Vert _{L^2}^2\\&+\, \frac{1}{4}\Vert \Lambda ^{1+\alpha }u\Vert _{L^2}^2+ \frac{1}{2}\Vert \Lambda ^{1+\beta }b\Vert _{L^2}^2. \end{aligned}$$

Combining the above estimates together, we have

$$\begin{aligned}&\frac{d}{dt}\big (\Vert \nabla u\Vert _{L^2}^2+\Vert \nabla b\Vert _{L^2}^2\big )+\Vert \Lambda ^{\alpha +1}u\Vert _{L^2}^2+\Vert \Lambda ^{\beta +1}b\Vert _{L^2}^2\\&\le C\left( \Vert \Lambda ^\alpha u\Vert _{L^q}^{\frac{2\alpha }{3\alpha -1-\frac{3}{q}}}+\Vert \Lambda ^\beta b\Vert _{L^{q_1}}^{\frac{2\beta }{3\beta -1-\frac{3}{q_1}}}\right) \left( \Vert \nabla u\Vert _{L^2}^2+\Vert \nabla b\Vert _{L^2}^2\right) . \end{aligned}$$

Then (2.3), (2.4) and (2.10) guarantee the \(H^1-\)estimation (2.13) and (2.14).

Now, we give the \(H^2-\)estimates

$$\begin{aligned}&\frac{1}{2}\frac{d}{dt}\big (\Vert \Delta u\Vert _{L^2}^2+\Vert \Delta b\Vert _{L^2}^2\big )+\Vert \Lambda ^{\alpha +2}u\Vert _{L^2}^2+\Vert \Lambda ^{\beta +2}b\Vert _{L^2}^2\nonumber \\&=\int _{\mathbb {R}^3}-\Delta (u\cdot \nabla u)\Delta u+\Delta (b\cdot \nabla b)\Delta u-\Delta (u\cdot \nabla b)\Delta b+\Delta (b\cdot \nabla u)\Delta bdx\nonumber \\&\le C\int _{\mathbb {R}^3} |\nabla u||\Delta u||\Delta u|+|\nabla u||\Delta b||\Delta b|+|\nabla b||\Delta u||\Delta b|dx\nonumber \\&=II_1+II_2+II_3. \end{aligned}$$
(2.16)

By using the Hölder, Hardy–Littlewood–Sobolev, Gagliardo–Nirenberg and Young inequalities, we estimate the three terms as follows.

$$\begin{aligned} II_1\le & {} \Vert \nabla u\Vert _{L^4}\Vert \Delta u\Vert _{L^\frac{8}{3}}^2\nonumber \\\le & {} C\Vert \nabla u\Vert _{\dot{H}^\frac{3}{4}}\Vert \Delta u\Vert _{L^2}\Vert \Lambda ^{\frac{11}{4}}u\Vert _{L^2}\nonumber \\\le & {} C\Vert \Delta u\Vert _{L^2}^2\Vert \nabla u\Vert _{\dot{H}^\frac{3}{4}}^2+\frac{1}{4}\Vert \Lambda ^\frac{11}{4}u\Vert _{L^2}^2. \end{aligned}$$
(2.17)
$$\begin{aligned} II_2\le & {} \Vert \nabla u\Vert _{L^4}\Vert \Delta b\Vert _{L^\frac{8}{3}}^2\nonumber \\\le & {} C\Vert \nabla u\Vert _{\dot{H}^\frac{3}{4}}\Vert \Delta b\Vert _{L^2}\Vert \Lambda ^{\frac{11}{4}}b\Vert _{L^2}\nonumber \\\le & {} C\Vert \Delta u\Vert _{L^2}^2\Vert \nabla b\Vert _{\dot{H}^\frac{3}{4}}^2+\frac{1}{4}\Vert \Lambda ^\frac{11}{4}b\Vert _{L^2}^2. \end{aligned}$$
(2.18)
$$\begin{aligned} II_3\le & {} \Vert \nabla b\Vert _{L^4}\Vert \Delta u\Vert _{L^\frac{8}{3}}\Vert \Delta b\Vert _{L^\frac{8}{3}}\nonumber \\\le & {} C\Vert \nabla b\Vert _{L^4}\Vert \Delta u\Vert _{L^\frac{8}{3}}^2+\Vert \nabla b\Vert _{L^4}\Vert \Delta b\Vert _{L^\frac{8}{3}}^2\nonumber \\\le & {} C\Vert \nabla b\Vert _{\dot{H}^\frac{3}{4}}\Vert \Delta u\Vert _{L^2}\Vert \Lambda ^{\frac{11}{4}}u\Vert _{L^2} +C\Vert \nabla b\Vert _{\dot{H}^\frac{3}{4}}\Vert \Delta b\Vert _{L^2}\Vert \Lambda ^{\frac{11}{4}}b\Vert _{L^2}\nonumber \\\le & {} C\Vert \nabla b\Vert _{\dot{H}^\frac{3}{4}}^2\Vert \Delta u\Vert _{L^2}^2 +C\Vert \nabla b\Vert _{\dot{H}^\frac{3}{4}}^2\Vert \Delta b\Vert _{L^2}^2 \nonumber \\&+\,\frac{1}{4}\Vert \Lambda ^{\frac{11}{4}}u\Vert _{L^2}+\frac{1}{4}\Vert \Lambda ^{\frac{11}{4}}b\Vert _{L^2} \end{aligned}$$
(2.19)

Combining the above estimates to (2.16), we get

$$\begin{aligned}&\frac{d}{dt}\big (\Vert \Delta u\Vert _{L^2}^2+\Vert \Delta b\Vert _{L^2}^2\big )+\Vert \Lambda ^{\alpha +2}u\Vert _{L^2}^2+\Vert \Lambda ^{\beta +2}b\Vert _{L^2}^2\nonumber \\&\le C\big (\Vert \Delta u\Vert _{L^2}^2+\Vert \Delta b\Vert _{L^2}^2\big )\big ( \Vert \nabla u\Vert _{\dot{H}^\frac{3}{4}}^2+ \Vert \nabla b\Vert _{\dot{H}^\frac{3}{4}}^2\big ). \end{aligned}$$
(2.20)

Then, we complete the proof of Theorem 2.1 by (2.13), (2.14) and the Gronwall’s inequality.

2.2 Proof of Theorem 2.2

Recall (2.11) and (2.16), we will estimate \(I_i,~ (i=1,2,3,4)\), and \(II_j,~( j=1,2,3)\). Firstly, we give the \(H^1-\)estimates as,

$$\begin{aligned}&\frac{1}{2}\frac{d}{dt}\bigg (\Vert \nabla u\Vert _{L^2}^2+\Vert \nabla b\Vert _{L^2}^2\bigg )+\Vert \Lambda ^{\alpha +1} u\Vert _{L^2}^2+\Vert \Lambda ^{\beta +1}b\Vert _{L^2}^2 \nonumber \\&\quad \le C\Vert \nabla u\Vert _{L^p}\bigg (\Vert \nabla u\Vert _{L^{2q}}^2+\Vert \nabla b\Vert _{L^{2q}}^2\bigg )\nonumber \\&\quad \le C\bigg (\Vert \nabla u\Vert _{L^2}^{2-2\nu _1}\Vert \Lambda ^{\alpha +1} u\Vert _{L^2}^{2\nu _1} +\Vert \nabla b\Vert _{L^2}^{2-2\nu _2}\Vert \Lambda ^{\beta +1} b\Vert _{L^2}^{2\nu _2}\bigg )\Vert \nabla u\Vert _{L^p} \nonumber \\&\quad \le C\Vert \nabla u\Vert _{L^2}^2\Vert \nabla u\Vert _{L^p}^{\frac{1}{1-\nu _1}}+C\Vert \nabla b\Vert _{L^2}^2\Vert \nabla u\Vert _{L^p}^{\frac{1}{1-\nu _2}}+ \frac{1}{2}\Vert \Lambda ^{\alpha +1} u\Vert _{L^2}^2\nonumber \\&\qquad +\frac{1}{2}\Vert \Lambda ^{\beta +1} b\Vert _{L^2}^2, \end{aligned}$$
(2.21)

Here we have used the Gagliardo–Nirenberg inequality. The constants satisfy:

$$\begin{aligned}&\frac{1}{p}+\frac{1}{q}=1,\\&\frac{1}{2q}=\left( \frac{1}{2}-\frac{\alpha }{3}\right) \nu _1+\frac{1-\nu _1}{2},\,\,\,\,0\le \nu _1\le 1,\\&\frac{1}{2q}=\left( \frac{1}{2}-\frac{\beta }{3}\right) \nu _2+\frac{1-\nu _2}{2},\,\,\,\,0\le \nu _2\le 1. \end{aligned}$$

By direct calculation, we have

$$\begin{aligned} \nu _1=\frac{3}{2p\alpha }\quad and \quad \nu _2=\frac{3}{2p\beta }. \end{aligned}$$

By (2.5), (2.21) and the Gronwall’s inequality, we get

$$\begin{aligned} \Vert \nabla u\Vert _{L^2}^2+\Vert \nabla b\Vert _{L^2}^2+\int _0^t\Vert \Lambda ^{\alpha +1} u\Vert _{L^2}^2+\Vert \Lambda ^{\beta +1} b\Vert _{L^2}^2dt\le C(T). \end{aligned}$$

In order to give the \(H^2-\)estimation for (ub), we should estimate \(II_j~( j=1,2,3)\) which are defined in (2.16).

$$\begin{aligned} |II_1|\le & {} C\Vert \nabla u\Vert _{L^p}\Vert \Delta u\Vert _{L^{2q}}^2 \nonumber \\\le & {} C\Vert \nabla u\Vert _{L^p}\Vert \Delta u\Vert _{L^2}^{2(1-\nu _1)}\Vert \Lambda ^{2+\alpha } u\Vert _{L^2}^{2\nu _1} \nonumber \\\le & {} C\Vert \nabla u\Vert _{L^p}^{\frac{1}{1-\nu _1}}\Vert \Delta u\Vert _{L^2}^2+\frac{1}{4}\Vert \Lambda ^{2+\alpha } u\Vert _{L^2}^{2}. \end{aligned}$$
(2.22)

Similarly,

$$\begin{aligned}&|II_2|+|II_3|\nonumber \\&\quad \le C(\Vert \nabla u\Vert _{L^p}+\Vert \nabla b\Vert _{L^p})\bigg (\Vert \Delta u\Vert _{L^{2q}}^2+\Vert \Delta b\Vert _{L^{2q}}^2\bigg ) \nonumber \\&\quad \le C\bigg (\Vert \nabla u\Vert _{L^p}^{\frac{1}{1-\nu _1}}+\Vert \nabla b\Vert _{L^p}^{\frac{1}{1-\nu _1}}+\Vert \nabla u\Vert _{L^p}^{\frac{1}{1-\nu _2}}+\Vert \nabla b\Vert _{L^p}^{\frac{1}{1-\nu _2}}\bigg )\bigg (\Vert \Delta u\Vert _{L^2}^2+\Vert \Delta b\Vert _{L^2}^2\bigg )\nonumber \\&\quad +\frac{1}{4}\Vert \Lambda ^{2+\alpha } u\Vert _{L^2}^{2}+\frac{1}{2}\Vert \Lambda ^{2+\beta } b\Vert _{L^2}^{2}. \end{aligned}$$
(2.23)

Combining (2.22) and (2.23) to (2.16), we get

$$\begin{aligned}&\frac{d}{dt}\bigg (\Vert \Delta u\Vert _{L^2}^2+\Vert \Delta b\Vert _{L^2}^2\bigg )+\Vert \Lambda ^{\alpha +2}u\Vert _{L^2}^2+\Vert \Lambda ^{\beta +2}b\Vert _{L^2}^2\\&\le C\left( \Vert \nabla u\Vert _{L^p}^{\frac{1}{1-\nu _1}}+\Vert \nabla b\Vert _{L^p}^{\frac{1}{1-\nu _1}}+\Vert \nabla u\Vert _{L^p}^{\frac{1}{1-\nu _2}}+\Vert \nabla b\Vert _{L^p}^{\frac{1}{1-\nu _2}}\right) \left( \Vert \Delta u\Vert _{L^2}^2+\Vert \Delta b\Vert _{L^2}^2\right) . \end{aligned}$$

By the Gronwall’s inequality and (2.5), we have

$$\begin{aligned} \Vert \Delta u\Vert _{L^2}^2+\Vert \Delta b\Vert _{L^2}^2+\int _0^T\Vert \Lambda ^{\alpha +2} u\Vert _{L^2}^2+\Vert \Lambda ^{\beta +2}b\Vert _{L^2}^2d\tau \le C(T). \end{aligned}$$

Actually, when \(\alpha >\frac{1}{2}\), we complete the proof by the local solution in [17]. Then, we need to show the \(H^3-\)estimation for \(0<\alpha \le \frac{1}{2}\). Taking \(\Lambda ^3\) to (1.1) and (1.2), multiplying (1.1) and (1.2) by \(\Lambda ^3 u\) and \(\Lambda ^3u\), after integration by parts and taking the divergence free property into account, we have the following energy estimate

$$\begin{aligned}&{\frac{d}{dt}\bigg (\Vert \Lambda ^3u\Vert _{L^2}^2+\Vert \Lambda ^3 b\Vert _{L^2}^2\bigg )+\Vert \Lambda ^{\alpha +3}u\Vert _{L^2}^2+\Vert \Lambda ^{\beta +3}b\Vert _{L^2}^2}\\&\quad \le \int _{\mathbb {R}^3}-\Lambda ^3(u\cdot \nabla u-b\cdot \nabla b)\Lambda ^3 u-\Lambda ^3(u\cdot \nabla b-b\cdot \nabla u)\Lambda ^3bdx\\&\quad \le \int _{\mathbb {R}^3}-\Lambda ^3((u\cdot \nabla u)-u\cdot \nabla \Lambda ^3 u)\Lambda ^3 u+(\Lambda ^3(b\cdot \nabla b)-b\cdot \nabla \Lambda ^3 b)\Lambda ^3 u\\&\qquad \int _{\mathbb {R}^3}-\Lambda ^3((u\cdot \nabla b)-u\cdot \nabla \Lambda ^3 b)\Lambda ^3 b+(\Lambda ^3(b\cdot \nabla u)-b\cdot \nabla \Lambda ^3 u)\Lambda ^3 u\\&\quad \le C\bigg (\Vert \nabla u\Vert _{L^p}+\Vert \nabla b\Vert _{L^p}\bigg )\bigg (\Vert \Lambda ^3u\Vert _{L^{2q}}^2+\Vert \Lambda ^3b\Vert _{L^{2q}}^2 \bigg )\\&\quad \le C\bigg (\Vert \nabla u\Vert _{L^p}^{\frac{1}{1-\nu _1}}+\Vert \nabla b\Vert _{L^p}^{\frac{1}{1-\nu _1}}+\Vert \nabla u\Vert _{L^p}^{\frac{1}{1-\nu _2}}+\Vert \nabla b\Vert _{L^p}^{\frac{1}{1-\nu _2}}\bigg )\bigg (\Vert \Lambda ^3 u\Vert _{L^2}^2+\Vert \Lambda ^3 b\Vert _{L^2}^2\bigg ) \\&\qquad +\,\frac{1}{2}\Vert \Lambda ^{\alpha +3}u\Vert _{L^2}^2+\frac{1}{2}\Vert \Lambda ^{\beta +3}b\Vert _{L^2}^2, \end{aligned}$$

where we have used the Gagliardo–Nirenberg inequality and the bilinear commutator estimates [20]

(2.24)

with \(s>0, \frac{1}{p}=\frac{1}{p_1}+\frac{1}{q_1}=\frac{1}{p_2}+\frac{1}{q_2}\).

This complete the proof of Theorem 2.2.

2.3 Proof of Theorem 2.3 and 2.4

For the \(H^1-\)estimates, we have

$$\begin{aligned} |I_1|+|I_2|+|I_3|+|I_4|\le C\Vert \nabla u\Vert _{L^\infty }\bigg (\Vert \nabla u\Vert _{L^2}^2+\Vert \nabla b\Vert _{L^2}^2\bigg ). \end{aligned}$$

For the \(H^2-\)estimates s

$$\begin{aligned} |II_1|+|II_2|\le C\Vert \nabla u\Vert _{L^\infty }\bigg (\Vert \Delta u\Vert _{L^2}^2+\Vert \Delta b\Vert _{L^2}^2\bigg ). \end{aligned}$$
(2.25)

The difference between the proof of Theorem 2.3 and 2.4 lies in the estimation for \(II_3\).

For the case \(\alpha =0, \beta >0\), if \(\beta <1\),

$$\begin{aligned} |II_3|\le & {} C\Vert \Delta u\Vert _{L^2}\Vert \nabla b\Vert _{L^\frac{3}{\beta }}\Vert \Lambda ^2b\Vert _{L^\frac{6}{3-2\beta }} \le C\Vert \Delta u\Vert _{L^2}\Vert \nabla b\Vert _{L^\frac{3}{\beta }}\Vert \Lambda ^{2+\beta }b\Vert _{L^2}\nonumber \\\le & {} C\Vert \Delta u\Vert _{L^2}^2\Vert \nabla b\Vert _{L^\frac{3}{\beta }}^2+\frac{1}{2}\Vert \Lambda ^{2+\beta }b\Vert _{L^2}^2. \end{aligned}$$
(2.26)

If \(\beta \ge 1\),

$$\begin{aligned} |II_3|\le & {} \int _0^T|II_2|+|\nabla b||\nabla u||\Lambda ^3b|d\tau \nonumber \\\le & {} C\Vert \nabla u\Vert _{L^\infty }\Vert \Lambda ^2 b\Vert _{L^2}^2+\Vert \nabla u\Vert _{L^\infty }\Vert \nabla b\Vert _{L^2}\Vert \Lambda ^3 b\Vert _{L^2}\nonumber \\\le & {} C\Vert \nabla u\Vert _{L^\infty }\bigg (\Vert \Lambda ^2 b\Vert _{L^2}^2+1\bigg )+\frac{1}{2}\Vert \Lambda ^3 b\Vert _{L^2}^2. \end{aligned}$$
(2.27)

Combining (2.25), (2.26) or (2.27) together, we have

$$\begin{aligned} (u, b)\in L^\infty (0,T;H^2(\mathbb {R}^3))~~ and ~~b\in L^2(0,T;H^{2+\beta }(\mathbb {R}^3)). \end{aligned}$$
(2.28)

Now, we need to show \(H^3-\)estimation for \(\alpha =0,0<\beta \le \frac{1}{2}\). Taking \(\Lambda ^3\) to (1.1) and (1.2), multiplying (1.1) and (1.2) by \(\Lambda ^3 u\) and \(\Lambda ^3b\), after integration by parts and taking the divergence free property into account, we have the following energy estimate

$$\begin{aligned}&{\frac{1}{2}\frac{d}{dt}\bigg (\Vert \Lambda ^3u\Vert _{L^2}^2+\Vert \Lambda ^3 b\Vert _{L^2}^2\bigg )+\Vert \Lambda ^{\beta +3}b\Vert _{L^2}^2}\nonumber \\&\quad \le \int _{\mathbb {R}^3}-\Lambda ^3(u\cdot \nabla u-b\cdot \nabla b)\Lambda ^3 u-\Lambda ^3(u\cdot \nabla b-b\cdot \nabla u)\Lambda ^3bdx\nonumber \\&\quad \le \int _{\mathbb {R}^3}-\Lambda ^3((u\cdot \nabla u)-u\cdot \nabla \Lambda ^3 u)\Lambda ^3 u +(\Lambda ^3(b\cdot \nabla b)-b\cdot \nabla \Lambda ^3 b)\Lambda ^3 u\nonumber \\&\quad \int _{\mathbb {R}^3}-\Lambda ^3((u\cdot \nabla b)-u\cdot \nabla \Lambda ^3 b)\Lambda ^3 b +(\Lambda ^3(b\cdot \nabla u)-b\cdot \nabla \Lambda ^3 u)\Lambda ^3 b\nonumber \\&\quad =III_1+III_2+III_3+III_4. \end{aligned}$$
(2.29)

The three terms can be estimated as follows: By using (2.24), \(III_1\) can be estimated as

$$\begin{aligned} |III_1|\le \Vert \nabla u\Vert _{L^\infty }\Vert \Lambda ^3u\Vert _{L^2}^2. \end{aligned}$$
(2.30)

For \(\beta <1\), we can estimate \(III_i,~(i=2,3,4)\)

$$\begin{aligned} |III_2|\le & {} C\Vert \Lambda ^3u\Vert _{L^2}\Vert \nabla b\Vert _{L^\frac{3}{\beta }}\Vert \Lambda ^3 b\Vert _{L^\frac{6}{3-2\beta }}\nonumber \\\le & {} C\Vert \Lambda ^3 u\Vert _{L^2}\Vert \nabla b\Vert _{L^\frac{3}{\beta }}\Vert \Lambda ^{3+\beta }b\Vert _{L^2}\nonumber \\\le & {} C\Vert \Lambda ^3 u\Vert _{L^2}^2\Vert \nabla b\Vert _{L^\frac{3}{\beta }}^2+\frac{1}{4}\Vert \Lambda ^{3+\beta }b\Vert _{L^2}^2. \end{aligned}$$
(2.31)
$$\begin{aligned} |III_3|+|III_4|\le & {} C\Vert \Lambda ^3u\Vert _{L^2}\Vert \nabla b\Vert _{L^\frac{3}{\beta }}\Vert \Lambda ^3 b\Vert _{L^\frac{6}{3-2\beta }}\nonumber \\&+\,\Vert \Lambda ^3b\Vert _{L^\frac{6}{3+2\beta }}\Vert \nabla u\Vert _{L^\infty }\Vert \Lambda ^3 b\Vert _{L^\frac{6}{3-2\beta }}\nonumber \\\le & {} C\Vert \Lambda ^3 u\Vert _{L^2}^2\Vert \nabla b\Vert _{L^\frac{3}{\beta }}^2+C\Vert \nabla u\Vert _{L^\infty }^2\Vert \Lambda ^3 u\Vert _{L^2}^2+\frac{1}{4}\Vert \Lambda ^{3+\beta }b\Vert _{L^2}^2.\nonumber \\ \end{aligned}$$
(2.32)

For \(\beta \ge 1\), by using (2.24), \(III_i,~(i=2,3,4)\) can be estimated as

$$\begin{aligned} |III_2|+|III_3|+|III_4|\le C\Vert \nabla u\Vert _{L^\infty }(\Vert \Lambda ^3u\Vert _{L^2}^2+\Vert \Lambda ^3b\Vert _{L^2}^2). \end{aligned}$$
(2.33)

Combining (2.30), (2.31), (2.32) or (2.33) to (2.29), we complete the proof of Theorem 2.3 by (2.6), (2.7) and the Gronwall’s inequality.

For the case \(\alpha >0, \beta =0\),

$$\begin{aligned} II_3\le & {} C\Vert \Delta b\Vert _{L^2}\Vert \nabla b\Vert _{L^p}\Vert \Delta u\Vert _{L^q}\\\le & {} C\Vert \Delta b\Vert _{L^2}\Vert \nabla b\Vert _{L^p}\Vert \Delta u\Vert _{L^2}^{1-\theta }\Vert \Lambda ^{2+\alpha } u\Vert _{L^2}^\theta \\\le & {} C\Vert \nabla b\Vert _{L^p}^{\frac{2}{2-\theta }}\bigg (\Vert \Delta u\Vert _{L^2}^2+\Vert \Delta b\Vert _{L^2}^2+1\bigg )+\Vert \Lambda ^{2+\alpha } u\Vert _{L^2}^2, \end{aligned}$$

here \(\theta =\frac{3}{2p\alpha }, \frac{1}{p}+\frac{1}{q}=\frac{1}{2}\). Or

$$\begin{aligned} |II_3|\le & {} C\Vert \Delta b\Vert _{L^2}\Vert \nabla b\Vert _{L^\frac{3}{\alpha }}\Vert \Delta u\Vert _{L^\frac{6}{3-2\alpha }} \le C\Vert \Delta b\Vert _{L^2}\Vert \nabla b\Vert _{L^\frac{3}{\alpha }}\Vert \Lambda ^{2+\alpha }u\Vert _{L^2}\\\le & {} C\Vert \Delta b\Vert _{L^2}^2\Vert \nabla b\Vert _{L^\frac{3}{\alpha }}^2+\frac{1}{2}\Vert \Lambda ^{2+\alpha }u\Vert _{L^2}^2. \end{aligned}$$

Now, we need to show the \(H^3-\)estimation

$$\begin{aligned} |III_2|\le & {} C\Vert \Lambda ^3b\Vert _{L^2}\Vert \nabla b\Vert _{L^\frac{3}{\alpha }}\Vert \Lambda ^3 u\Vert _{L^\frac{6}{3-2\alpha }}\nonumber \\\le & {} C\Vert \Lambda ^3 b\Vert _{L^2}\Vert \nabla b\Vert _{L^\frac{3}{\alpha }}\Vert \Lambda ^{3+\alpha }u\Vert _{L^2}\\\le & {} C\Vert \Lambda ^3 b\Vert _{L^2}^2\Vert \nabla b\Vert _{L^\frac{3}{\alpha }}^2+\frac{1}{4}\Vert \Lambda ^{3+\beta }u\Vert _{L^2}^2.\\ |III_3|+|III_4|\le & {} C\Vert \Lambda ^3u\Vert _{L^\frac{6}{3-2\alpha }}\Vert \nabla b\Vert _{L^\frac{3}{\alpha }}\Vert \Lambda ^3 b\Vert _{L^2} +C\Vert \nabla u\Vert _{L^\infty }\Vert \Lambda ^3b\Vert _{L^2}^2\\\le & {} C\left( \Vert \nabla u\Vert _{L^\infty }+\Vert \nabla b\Vert _{L^\frac{3}{\alpha }}^2\right) \Vert \Lambda ^3 b\Vert _{L^2}^2+ \frac{1}{2}\Vert \Lambda ^3u\Vert _{L^2}^2. \end{aligned}$$

Or

$$\begin{aligned}&|III_2|+|III_3|+|III_4|\le C\bigg (\Vert \nabla b\Vert _{L^p}^{\frac{2}{2-\theta }}+\Vert \nabla u\Vert _{L^\infty }\bigg ) \bigg (\Vert \Lambda ^3 u\Vert _{L^2}^2\nonumber \\&+\,\Vert \Lambda ^3 b\Vert _{L^2}^2\bigg )+\Vert \Lambda ^{3+\alpha } u\Vert _{L^2}^2. \end{aligned}$$

This complete the proof of Theorem 2.1 by (2.8), (2.9) and the Gronwall’s inequality.

3 Regularity criteria for the generalized Hall-MHD equation

In this section, the generalized incompressible Hall-MHD equations (1.5)–(1.7) are investigated in three dimension. Now, we establish the global regularity for the Hall-MHD equation.

Theorem 3.1

Assume \(\alpha \ge \frac{5}{4}, \beta \ge \frac{7}{4}\), and \((u_0,B_0)\in H^s(\mathbb {R}^3), s>2\beta +\frac{3}{2}\) with \(div u_0=div B_0=0\), then the 3D generalized incompressible Hall-MHD equation (1.5)–(1.7) has a global classical solution.

Proof

Actually, we only need to show the case \(\alpha =\frac{5}{4}\) and \(\beta =\frac{7}{4}\).

Note that if \(div B_0=0\), then the divergence free condition is propagated by (1.6) (see[5] in detail).

Multiplying (1.8) and (1.9) by u and B, integrating over \(\mathbb {R}^3\) and adding the resulting equations together we obtain

$$\begin{aligned} \Vert u\Vert _{L^2}^2+\Vert B\Vert _{L^2}^2+\int _0^T\Vert \Lambda ^\alpha u\Vert _{L^2}^2+\Vert \Lambda ^\beta B\Vert _{L^2}^2d\tau \le C. \end{aligned}$$
(3.1)

Multiplying (1.8) and (1.9) by \(\Delta u\) and \(\Delta B\), after integration by parts and taking the divergence free property into account, we have

$$\begin{aligned}&{\frac{1}{2}\frac{d}{dt}\bigg (\Vert \nabla u\Vert _{L^2}^2+\Vert \nabla B\Vert _{L^2}^2\bigg )+\Vert \Lambda ^{\alpha +1} u\Vert _{L^2}^2+\Vert \Lambda ^{\beta +1} B\Vert _{L^2}^2}\nonumber \\&=\int _{\mathbb {R}^3}u\cdot \nabla u\Delta udx-\int _{\mathbb {R}^3}B\cdot \nabla B\Delta udx+\int _{\mathbb {R}^3}u\cdot \nabla B\Delta Bdx\nonumber \\&\quad -\int _{\mathbb {R}^3}B\cdot \nabla u\Delta Bdx+\int _{\mathbb {R}^3}\nabla \times ((\nabla \times B)\times B)\Delta Bdx\nonumber \\&=\tilde{I}_1+\tilde{I}_2+\tilde{I}_3+\tilde{I}_4+\tilde{I}_5. \end{aligned}$$
(3.2)

We will estimate the five terms in the right hand side.

$$\begin{aligned} |\tilde{I}_1|\le & {} C\Vert \nabla u\Vert _{L^p}\Vert \nabla u\Vert _{L^{2q}}^2\quad \left( \frac{1}{p}+\frac{1}{q}=1\right) \\\le & {} C\Vert u\Vert _{L^2}^{1-\delta }\Vert \Lambda ^\alpha u\Vert _{L^2}^\delta \Vert \nabla u\Vert _{L^2}^{2(1-\theta )}\Vert \Lambda ^{\alpha +1}u\Vert _{L^2}^{2\theta }\\\le & {} \frac{1}{2}\Vert \Lambda ^{\alpha +1}u\Vert _{L^2}^2+C\Vert \Lambda ^\alpha u\Vert _{L^2}^{\delta /(1-\theta )}\Vert \nabla u\Vert _{L^2}^2, \end{aligned}$$

here, we have used

$$\begin{aligned}&\frac{1}{p}-\frac{1}{3}=\delta \left( \frac{1}{2}-\frac{\alpha }{3}\right) +\frac{1-\delta }{2},\\&\frac{1}{2q}=\theta \left( \frac{1}{2}-\frac{\alpha }{3}\right) +\frac{1-\theta }{2}, \end{aligned}$$

and we need \(\frac{\delta }{1-\theta }\le 2\), that means \(\alpha \ge \frac{5}{4}\).

$$\begin{aligned} |\tilde{I}_5|= & {} \left| -\int _{\mathbb {R}^3}\partial _i((\nabla \times B)\times B)\partial _i\nabla \times Bdx\right| \\= & {} \left| -\int _{\mathbb {R}^3}((\nabla \times B)\times \partial _i B)\partial _i\nabla \times Bdx\right| \\\le & {} \Vert \nabla B\Vert _{L^{\frac{8}{3}}}^2\Vert \Delta B\Vert _{L^4}\\\le & {} \Vert \nabla B\Vert _{L^2}\Vert \Lambda ^\frac{7}{4} B\Vert _{L^2}\Vert B\Vert _{\dot{H}^\frac{11}{4}}\\\le & {} \Vert \nabla B\Vert _{L^2}^2\Vert \Lambda ^\frac{7}{4} B\Vert _{L^2}^2+\Vert B\Vert _{\dot{H}^\frac{11}{4}}^2, \end{aligned}$$

here, we have used the Gagliardo–Nirenberg, Sobolev inequalities.

$$\begin{aligned} |\tilde{I}_2,\tilde{I}_3,\tilde{I}_4|\le & {} \Vert \nabla u\Vert _{L^4}\Vert \nabla B\Vert _{L^\frac{8}{3}}^2\\\le & {} \Vert u\Vert _{\dot{H}^\frac{7}{4}}\Vert \nabla B\Vert _{L^2}\Vert \Lambda ^\frac{7}{4} B\Vert _{L^2}\\\le & {} \Vert \nabla B\Vert _{L^2}^2\Vert \Lambda ^\frac{7}{4} B\Vert _{L^2}^2+\Vert u\Vert _{\dot{H}^\frac{7}{4}}^2. \end{aligned}$$

Combining the above estimates to (3.2), by the Gronwall’s inequality, we get

$$\begin{aligned} u\in L^\infty (0,T;H^1)\cap L^2(0,T;H^{\alpha +1}),\\ b\in L^\infty (0,T;H^1)\cap L^2(0,T;H^{\beta +1}). \end{aligned}$$

For the \(H^2-\)estimates

$$\begin{aligned}&\frac{1}{2}\frac{d}{dt}\bigg (\Vert \Delta u\Vert _{L^2}^2+\Vert \Delta B\Vert _{L^2}^2\bigg )+\Vert \Lambda ^{\alpha +2}u\Vert _{L^2}^2+\Vert \Lambda ^{\beta +2}B\Vert _{L^2}^2\nonumber \\&\quad =\int _{\mathbb {R}^3}-\Delta (u\cdot \nabla u)\Delta u+\Delta (B\cdot \nabla B)\Delta u-\Delta (u\cdot \nabla B)\Delta B \nonumber \\&\qquad +\,\Delta (B\cdot \nabla u)\Delta B+\Delta (\nabla \times ((\nabla \times B)\times B))\Delta Bdx\nonumber \\&\quad \le C\int _{\mathbb {R}^3} |\nabla u||\Delta u||\Delta u|+|\nabla u||\Delta B||\Delta B| +|\nabla B||\Delta u||\Delta B|\nonumber \\&\qquad +\,|\nabla B||\Delta B||\Lambda ^3 B|dx\nonumber \\&\quad =\tilde{II}_1+\tilde{II}_2+\tilde{II}_3+\tilde{II}_4. \end{aligned}$$
(3.3)

The estimate of \(\tilde{II}_1, \tilde{II}_2, \tilde{II}_3\) is the same to (2.17), (2.18) and (2.19).

$$\begin{aligned} \tilde{II}_4\le & {} C\Vert \nabla B\Vert _{L^4}\Vert \Delta B\Vert _{L^{\frac{8}{3}}}\Vert \Lambda ^3 B\Vert _{L^{\frac{8}{3}}}\\\le & {} C\Vert \nabla B\Vert _{\dot{H}^\frac{3}{4}}\Vert \Delta B\Vert _{L^2}^{1-\theta }\Vert \Lambda ^{\beta +2} B\Vert _{L^2}^\theta \Vert \Delta B\Vert _{L^2}^{1-\delta }\Vert \Lambda ^{2+\beta } B\Vert _{L^2}^\delta \\\le & {} \frac{1}{4}\Vert \Lambda ^{\beta +2} B\Vert _{L^2}+\Vert \nabla B\Vert _{\dot{H}^\frac{3}{4}}^{2}\Vert \Delta B\Vert _{L^2}^2. \end{aligned}$$

Here we have used

$$\begin{aligned} \frac{3}{8}= & {} \frac{1}{3}+\theta \left( \frac{1}{2}-\frac{\frac{7}{4}}{3}\right) +\frac{1-\theta }{2},\,\,\,\,then\,\,\,\,\theta =\frac{11}{14},\\ \frac{3}{8}= & {} \delta \left( \frac{1}{2}-\frac{\frac{7}{4}}{3}\right) +\frac{1-\delta }{2},\,\,\,\,then\,\,\,\,\delta =\frac{3}{14}. \end{aligned}$$

Putting above estimates together, we complete the proof by the Gronwall’s inequality. \(\square \)

Then, we will establish some regularity criteria for the case with \(\alpha <\frac{5}{4}\) and \(\beta <\frac{7}{4}\).

Theorem 3.2

For \(\frac{5}{4}>\alpha \ge \frac{3}{4}, \frac{7}{4}>\beta \ge 1\), assume that the initial value \((u_0,B_0)\in H^s(\mathbb {R}^3)\times H^s(\mathbb {R}^3)\) for \(s\ge 3\) with \(div u_0=div B_0=0\) satisfying

$$\begin{aligned} \nabla B\in L^{t}(0,T,L^{s}(\mathbb {R}^3)~~with ~~\frac{2\beta }{t}+\frac{3}{s}\le 2\beta -1, \quad \frac{3}{2\beta -1}<q\le \infty , \end{aligned}$$
(3.4)

and

$$\begin{aligned} u\in L^{p}(0,T,L^{q}(\mathbb {R}^3))~~ with ~~\frac{2\alpha }{p}+\frac{3}{q}\le 2\alpha -1, \quad \frac{3}{2\alpha -1}<q\le \frac{6\alpha }{2\alpha -1},\qquad \end{aligned}$$
(3.5)

or

$$\begin{aligned} \Lambda ^{\alpha }u\in L^{p}(0,T,L^{q}(\mathbb {R}^3))~~ with ~~\frac{2\alpha }{p}+\frac{3}{q}\le 3\alpha -1, \quad \frac{3}{2\alpha -1}<q\le \frac{6\alpha }{3\alpha -1}.\qquad \end{aligned}$$
(3.6)

Then the corresponding strong solution (uB)(xt) remains smooth on [0, T].

Theorem 3.3

For \(\alpha >0, \frac{7}{4}>\beta \ge 1\), assume that the initial value \((u_0,B_0)\in H^s(\mathbb {R}^3)\times H^s(\mathbb {R}^3)\) for \(s\ge 3\) with \(div u_0=div B_0=0\) satisfying (3.4) and

$$\begin{aligned} \nabla u\in L^{p}(0,T,L^{q}(\mathbb {R}^3))~~ with ~~\frac{2\alpha }{p}+\frac{3}{q}\le 2\alpha , \quad \frac{3}{2\alpha }<q\le \infty . \end{aligned}$$
(3.7)

Then the corresponding strong solution (uB)(xt) remains smoothness on [0, T].

Theorem 3.4

For \(\alpha =0, \frac{7}{4}>\beta \ge 1\), assume that the initial value \((u_0,B_0)\in H^s(\mathbb {R}^3)\times H^s(\mathbb {R}^3)\) for \(s\ge 3\) with \(div u_0=div B_0=0\) satisfying (3.4) and

$$\begin{aligned} \nabla u\in L^1(0,T;L^\infty ). \end{aligned}$$
(3.8)

Then the corresponding strong solution (uB) remains smoothness on [0, T].

Remark 3.1

If \(\beta \ge \frac{7}{4}\), we can neglect the condition (3.4) that is added on \(\nabla B\). It is interesting and difficult to establish some regularity criteria for \(\beta <1\).

Proof of Theorem 3.2

The estimate \(\tilde{I}_1\) is given by (2.12) or (2.15). \(|\tilde{I}_2|+|\tilde{I}_3|+|\tilde{I}_4|\le C\Vert \nabla u\Vert _{L^3}^3+C\Vert \nabla B\Vert _{L^3}^3=J_1+J_2\). The estimate for \(J_1\) is the same as \(\tilde{I}_1\).

$$\begin{aligned} J_2\le & {} C\Vert \nabla B\Vert _{L^2}^{2-2\nu _2}\Vert \Lambda ^{\beta +1} B\Vert _{L^2}^{2\nu _2}\Vert \nabla B\Vert _{L^p}\\\le & {} C\Vert \nabla B\Vert _{L^p}^{\frac{1}{1-\nu _2}} \Vert \nabla B\Vert _{L^2}^2+\frac{1}{4}\Vert \Lambda ^{\beta +1} B\Vert _{L^2}^{2}. \end{aligned}$$

Here we need the criterion \(\nabla B\in L^{p,q}\) with \(\frac{2\beta }{p}+\frac{3}{q}\le 2\beta \).

$$\begin{aligned} |\tilde{I}_5|= & {} \left| -\int _{\mathbb {R}^3}\partial _i((\nabla \times B)\times B)\partial _i\nabla \times Bdx\right| \nonumber \\= & {} \left| -\int _{\mathbb {R}^3}((\nabla \times B)\times \partial _i B)\partial _i\nabla \times Bdx\right| \nonumber \\\le & {} C\Vert \nabla B\Vert _{L^q}\Vert \nabla B\Vert _{L^\mu }\Vert \Delta B\Vert _{L^\nu }\nonumber \\\le & {} C\Vert \nabla B\Vert _{L^q}\Vert \nabla B\Vert _{L^2}^\theta \Vert \Lambda ^{\beta +1}B\Vert _{L^2}^{1-\theta } \Vert \nabla B\Vert _{L^2}^\delta \Vert \Lambda ^{\beta +1} B\Vert _{L^2}^{1-\delta }\nonumber \\\le & {} \frac{1}{4}\Vert \Lambda ^{\beta +1}B\Vert _{L^2}^2+C\Vert \nabla B\Vert _{L^q}^{2/(\theta +\delta )}\Vert \nabla B\Vert _{L^2}^2, \end{aligned}$$
(3.9)

here

$$\begin{aligned} \frac{1}{\mu }-\frac{1}{3}= & {} \theta \left( \frac{1}{2}-\frac{1}{3}\right) +(1-\theta )\left( \frac{1}{2}-\frac{\beta +1}{3}\right) ,\\ \frac{1}{\nu }-\frac{2}{3}= & {} \delta \left( \frac{1}{2}-\frac{1}{3}\right) +(1-\delta ) \left( \frac{1}{2}-\frac{\beta +1}{3}\right) . \end{aligned}$$

That means \(\frac{2}{\theta +\delta }=\frac{2\beta }{2\beta -1-3/q}\le p\).

By (3.4)–(3.6), we get \(u\in L^\infty (0,T;H^1)\cap L^2(0,T;H^{1+\alpha })\) and \(B\in L^\infty (0,T;H^1)\cap L^2(0,T;H^{1+\beta })\).

In order to give the \(H^2-\)estimates, we should give the estimates for \(\tilde{II}_i( i=1,2,3,4)\). The estimates for \(\tilde{II}_1,\tilde{II}_2,\tilde{II}_3\) is the same as that in (2.17)–(2.19).

$$\begin{aligned} \tilde{II}_4\le & {} \Vert \nabla B\Vert _{L^q}\Vert \Delta B\Vert _{L^\mu }\Vert \Lambda ^3 B\Vert _{L^\nu }\nonumber \\\le & {} \Vert \nabla B\Vert _{L^q}\Vert \Delta B\Vert _{L^2}^\theta \Vert \Lambda ^{\beta +2} B\Vert _{L^2}^{1-\theta } \Vert \Delta B\Vert _{L^2}^\delta \Vert \Lambda ^{2+\beta } B\Vert _{L^2}^{1-\delta }\nonumber \\\le & {} \frac{1}{4}\Vert \Lambda ^{\beta +2} B\Vert _{L^2}+\Vert \nabla B\Vert _{L^q}^{2/(\theta +\delta )}\Vert \Delta B\Vert _{L^2}^2. \end{aligned}$$
(3.10)

Combing (2.17)–(2.10) and (3.10) to (3.3), we complete the proof of Theorem 3.2 by the condition (3.4)–(3.6) and the Gronwall’s inequality.

Proof of Theorem 3.3

For the \(H^1-\)estimation:

where \(\nu _1=\frac{3}{2p\alpha }\) and \(\nu _2=\frac{3}{2p\beta }\). For the \(H^2-\)estimation, \(\tilde{II}_1\) is same to (2.22),

$$\begin{aligned} \tilde{II}_2\le & {} C\Vert \nabla u\Vert _{L^3}\Vert \Delta B\Vert _{L^3}^2\nonumber \\\le & {} C\Vert \nabla u\Vert _{L^2}^\frac{1}{2}\Vert \Delta u\Vert _{L^2}^\frac{1}{2}\Vert \Delta B\Vert _{L^2}\Vert \Lambda ^3 B\Vert _{L^2}\nonumber \\\le & {} C\bigg (1+\Vert \Delta u\Vert _{L^2}^2\bigg )\Vert \Delta B\Vert _{L^2}^2+\frac{1}{4}\Vert \Lambda ^3 B\Vert _{L^2}^2. \end{aligned}$$
(3.11)

and

$$\begin{aligned} \tilde{II}_3&\le C\Vert \nabla B\Vert _{L^4}\Vert \Delta u\Vert _{L^2}\Vert \Delta B\Vert _{L^4}\nonumber \\&\le C\Vert \nabla B\Vert _{L^2}^\frac{1}{4}\Vert \Delta B\Vert _{L^2}\Vert \Delta u\Vert _{L^2}\Vert \Lambda ^3 B\Vert _{L^2}^\frac{3}{4}\nonumber \\&\le C\Vert \Delta B\Vert _{L^2}^2\Vert \Delta u\Vert _{L^2}^2+\frac{1}{4}\Vert \Lambda ^3 B\Vert _{L^2}^\frac{3}{2}. \end{aligned}$$
(3.12)

Combing (2.22), (3.10)–(3.12) to (3.3), we complete the proof of Theorem 3.3 by (3.7) and the Gronwall’s inequality.

Proof of Theorem 3.4

For the \(H^1-\)estimation:

$$\begin{aligned} |\tilde{I}_1|+|\tilde{I}_2|+|\tilde{I}_3|+|\tilde{I}_4| \le C\Vert \nabla u\Vert _{L^\infty }(\Vert \nabla u\Vert _{L^2}^2+\Vert \nabla B\Vert _{L^2}^2). \end{aligned}$$

For the \(H^2\) estimation, \(\tilde{II}_3\) is same as (2.27),

$$\begin{aligned} \tilde{II}_1, \tilde{II}_2\le C\Vert \nabla u\Vert _{L^\infty }\Vert \Delta B\Vert _{L^2}^2, \end{aligned}$$

Combining the above estimates and (3.10)–(3.3), we complete the proof of Theorem 3.4 by (3.8) and the Gronwall’s inequality.