1 Introduction

Throughout this paper, let \({\mathcal {R}}\) be a ring with the unit 1. The sets of all idempotents (\(p^2=p\)) and invertible elements of \({\mathcal {R}}\) will be denoted by \({\mathcal {R}}^\bullet \) and \({\mathcal {R}}^{-1}\), respectively.

Let \(a\in {\mathcal {R}}\) and let \(p,q\in {\mathcal {R}}^\bullet \). An element \(b\in {\mathcal {R}}\) is the image-kernel (pq)-inverse of a if

$$\begin{aligned} bab=b,\quad ba{\mathcal {R}}=p{\mathcal {R}}\quad \mathrm{and}\quad (1-ab){\mathcal {R}}=q{\mathcal {R}}. \end{aligned}$$

If the image-kernel (pq)-inverse b exists, it is unique [6] and denoted by \(a^{\times }_{p,q}\). We recall the reader that the image-kernel (pq)-inverse of Kantún-Montiel [6] coincides with the (pql)-outer generalized inverse of Cao and Xue [1]. For more details about the image-kernel (pq)-inverses, see [9, 11, 12].

The special case of the image-kernel (pq)-inverse is the (pq)-outer generalized inverse. Precisely, for \(p,q\in {\mathcal {R}}^\bullet \), the (pq)-outer generalized inverse of a is a unique element \(b\in {\mathcal {R}}\) (in the case when it exists) satisfying

$$\begin{aligned} bab=b, \quad ba=p\quad \mathrm{and}\quad 1-ab=q. \end{aligned}$$

In this case, we write \(b=a^{(2)}_{p,q}\) [4]. Outer generalized inverses can be found in [3, 5, 8, 13].

If the image-kernel (pq)-inverse b of a satisfies the equations \(a=aba\), then b is a reflexive image-kernel (pq)-inverse of a which will be denoted by \(a^{(1,\times )}_{p,q}\). Evidently, \(a^{(1,\times )}_{p,q}\) is unique if it exists.

An equivalent condition for the existence of the image-kernel (pq)-inverse without explicit reference to ideals is given in the following lemma.

Lemma 1.1

[11, Theorem 2.1] Let \(p,q\in {\mathcal {R}}^\bullet \) and let \(a\in {\mathcal {R}}\). Then, the following statements are equivalent:

  1. (i)

    \(a^{\times }_{p,q}\) exists,

  2. (ii)

    there exists some \(b\in {\mathcal {R}}\) such that

    $$\begin{aligned} b=pb,\quad bap=p, \quad bq=0,\quad 1-q=(1-q)ab. \end{aligned}$$

Observe that the element b in the part (ii) of Lemma 1.1 satisfies \(b=a^{\times }_{p,q}\).

An involution \(a\mapsto a^*\) in a ring \({\mathcal {R}}\) is an anti-isomorphism of degree 2, that is,

$$\begin{aligned} (a^*)^*=a, \quad (a+b)^*=a^*+b^*, \quad (ab)^*=b^*a^*, \end{aligned}$$

for any \(a, b\in {\mathcal {R}}\). An element \(a\in {\mathcal {R}}\) is self-adjoint if \(a^*=a\). An element \(q\in {\mathcal {R}}\) is a projection if it is self-adjoint idempotent (\(q^*=q=q^2\)).

Let \(p\in {\mathcal {R}}^\bullet \). The range projection of p is a projection \(p^\bot \) such that \(p^\bot p=p\) and \(pp^\bot =p^\bot \) [7]. In a ring \({\mathcal {R}}\) with involution, \(p^\bot =p\) for any projection p.

Lemma 1.2

([7, Theorem 2.1]) Let p be an idempotent in a ring \({\mathcal {R}}\) with involution. Then, the following conditions are equivalent:

  1. (i)

    \(p+p^*-1\) is invertible in \({\mathcal {R}}\).

  2. (ii)

    \(p^\bot \) and \((p^*)^\bot \) exist.

The range projections are unique, given by the formulae

$$\begin{aligned} p^\bot = p(p+p^*-1)^{-1},\qquad (p^*)^\bot =(p+p^*-1)^{-1}p. \end{aligned}$$

If a ring \({\mathcal {R}}\) with involution has the GN-property (\(1 + x^*x\in {\mathcal {R}}^{-1}\) for all \(x\in {\mathcal {R}}\)), then every idempotent has a unique range projection.

Lemma 1.3

([2, Lemma 2.2]) Let \(p\in {\mathcal {R}}^\bullet \) such that \(p^\bot \) exists. If \(f_p=1+p-p^\bot \), then \(f_p\in {\mathcal {R}}^{-1}\) and \(f_p^{-1}=f^*_{1-p^*}\).

For \(p_1, p_2\in {\mathcal {R}}^\bullet \) such that \(p_1p_2=p_2p_1=0\), the equality \(p_1 + p_2=1\) is called a decomposition of the identity of the ring \({\mathcal {R}}\).

Let \(p_1 + p_2=1\) and \(q_1 + q_2=1\) be two decompositions of the identity of a ring \({\mathcal {R}}\). We can represent any \(x\in {\mathcal {R}}\) as a matrix

$$\begin{aligned} x=\left[ \begin{array}{cc} x_{11}&{}x_{12}\\ x_{21}&{}x_{22} \end{array}\right] _{p_1\times q_1}, \end{aligned}$$

where \(x_{ij}=p_ixq_j\in p_i{\mathcal {R}}q_j\). If any \(y\in {\mathcal {R}}\) is written in a matrix form \(y=[y_{ij}]_{q,p}\), \(y_{ij}=q_iyp_j\in q_i{\mathcal {R}}p_j\), \(i,j=\overline{1,2}\), we can use usual matrix rules in order to add and multiply x and y, because \(p_1p_2=p_2p_1=0\) and \(q_1q_2=q_2q_1=0\). In a ring with involution, notice that

$$\begin{aligned} x^*=\left[ \begin{array}{cc} x^*_{11}&{}x^*_{21}\\ x^*_{12}&{}x^*_{22} \end{array}\right] _{q^*_1\times p^*_1}. \end{aligned}$$

An element \(a\in {\mathcal {R}}\) is group invertible if there exists a unique element \(a^\#\in {\mathcal {R}}\) such that

$$\begin{aligned} aa^\# a=a,\quad a^\# aa^\#=a^\#,\quad aa^\#=a^\#a. \end{aligned}$$

We use \({\mathcal {R}}^\#\) to denote the set of all group invertible elements of \({\mathcal {R}}\). If \(a\in {\mathcal {R}}^\#\), then \(a^\pi =1-aa^\#\) is the spectral idempotent of a.

By elementary computations, we can check the following result which was proved for Banach algebra elements in [10].

Lemma 1.4

  1. (i)

    Let \(x=\left[ \begin{array}{cc} a&{}b\\ 0&{}s \end{array}\right] _{p\times p}\in {\mathcal {R}}\). If \(a\in (p{\mathcal {R}}p)^\#\), \(s\in ((1-p){\mathcal {R}}(1-p))^\#\), and \(a^\pi bs^\pi =0\), then

    $$\begin{aligned} x^\#=\left[ \begin{array}{cc} a^\#&{}(a^\#)^2bs^\pi -a^\#bs^\#+a^\pi b(s^\#)^{2}\\ 0&{}s^\# \end{array}\right] _{p\times p}. \end{aligned}$$
  2. (ii)

    Let \(x=\left[ \begin{array}{cc} a&{}0\\ c&{}s \end{array}\right] _{p\times p}\in {\mathcal {R}}\). If \(a\in (p{\mathcal {R}}p)^\#\), \(s\in ((1-p){\mathcal {R}}(1-p))^\#\) and \(s^\pi ca^\pi =0\), then

    $$\begin{aligned} x^\#=\left[ \begin{array}{cc} a^\#&{}0\\ s^\pi c(a^\#)^2-s^\#ca^\#+(s^\#)^{2}ca^\pi &{}s^\# \end{array}\right] _{p\times p}. \end{aligned}$$

Several explicit expressions for the (PQ)-outer generalized inverses of bounded linear operators in Hilbert spaces are given in [2].

In this paper, equivalent conditions for the existence of the image-kernel (pq)-inverses and new expressions for them in a ring with involution are presented, which generalize some results from [2]. Also, some properties of the image-kernel (pq)-inverses are investigated.

2 Characterizations of the Image-Kernel (pq)-Inverses

In the first theorem, we present necessary and sufficient conditions for the existence of the image-kernel (pq)-inverse \(a^{\times }_{p,q}\) and the reflexive image-kernel (pq)-inverse \(a^{(1,\times )}_{p,q}\) in a ring with involution, giving new representation for these inverse.

Theorem 2.1

Let \(p,q\in {\mathcal {R}}^\bullet \) such that \(p^\bot \) and \(q^\bot \) exist and let \(f_p=1+p-p^\bot \) and \(f_q=1+q-q^\bot \). For \(a\in {\mathcal {R}}\), then \(a^{\times }_{p,q}\) exists if and only if

$$\begin{aligned} a=f_q^{-1} \left[ \begin{array}{cc} a_{1}&{}a_{2}\\ a_{3}&{}a_{4} \end{array}\right] _{(1-q^\bot )\times p^\bot }f_p \end{aligned}$$
(1)

and \((a_{1})^{(2)}_{p^\bot ,q^\bot }\) exists.

In this case,

$$\begin{aligned} a^{\times }_{p,q}=f_p^{-1} \left[ \begin{array}{cc}(a_{1})^{(2)}_{p^\bot ,q^\bot }&{}0\\ 0&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}f_q. \end{aligned}$$
(2)

Furthermore, \(a^{(1,\times )}_{p,q}\) exists if and only if \(a_4=a_3(a_{1})^{(2)}_{p^\bot ,q^\bot }a_2\) in (1). Then, \(a^{(1,\times )}_{p,q}\) is represented as in (2).

Proof

\(\Rightarrow \): We have the following representations of p and q:

$$\begin{aligned} p=\left[ \begin{array}{cc} p^\bot &{}p_1\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot },\quad q=\left[ \begin{array}{cc}0&{}0\\ q_1&{}q^\bot \end{array}\right] _{(1-q^\bot )\times (1-q^\bot )}. \end{aligned}$$
(3)

Assume that

$$\begin{aligned} a=\left[ \begin{array}{cc}a_{1}&{}a_{2}+a_1p_1\\ a_{3}-q_1a_1&{}a_{4}+a_3p_1-q_1a_2-q_1a_1p_1 \end{array}\right] _{(1-q^\bot )\times p^\bot }, \end{aligned}$$

for \(a_1\in (1-q^\bot ){\mathcal {R}}p^\bot \), \(a_2\in (1-q^\bot ){\mathcal {R}}(1-p^\bot )\), \(a_3\in q^\bot {\mathcal {R}}p^\bot \), \(a_4\in q^\bot {\mathcal {R}}(1-p^\bot )\), and

$$\begin{aligned} a^{\times }_{p,q}=b= \left[ \begin{array}{cc}b_{1}&{}b_{2}\\ b_{3}&{}b_{4} \end{array}\right] _{p^\bot \times (1-q^\bot )}. \end{aligned}$$

Since \(b=pb\) and

$$\begin{aligned} b=b(1-q)=b \left[ \begin{array}{cc}1-q^\bot &{}0\\ -q_1&{}0 \end{array}\right] _{(1-q^\bot )\times (1-q^\bot )}, \end{aligned}$$

we obtain \(b_2=0\), \(b_3=0\), and \(b_4=0\). The equality \(bap=p\) is equivalent to \(b_1a_1p^\bot =p^\bot \) and \(b_1a_1p_1=p_1\), that is, \(b_1a_1=p^\bot \). Similarly, \((1-q)=(1-q)ab\) if and only if \(1-q^\bot =a_1b_1\). From \(b=bab\), we get \(b_1=b_1a_1b_1\). Thus, \(b_1=(a_{1})^{(2)}_{p^\bot ,q^\bot }\). Also, observe that

$$\begin{aligned} f_q^{-1} \left[ \begin{array}{cc} a_{1}&{}a_{2}\\ a_{3}&{}a_{4} \end{array}\right] _{(1-q^\bot )\times p^\bot }f_p= & {} \left[ \begin{array}{cc} 1-q^\bot &{}0\\ -q_1&{}q^\bot \end{array}\right] _{(1-q^\bot )\times (1-q^\bot )} \left[ \begin{array}{cc} a_{1}&{}a_{2}\\ a_{3}&{}a_{4}\end{array}\right] _{(1-q^\bot )\times p^\bot }\\&\times \left[ \begin{array}{cc}p^\bot &{}p_1\\ 0&{}1-p^\bot \end{array}\right] _{p^\bot \times p^\bot }\\= & {} \left[ \begin{array}{cc} a_{1}&{}a_{2}+a_1p_1\\ a_{3}-q_1a_1&{}a_{4}+a_3p_1-q_1a_2-q_1a_1p_1 \end{array}\right] _{(1-q^\bot )\times p^\bot }\\= & {} a \end{aligned}$$

and

$$\begin{aligned} f_p^{-1}\left[ \begin{array}{cc} (a_{1})^{(2)}_{p^\bot ,q^\bot }&{}0\\ 0&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}f_q= & {} \left[ \begin{array}{cc}p^\bot &{}-p_1\\ 0&{}1-p^\bot \end{array}\right] _{p^\bot \times p^\bot }\left[ \begin{array}{cc}(a_{1})^{(2)}_{p^\bot ,q^\bot }&{}0\\ 0&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}\\&\times \left[ \begin{array}{cc}1-q^\bot &{}0\\ q_1&{}q^\bot \end{array}\right] _{(1-q^\bot )\times (1-q^\bot )}\\ {}= & {} \left[ \begin{array}{cc}(a_{1})^{(2)}_{p^\bot ,q^\bot }&{}0\\ 0&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}=b=a^{\times }_{p,q}. \end{aligned}$$

Using (1) and (2), if \(a^{(1,\times )}_{p,q}\) exists, then \(a=aa^{\times }_{p,q}a\) gives \(a_4=a_3(a_{1})^{(2)}_{p^\bot ,q^\bot }a_2\) and \(a^{(1,\times )}_{p,q}=a^{\times }_{p,q}\).

\(\Leftarrow \): Suppose that a is represented by (1). We can easily verify that the element on the right side of (2) is the image-kernel (pq)-inverse of a. \(\square \)

We now characterize the existence of the image-kernel (pq)-inverses \(c^{\times }_{1-q,1-p}\) and \(c^{(1,\times )}_{1-q,1-p}\).

Theorem 2.2

Let \(p,q\in {\mathcal {R}}^\bullet \) such that \(p^\bot \) and \(q^\bot \) exist and let \(f_p=1+p-p^\bot \) and \(f_q=1+q-q^\bot \). For \(c\in {\mathcal {R}}\), then \(c^{\times }_{1-q,1-p}\) exists if and only if

$$\begin{aligned} c=f_p^{-1}\left[ \begin{array}{cc}c_{1}&{}c_{2}\\ c_{3}&{}c_{4}\end{array}\right] _{p^\bot \times (1-q^\bot )}f_q \end{aligned}$$
(4)

and \((c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }\) exists.

In this case,

$$\begin{aligned} c^{\times }_{1-q,1-p}=f_q^{-1} \left[ \begin{array}{cc}(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }&{}0\\ 0&{}0\end{array}\right] _{(1-q^\bot )\times p^\bot }f_p. \end{aligned}$$
(5)

Furthermore, \(c^{(1,\times )}_{1-q,1-p}\) exists if and only if \(c_4=c_3(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }c_2\) in (4). Then, \(c^{(1,\times )}_{1-q,1-p}\) is represented as in (5).

Proof

Suppose that p and q are represented as in (3). Let

$$\begin{aligned} c=\left[ \begin{array}{cc}c_{1}+c_2q_1-p_1c_3-p_1c_4q_1&{}c_{2}-p_1c_4\\ c_{3}+c_4q_1&{}c_{4}\end{array}\right] _{p^\bot \times (1-q^\bot )}, \end{aligned}$$

where \(c_1\in p^\bot {\mathcal {R}}(1-q^\bot )\), \(c_2\in p^\bot {\mathcal {R}}q^\bot \), \(c_3\in (1-p^\bot ){\mathcal {R}}(1-q^\bot )\), \(c_4\in (1-p^\bot ){\mathcal {R}}q^\bot \), and

$$\begin{aligned} c^{\times }_{1-q,1-p}=b^{\prime }=\left[ \begin{array}{cc}b^{\prime }_{1}&{}b^{\prime }_{2}\\ b^{\prime }_{3}&{}b^{\prime }_{4}\end{array}\right] _{(1-q^\bot )\times p^\bot }. \end{aligned}$$

Using the equalities

$$\begin{aligned} b^{\prime }=(1-q)b^{\prime }=\left[ \begin{array}{cc}1-q^\bot &{}0\\ -q_1&{}0\end{array}\right] _{(1-q^\bot )\times (1-q^\bot )}b^{\prime } \end{aligned}$$

and

$$\begin{aligned} 0=b^{\prime }(1-p)=b^{\prime } \left[ \begin{array}{cc}0&{}-p_1\\ 0&{}1-p^\bot \end{array}\right] _{p^\bot \times p^\bot }, \end{aligned}$$

we deduce that \(b^{\prime }_2=b^{\prime }_1p_1\), \(b^{\prime }_3=-q_1b^{\prime }_1\), and \(b^{\prime }_4=-q_1b^{\prime }_1p_1\). So,

$$\begin{aligned} b^{\prime }=\left[ \begin{array}{cc}b^{\prime }_{1}&{}b^{\prime }_1p_1\\ -q_1b^{\prime }_1&{}-q_1b^{\prime }_1p_1\end{array}\right] _{(1-q^\bot )\times p^\bot }. \end{aligned}$$

Notice that \(b^{\prime }c(1-q)=(1-q)\) holds if and only if \(b^{\prime }_1c_1=1-q^\bot \). Also, \(p=pcb'\) is equivalent to \(c_1b^{\prime }_1=p^\bot \). Because \(b^{\prime }cb^{\prime }=b^{\prime }\) yields \(b^{\prime }_1c_1b^{\prime }_1=b^{\prime }_1\), we conclude that \(b^{\prime }_1=(c_1)^{(2)}_{1-q^\bot , 1-p^\bot }\). Therefore,

$$\begin{aligned} f_p^{-1}\left[ \begin{array}{cc}c_{1}&{}c_{2}\\ c_{3}&{}c_{4}\end{array}\right] _{p^\bot \times (1\!-\!q^\bot )}f_q\!=\!\left[ \begin{array}{cc}c_{1}\!+\!c_2q_1\!-\!p_1c_3-p_1c_4q_1&{}c_{2}\!-\!p_1c_4\\ c_{3}\!+\!c_4q_1&{}c_{4}\end{array}\right] _{p^\bot \times (1-q^\bot )}\!=\!c \end{aligned}$$

and

$$\begin{aligned} f_q^{-1} \left[ \begin{array}{cc}(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }&{}0\\ 0&{}0\end{array}\right] _{(1-q^\bot )\times p^\bot }f_p= & {} \left[ \begin{array}{cc}b^{\prime }_{1}&{}b^{\prime }_1p_1\\ -q_1b^{\prime }_1&{}-q_1b^{\prime }_1p_1\end{array}\right] _{(1-q^\bot )\times p^\bot }\\= & {} b'=c^{\times }_{1-q,1-p}. \end{aligned}$$

Observe that \(cc^{(1,\times )}_{1-q,1-p}c=c\) is equivalent to \(c_4=c_3(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }c_2\). \(\square \)

As Theorems 2.1 and 2.2, we verify the following result.

Theorem 2.3

Let \(p,q\in {\mathcal {R}}^\bullet \) such that \(p^\bot \) and \(q^\bot \) exist and let \(f_p=1+p-p^\bot \) and \(f_q=1+q-q^\bot \). For \(a\in {\mathcal {R}}\), then

  1. (i)

    \(a^{\times }_{p,1-q}\) exists if and only if a is represented as in (1) and \((a_{3})^{(2)}_{p^\bot ,1-q^\bot }\) exists.

    In this case,

    $$\begin{aligned} a^{\times }_{p,1-q}= & {} f_p^{-1} \left[ \begin{array}{cc}0&{}(a_{3})^{(2)}_{p^\bot ,1-q^\bot }\\ 0&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}f_q\\= & {} \left[ \begin{array}{cc}(a_{3})^{(2)}_{p^\bot ,1-q^\bot }q_1&{}(a_{3})^{(2)}_{p^\bot ,1-q^\bot }\\ 0&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}, \end{aligned}$$

    where \(q_1=q^\bot q(1-q^\bot )=q-q^\bot \).

  2. (ii)

    \(a^{\times }_{1-p,q}\) exists if and only if a is represented as in (1) and \((a_{2})^{(2)}_{1-p^\bot ,q^\bot }\) exists.

    In this case,

    $$\begin{aligned}a^{\times }_{1-p,q}= & {} f_p^{-1} \left[ \begin{array}{cc}0&{}0\\ (a_{2})^{(2)}_{1-p^\bot ,q^\bot }&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}f_q\\ {}= & {} \left[ \begin{array}{cc}-p_1(a_{2})^{(2)}_{1-p^\bot ,q^\bot }&{}0\\ (a_{2})^{(2)}_{1-p^\bot ,q^\bot }&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}, \end{aligned}$$

    where \(p_1=p^\bot p(1-p^\bot )=p-p^\bot \).

  3. (iii)

    \(a^{\times }_{1-p,1-q}\) exists if and only if a is represented as in (1) and \((a_{4})^{(2)}_{1-p^\bot ,1-q^\bot }\) exists.

    In this case,

    $$\begin{aligned} a^{\times }_{1-p,1-q}= & {} f_p^{-1} \left[ \begin{array}{cc}0&{}0\\ 0&{}(a_{4})^{(2)}_{1-p^\bot ,1-q^\bot }\end{array}\right] _{p^\bot \times (1-q^\bot )}f_q\\ {}= & {} \left[ \begin{array}{cc}-p_1(a_{4})^{(2)}_{1-p^\bot ,1-q^\bot }q_1&{}-p_1(a_{4})^{(2)}_{1-p^\bot , 1-q^\bot }\\ (a_{4})^{(2)}_{1-p^\bot ,1-q^\bot }q_1&{}(a_{4})^{(2)}_{1-p^\bot ,1-q^\bot } \end{array}\right] _{p^\bot \times (1-q^\bot )}, \end{aligned}$$

    where \(p_1\) and \(q_1\) are defined as in parts (i) and (ii).

    Furthermore, \(a^{(1,\times )}_{1-p,1-q}\) exists if and only if \(a_1=a_2(a_{4})^{(2)}_{1-p^\bot ,1-q^\bot }a_3\) in (1). Then, \(a^{(1,\times )}_{1-p,1-q}=a^{\times }_{1-p,1-q}\).

Some interesting properties of the image-kernel (pq)-inverse are studied in the next theorem.

Theorem 2.4

Let \(a\in {\mathcal {R}}\) and \(p,q\in {\mathcal {R}}^\bullet \). Then,

  1. (i)

    \(a^{\times }_{p,q}\) exists if and only if \((a^*)^{\times }_{1-q^*,1-p^*}\) exists. In addition, \((a^{\times }_{p,q})^*=(a^*)^{\times }_{1-q^*,1-p^*}\).

  2. (ii)

    If \(a^{\times }_{p,q}\) exists, then \((a^{\times }_{p,q})^2=a^{\times }_{p,q}\) if and only if \(a^{\times }_{p,q}p=p\).

Proof

(i) By Theorem 1.1, \(a^{\times }_{p,q}\) exists if and only if there exists some \(b\in {\mathcal {R}}\) such that

$$\begin{aligned} b=pb,\quad bap=p, \quad bq=0,\quad 1-q=(1-q)ab, \end{aligned}$$

which is equivalent to the existence of some \(b\in {\mathcal {R}}\) such that

$$\begin{aligned} b^*(1-p^*)=0,\quad p^*a^*b^*=p^*, \quad (1-q^*)b^*=b^*,\quad 1-q^*=b^*a^*(1-q^*), \end{aligned}$$

that is, the existence of \((a^*)^{\times }_{1-q^*,1-p^*}\).

(ii) If \((a^{\times }_{p,q})^2=a^{\times }_{p,q}\), we get

$$\begin{aligned} p=a^{\times }_{p,q}ap=(a^{\times }_{p,q})^2ap=a^{\times }_{p,q}(a^{\times }_{p,q}ap) =a^{\times }_{p,q}p. \end{aligned}$$

Conversely, the equality \(a^{\times }_{p,q}p=p\) gives

$$\begin{aligned} a^{\times }_{p,q}=pa^{\times }_{p,q}=a^{\times }_{p,q}pa^{\times }_{p,q} =(a^{\times }_{p,q})^2. \end{aligned}$$

\(\square \)

In the following result, we consider the image-kernel \((p,1-p)\)-inverse.

Theorem 2.5

Let \(a\in {\mathcal {R}}\), \(p\in {\mathcal {R}}^\bullet \) such that \(p^\bot \) exists and let \(f_p=1+p-p^\bot \). If \(a^{\times }_{p,1-p}\) exists, then

  1. (i)

    \(a^{\times }_{p,1-p}a=aa^{\times }_{p,1-p}\) if and only if

    $$\begin{aligned} a=f_p^{-1}\left[ \begin{array}{cc} a_{1}&{}0\\ 0&{}a_{4}\end{array}\right] _{p^\bot \times p^\bot }f_p. \end{aligned}$$
    (6)
  2. (ii)

    \(a^{\times }_{p,1-p}\) is self-adjoint if and only if \(p=p^*\) and \(p^\bot ap^\bot \) is self-adjoint.

Proof

Assume that p is represented as in (3),

$$\begin{aligned} a=\left[ \begin{array}{cc}a_{1}-p_1a_3&{}a_1p_1+a_{2}-p_1a_3p_1-p_1a_4\\ a_{3}&{}a_3p_1-a_{4}\end{array}\right] _{p^\bot \times p^\bot }, \end{aligned}$$
(7)

for \(a_1\in p^\bot {\mathcal {R}}p^\bot \), \(a_2\in p^\bot {\mathcal {R}}(1-p^\bot )\), \(a_3\in (1-p^\bot ){\mathcal {R}}p^\bot \), \(a_4\in (1-p^\bot ){\mathcal {R}}(1-p^\bot )\), and

$$\begin{aligned} a^{\times }_{p,1-p}=b=\left[ \begin{array}{cc}b_{1}&{}b_{2}\\ b_{3}&{}b_{4}\end{array}\right] _{p^\bot \times p^\bot }. \end{aligned}$$

Using \(b=pb\), we obtain that \(b_3=0\) and \(b_4=0\). By the equality \(b(1-p)=0\), we deduce that \(b_2=b_1p_1\). Since

$$\begin{aligned} p=bap=\left[ \begin{array}{cc}b_{1}a_1&{}b_{1}a_1p_1\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot } \end{aligned}$$

and

$$\begin{aligned} p=pab=\left[ \begin{array}{cc}a_1b_{1}&{}a_1b_{1}p_1\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }, \end{aligned}$$

then \(b_{1}a_1=p^\bot \) and \(a_1b_{1}=p^\bot \). From \(bab=b\), it follows that \(b_1a_1b_1=b_1\). Thus, \(b_1=(a_{1})^{(2)}_{p^\bot ,1-p^\bot }\),

$$\begin{aligned} f_p^{-1}\left[ \begin{array}{cc}(a_{1})^{(2)}_{p^\bot ,1-p^\bot }&{}0\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }f_p= & {} \left[ \begin{array}{cc} (a_{1})^{(2)}_{p^\bot ,1-p^\bot }&{}(a_{1})^{(2)}_{p^\bot ,1-p^\bot }p_1\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }\\= & {} b=a^{\times }_{p,1-p} \end{aligned}$$

and

$$\begin{aligned} f_p^{-1}\left[ \begin{array}{cc}a_{1}&{}a_{2}\\ a_{3}&{}a_{4}\end{array}\right] _{p^\bot \times p^\bot }f_p= \left[ \begin{array}{cc}a_{1}-p_1a_3&{}a_1p_1+a_{2}-p_1a_3p_1-p_1a_4\\ a_{3}&{}a_3p_1-a_{4}\end{array}\right] _{p^\bot \times p^\bot }=a. \end{aligned}$$

(i) Since

$$\begin{aligned} a^{\times }_{p,1-p}a= & {} f_p^{-1}\left[ \begin{array}{cc} (a_{1})^{(2)}_{p^\bot ,1-p^\bot }a_1&{}(a_{1})^{(2)}_{p^\bot ,1-p^\bot }a_2\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }f_p\\= & {} f_p^{-1}\left[ \begin{array}{cc}p^\bot &{}(a_{1})^{(2)}_{p^\bot ,1-p^\bot }a_2\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }f_p \end{aligned}$$

and

$$\begin{aligned} aa^{\times }_{p,1-p}=f_p^{-1} \left[ \begin{array}{cc}a_1(a_{1})^{(2)}_{p^\bot ,1-p^\bot }&{}0\\ a_3(a_{1})^{(2)}_{p^\bot ,1-p^\bot }&{}0\end{array}\right] _{p^\bot \times p^\bot }f_p =f_p^{-1}\left[ \begin{array}{cc}p^\bot &{}0\\ a_3(a_{1})^{(2)}_{p^\bot ,1-p^\bot }&{}0 \end{array}\right] _{p^\bot \times p^\bot }f_p, \end{aligned}$$

notice that \(a^{\times }_{p,1-p}a=aa^{\times }_{p,1-p}\) if and only if \(a_{1}(a_{1})^{(2)}_{p^\bot ,1-p^\bot }a_2=0\) and \(a_3(a_{1})^{(2)}_{p^\bot ,1-p^\bot }a_{1}=0\) which is equivalent to \(a_2=0\) and \(a_3=0\).

(ii) Using \(a^{\times }_{p,1-p}=\left[ \begin{array}{cc}(a_{1})^{(2)}_{p^\bot ,1-p^\bot } &{}(a_{1})^{(2)}_{p^\bot ,1-p^\bot }p_1\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }\), we observe that \((a^{\times }_{p,1-p})^*=a^{\times }_{p,1-p}\) is equivalent to \(((a_{1})^{(2)}_{p^\bot ,1-p^\bot })^*=(a_{1})^{(2)}_{p^\bot ,1-p^\bot }\) and \(p_1=0\). Also, \(p=p^*\) if and only if \(p_1=0\). When \(p_1=0\) in (7), we have

$$\begin{aligned} a=\left[ \begin{array}{cc}a_{1}&{}a_{2}\\ a_{3}&{}a_{4}\end{array}\right] _{p^\bot \times p^\bot }. \end{aligned}$$

If \(p^\bot ap^\bot =a_1=a_1^*\), then \((a_{1})^{(2)}_{p^\bot ,1-p^\bot }=(a_{1}^*)^{(2)}_{p^\bot ,1-p^\bot } =((a_{1})^{(2)}_{p^\bot ,1-p^\bot })^*\). Because \(a_1=p^\bot a_1= a_1(a_{1})^{(2)}_{p^\bot ,1-p^\bot }a_1\), from \((a_{1})^{(2)}_{p^\bot ,1-p^\bot }=((a_{1})^{(2)}_{p^\bot ,1-p^\bot })^* =(a_{1}^*)^{(2)}_{p^\bot ,1-p^\bot }\),

$$\begin{aligned} a_1=[(a_{1})^{(2)}_{p^\bot ,1-p^\bot }]^{(2)}_{p^\bot ,1-p^\bot } =[(a_{1}^*)^{(2)}_{p^\bot ,1-p^\bot }]^{(2)}_{p^\bot ,1-p^\bot }=a_{1}^*. \end{aligned}$$

\(\square \)

New representations for \(a^{\times }_{p,q}\) and \(c^{\times }_{1-q,1-p}\) involving the corresponding group inverse are given now.

Theorem 2.6

Let \(p,q\in {\mathcal {R}}^\bullet \) such that \(p^\bot \) and \(q^\bot \) exist and let \(a,c\in {\mathcal {R}}\) such that \(a^{\times }_{p,q}\) and \(c^{\times }_{1-q,1-p}\) exist. Then,

  1. (i)

    \(pc(1-q)a, pc(1-q)ap\in {\mathcal {R}}^\#\),

    $$\begin{aligned}&a^{\times }_{p,q}=[pc(1-q)a]^\#pc(1-q)=[pc(1-q)ap]^\#pc(1-q),\\&c^{\times }_{1-q,1-p}=(1-q)a[pc(1-q)ap]^\#; \end{aligned}$$
  2. (ii)

    \(apc(1-q), (1-q)apc(1-q)\in {\mathcal {R}}^\#\),

    $$\begin{aligned}&a^{\times }_{p,q}=pc(1-q)[apc(1-q)]^\#=pc[(1-q)apc(1-q)]^\#,\\&c^{\times }_{1-q,1-p}=[(1-q)apc(1-q)]^\#(1-q)ap. \end{aligned}$$

Proof

(i) Set \(f_p=1+p-p^\bot \) and \(f_q=1+q-q^\bot \). Applying Theorems 2.1 and 2.2,

$$\begin{aligned} pc(1-q)a= & {} f_p^{-1}\left[ \begin{array}{cc}p^\bot &{}0\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }f_pf_p^{-1}\left[ \begin{array}{cc}c_{1}&{}c_{2}\\ c_{3}&{}c_{4}\end{array}\right] _{p^\bot \times (1-q^\bot )}f_q\\&\times f_q^{-1}\left[ \begin{array}{cc}1-q^\bot &{}0\\ 0&{}0\end{array}\right] _{(1-q^\bot ) \times (1-q^\bot )}f_qf_q^{-1}\left[ \begin{array}{cc}a_{1}&{}a_{2}\\ a_{3}&{}a_{4}\end{array}\right] _{(1-q^\bot )\times p^\bot }f_p\\= & {} f_p^{-1}\left[ \begin{array}{cc}c_{1}a_{1}&{}c_{1}a_{2}\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }f_p. \end{aligned}$$

We prove that \(c_{1}a_{1}\) is group invertible and \((c_{1}a_{1})^\#=(a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }\) by

$$\begin{aligned}&c_{1}a_{1}(a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot } \!=\!c_{1}(1-q^\bot )(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot } \!=\!c_{1}(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }\!=\!p^\bot ,\\&(a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }c_{1}a_{1}= (a_{1})^{(2)}_{p^\bot ,q^\bot }(1-q^\bot )a_{1}=(a_{1})^{(2)}_{p^\bot ,q^\bot }a_{1} =p^\bot ,\\&c_{1}a_{1}(a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }c_{1}a_{1} =p^\bot c_{1}a_{1}=c_{1}a_{1},\\&(a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }c_{1}a_{1} (a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot } =p^\bot (a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }\\&\quad =(a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }. \end{aligned}$$

Since \((c_{1}a_{1})^\pi c_{1}a_2 =(p^\bot -c_{1}a_{1}(a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }) c_{1}a_2=0\), by Lemma 1.4,

$$\begin{aligned}&\left[ \begin{array}{cc}c_{1}a_{1}&{}c_{1}a_{2}\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }^\#\\&\quad = \left[ \begin{array}{cc}(a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }&{} ((a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }))^2c_{1}a_{2}\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }. \end{aligned}$$

Therefore, \(pc(1-q)a\in {\mathcal {R}}^\#\) and

$$\begin{aligned}&[pc(1-q)a]^\#\\&\quad =f_p^{-1}\left[ \begin{array}{cc}(a_{1})^{(2)}_{p^\bot ,q^\bot } (c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }&{} ((a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }))^2c_{1}a_{2}\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }f_p \end{aligned}$$

implying

$$\begin{aligned}{}[pc(1-q)a]^\#pc(1-q)= & {} [pc(1-q)a]^\#f_p^{-1} \left[ \begin{array}{cc}c_{1}&{}0\\ 0&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}f_q\\= & {} f_p^{-1}\left[ \begin{array}{cc} (a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }c_{1}&{} 0\\ 0&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}f_q\\= & {} f_p^{-1}\left[ \begin{array}{cc}(a_{1})^{(2)}_{p^\bot ,q^\bot }&{} 0\\ 0&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}f_q\\= & {} a^{\times }_{p,q}. \end{aligned}$$

From

$$\begin{aligned} pc(1-q)ap= & {} f_p^{-1}\left[ \begin{array}{cc}c_{1}a_{1}&{}c_{1}a_{2}\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }f_p f_p^{-1}\left[ \begin{array}{cc} p^\bot &{}0\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }f_p\\= & {} f_p^{-1}\left[ \begin{array}{cc}c_{1}a_{1}&{}0\\ 0&{}0 \end{array}\right] _{p^\bot \times p^\bot }f_p, \end{aligned}$$

we deduce that \(pc(1-q)ap\in {\mathcal {R}}^\#\) and

$$\begin{aligned}{}[pc(1-q)ap]^\#=f_p^{-1} \left[ \begin{array}{cc}(a_{1})^{(2)}_{p^\bot ,q^\bot }(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }&{}0\\ 0&{}0\end{array}\right] _{p^\bot \times p^\bot }f_p. \end{aligned}$$

Thus,

$$\begin{aligned} (1-q)a[pc(1-q)ap]^\#= & {} f_q^{-1}\left[ \begin{array}{cc}a_{1}&{}a_{2}\\ 0&{}0\end{array}\right] _{(1-q^\bot )\times p^\bot }f_p[pc(1-q)ap]^\#\\= & {} f_q^{-1}\left[ \begin{array}{cc}a_{1}(a_{1})^{(2)}_{p^\bot ,q^\bot } (c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }&{} 0\\ 0&{}0\end{array}\right] _{(1-q^\bot )\times p^\bot }f_p\\= & {} f_q^{-1}\left[ \begin{array}{cc}(c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }&{} 0\\ 0&{}0\end{array}\right] _{(1-q^\bot )\times p^\bot }f_p\\ {}= & {} c^{\times }_{1-q,1-p} \end{aligned}$$

and

$$\begin{aligned}{}[pc(1-q)ap]^\#pc(1-q)= & {} f_p^{-1}\left[ \begin{array}{cc}(a_{1})^{(2)}_{p^\bot ,q^\bot } (c_{1})^{(2)}_{1-q^\bot ,1-p^\bot }c_{1}&{} 0\\ 0&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}f_q\\= & {} f_p^{-1}\left[ \begin{array}{cc}(a_{1})^{(2)}_{p^\bot ,q^\bot }&{} 0\\ 0&{}0\end{array}\right] _{p^\bot \times (1-q^\bot )}f_q\\ {}= & {} a^{\times }_{p,q}. \end{aligned}$$

The proof of part (ii) is similar to the proof of (i), so it is omitted. \(\square \)

By the properties of the group inverse and the idempotency of p and \(1-q\), we get the next consequence of Theorem 2.6.

Corollary 2.1

Let \(p,q\in {\mathcal {R}}^\bullet \) such that \(p^\bot \) and \(q^\bot \) exist and \(a,c\in {\mathcal {R}}\) such that \(a^{\times }_{p,q}\) and \(c^{\times }_{1-q,1-p}\) exist. Then, \(pc(1-q)ap, (1-q)apc(1-q)\in {\mathcal {R}}^\#\),

$$\begin{aligned}&a^{\times }_{p,q}= pc(1-q)[(1-q)apc(1-q)]^\#\\&c^{\times }_{1-q,1-p}= (1-q)ap[pc(1-q)ap]^\# \end{aligned}$$

In a ring \({\mathcal {R}}\) with involution and the GN-property, we can omit the assumptions \(p^\bot \) and \(q^\bot \) exist in the previous results.

Let \({\mathcal {A}}\) be a \(C^*\)-algebra with unit 1. An element \(x\in {\mathcal {A}}\) is positive (denoted by \(x\ge 0\)) if \(x = x^*\) and \(\sigma (x)\subseteq [0,+\infty )\), where \(\sigma (x)\) denotes the spectrum of x. We check the next theorem.

Theorem 2.7

Let \(a,b\in {\mathcal {A}}\) and \(p,q\in {\mathcal {A}}^\bullet \). If \(a^{\times }_{p,q}\) exists and \(a^{\times }_{p,q}\ge 0\), then \((a+bb^*)^{\times }_{p,q}\) exists and

$$\begin{aligned} (a+bb^*)^{\times }_{p,q}=a^{\times }_{p,q} -a^{\times }_{p,q}b(1+b^*a^{\times }_{p,q}b)^{-1}b^*a^{\times }_{p,q} \end{aligned}$$
(8)

Proof

The hypothesis \(a^{\times }_{p,q}\ge 0\) implies that \(a^{\times }_{p,q}=s^*s\), for some \(s\in {\mathcal {A}}\). So, \(b^*a^{\times }_{p,q}b=b^*s^*sb=(sb)^*sb\ge 0\) which yields that \(1+b^*a^{\times }_{p,q}b\) is invertible. Denote by \(x=a+bb^*\) and by y the right side of (8). Then, from \(py=y\), \(yq=0\),

$$\begin{aligned} yxp= & {} a^{\times }_{p,q}ap+a^{\times }_{p,q}bb^*p-a^{\times }_{p,q}b(1+b^*a^{\times }_{p,q}b)^{-1}(b^*a^{\times }_{p,q}ap+b^*a^{\times }_{p,q}bb^*p)\\= & {} p+a^{\times }_{p,q}bb^*p-a^{\times }_{p,q}b(1+b^*a^{\times }_{p,q}b)^{-1}(1+b^*a^{\times }_{p,q}b)b^*p\\= & {} p \end{aligned}$$

and

$$\begin{aligned} (1-q)xy= & {} (1-q)aa^{\times }_{p,q}+(1-q)bb^*a^{\times }_{p,q}\\&-\,(1-q)(aa^{\times }_{p,q}b+bb^*a^{\times }_{p,q}b)(1+b^*a^{\times }_{p,q}b)^{-1}b^*a^{\times }_{p,q}\\= & {} (1-q)+(1-q)bb^*a^{\times }_{p,q}\\&-\,(1-q)b(1+b^*a^{\times }_{p,q}b)(1+b^*a^{\times }_{p,q}b)^{-1}b^*a^{\times }_{p,q}\\= & {} 1-q. \end{aligned}$$

We conclude that \(x^{\times }_{p,q}\) exists and \(x^{\times }_{p,q}=y\). \(\square \)