1 Introduction

As the development of singular integral operators (see [6, 15]), their commutators have been well studied. In [3, 14], the authors prove that the commutators generated by the singular integral operators and \({ BMO}\) functions are bounded on \(L^p(R^n)\) for \(1<p<\infty \). Chanillo (see [2]) proves a similar result when singular integral operators are replaced by the fractional integral operators. In [1], some singular integral operators with general kernel are introduced, and the boundedness for the operators and their commutators generated by \({ BMO}\) and Lipschitz functions are obtained(see [1, 9]). In [7, 8], some Toeplitz type operators related to the singular integral operators and strongly singular integral operators are introduced, and the boundedness for the operators generated by \({ BMO}\) and Lipschitz functions are obtained. In this paper, we will study the Toeplitz type operators generated by the fractional integral and singular integral operators with general kernel and the \({ BMO}\) functions.

2 Preliminaries

First, let us introduce some notations. Throughout this paper, Q will denote a cube of \(R^n\) with sides parallel to the axes. For any locally integrable function f, the sharp maximal function of f is defined by

$$\begin{aligned} f^{\#}(x)=\sup _{Q\ni x}\frac{1}{|Q|}\int _Q |f(y)-f_Q|dy, \end{aligned}$$

where, and in what follows, \(f_Q=|Q|^{-1}\int _Q f(x)dx\). It is well-known that (see [6, 15])

$$\begin{aligned} f^{\#}(x)\approx \sup _{Q\ni x}\inf _{c\in C}\frac{1}{|Q|}\int _Q|f(y)-c|dy. \end{aligned}$$

We say that f belongs to \({ BMO}(R^n)\) if \(f^{\#}\) belongs to \(L^\infty (R^n)\) and define \(||f||_{{ BMO}}=||f^{\#}||_{L^\infty }\). It has been known that (see [15])

$$\begin{aligned} \left| \left| f-f_{2^kQ}\right| \right| _{{ BMO}}\le Ck||f||_{{ BMO}}. \end{aligned}$$

For \(0<r<\infty \), we denote \(f_r^{\#}\) by

$$\begin{aligned} f_r^{\#}(x)=\left[ \left( |f|^r\right) ^{\#}(x)\right] ^{1/r}. \end{aligned}$$

Let M be the Hardy-Littlewood maximal operator defined by

$$\begin{aligned} M(f)(x)=\sup _{Q\ni x}\frac{1}{|Q|}\int _Q|f(y)|dy. \end{aligned}$$

For \(\eta >0\), let \(M_{\eta }(f)=M(|f|^{\eta })^{1/\eta }.\) For \(k\in N\), we denote by \(M^k\) the operator M iterated k times, i.e., \(M^1(f)=M(f)\) and

$$\begin{aligned} M^k(f)=M\left( M^{k-1}(f)\right) \ \text{ when }\ \ k\ge 2. \end{aligned}$$

For \(0<\eta <n\) and \(1\le r<\infty \), set

$$\begin{aligned} M_{\eta ,r}(f)(x)=\sup _{Q\ni x}\left( \frac{1}{|Q|^{1-r\eta /n}}\int _Q|f(y)|^rdy\right) ^{1/r}. \end{aligned}$$

Let \(\Phi \) be a Young function and \(\tilde{\Phi }\) be the complementary associated to \(\Phi \), we denote that the \(\Phi \)-average by, for a function f,

$$\begin{aligned} ||f||_{\Phi ,Q}=\inf \left\{ \lambda >0: \frac{1}{|Q|}\int _Q \Phi \left( \frac{|f(y)|}{\lambda }\right) dy \le 1\right\} \end{aligned}$$

and the maximal function associated to \(\Phi \) by

$$\begin{aligned} M_\Phi (f)(x)=\sup _{x\in Q}||f||_{\Phi ,Q}. \end{aligned}$$

The Young functions to be using in this paper are \(\Phi (t)=t(1+logt)\) and \(\tilde{\Phi }(t)=exp(t)\), the corresponding average and maximal functions denoted by \(||\cdot ||_{L(logL), Q}, M_{L(logL)}\) and \(||\cdot ||_{expL, Q}, M_{expL}\). Following [15], we know the generalized Hölder’s inequality and the following inequalities hold:

$$\begin{aligned} \frac{1}{|Q|}\int _Q|f(y)g(y)|dy\le & {} \left| \left| f\right| \right| _{\Phi ,Q}||g||_{\tilde{\Phi },Q},\\ ||f||_{L(logL), Q}\le & {} M_{L(logL)}(f)\le C M^2(f),\\ ||f-f_Q||_{exp L,Q}\le & {} C||f||_{{ BMO}}. \end{aligned}$$

The \(A_p\) weight is defined by (see [6])

$$\begin{aligned} A_p\!=\! & {} \left\{ w\!\in \! L_{loc}^1(R^n):\sup _Q\left( \frac{1}{|Q|}\int _Q\! w(x)dx\right) \left( \frac{1}{|Q|}\int _Q\!w(x)^{-1/(p-1)}dx\right) ^{p-1}\!\!<\!\infty \right\} \!,\\&\quad 1<p<\infty , \end{aligned}$$

and

$$\begin{aligned} A_1=\left\{ w\in L_{loc}^p\left( R^n\right) :M(w)(x)\le Cw(x), a.e.\right\} . \end{aligned}$$

Definition 1

Let \(\varphi \) be a positive, increasing function on \(R^+\) and there exists a constant \(D>0\) such that

$$\begin{aligned} \varphi (2t)\le D\varphi (t) \ \ \text{ for } \ \ t\ge 0. \end{aligned}$$

Let w be a weight function and f be a locally integrable function on \(R^n\). Set, for \(1\le p<\infty \),

$$\begin{aligned} ||f||_{L^{p,\varphi }(w)}=\sup _{x\in R^n,\ d>0}\left( \frac{1}{\varphi (d)}\int _{Q(x,d)}\left| f(y)\right| ^pw(y)dy\right) ^{1/p}, \end{aligned}$$

where \(Q(x,d)=\{y\in R^n:|x-y|<d\}\). The generalized Morrey space is defined by

$$\begin{aligned} L^{p,\varphi }(R^n, w)=\left\{ f\in L^1_{loc}\left( R^n\right) : ||f||_{L^{p,\varphi }(w)}<\infty \right\} . \end{aligned}$$

If \(\varphi (d)=d^\delta , \delta >0\), then \(L^{p,\varphi }(R^n, w)=L^{p,\delta }(R^n, w)\), which is the classical weighted Morrey spaces (see [12, 13]). If \(\varphi (d)=1\), then \(L^{p,\varphi }(R^n, w)=L^p(R^n, w)\), which is the weighted Lebesgue spaces (see [10]).

As the Morrey space may be considered as an extension of the Lebesgue space, it is natural and important to study the boundedness of the operator on the Morrey spaces (see [4, 5, 10, 11]).

In this paper, we will study some singular integral operators as following(see [1]).

Definition 2

Let \(T: S\rightarrow S'\) be a linear operator such that T is bounded on \(L^2(R^n)\) and there exists a locally integrable function K(xy) on \(R^n \times R^n\setminus \{(x,y)\in R^n\times R^n : x=y\}\) such that

$$\begin{aligned} T(f)(x)=\int _{R^n}K(x, y)f(y)dy \end{aligned}$$

for every bounded and compactly supported function f, where K satisfies: there is a sequence of positive constant numbers \(\{C_j\}\) such that for any \(j\ge 1\),

$$\begin{aligned} \int _{2|y-z|<|x-y|}\left( |K(x,y)-K(x,z)|+|K(y,x)-K(z,x)|\right) dx\le C, \end{aligned}$$

and

$$\begin{aligned}&\left( \int _{2^j|z-y|\le |x-y|<2^{j+1}|z-y|}(|K(x,y)-K(x,z)|+|K(y,x)-K(z,x)|)^qdy\right) ^{1/q}\\&\quad \le C_j(2^j|z-y|)^{-n/q'}, \end{aligned}$$

where \(1<q'<2\) and \(1/q+1/q'=1\).

Moreover, let b be a locally integrable function on \(R^n\). The Toeplitz type operators associated to T are defined by

$$\begin{aligned} T_b=\sum _{k=1}^mT^{k,1}M_bT^{k,2} \end{aligned}$$

and

$$\begin{aligned} S_b=\sum _{k=1}^m\left( T^{k,3}M_bI_\alpha T^{k,4}+T^{k,5}I_\alpha M_bT^{k,6}\right) , \end{aligned}$$

where \(T^{k,1}\) and \(T^{k,3}\) are T or \(\pm I\)(the identity operator), \(T^{k,2}, T^{k,4}\) and \(T^{k,6}\) are the bounded linear operators on \(L^p(R^n,w)\) for \(1<p<\infty \) and \(w\in A_1, T^{k,5}=\pm I, k=1,...,m, M_b(f)=bf\) and \(I_\alpha \) is the fractional integral operator\((0<\alpha <n)\)(see [2]).

Note that the classical Calderón-Zygmund singular integral operator satisfies Definition 2 with \(C_j=2^{-j\delta }\)(see [6, 15]). And Note that the commutator \([b, T](f)=bT(f)-T(bf)\) is a particular operator of the Toeplitz type operators \(T_b\) and \(S_b\). The Toeplitz type operators are the non-trivial generalizations of the commutator. It is well known that commutators are of great interest in harmonic analysis and have been widely studied by many authors (see [15]). The main purpose of this paper is to prove the sharp maximal inequalities for the Toeplitz type operators \(T_b\) and \(S_b\). As the application, we obtain the boundedness on the Morrey space for the Toeplitz type operators \(T_b\) and \(S_b\).

3 Theorems and Lemmas

We shall prove the following theorems.

Theorem 1

Let T be the singular integral operator as Definition 2, the sequence \(\{jC_j\}\in l^1, 0<r<1, q'\le s<\infty \) and \(b\in { BMO}(R^n)\). If \(g\in L^\rho (R^n)(1<\rho <\infty )\) and \(T_1(g)=0\), then there exists a constant \(C>0\) such that, for any \(f\in C_0^\infty (R^n)\) and \(\tilde{x}\in R^n\),

$$\begin{aligned} (T_b(f))_r^{\#}(\tilde{x})\le C||b||_{{ BMO}}\sum _{k=1}^m\left( M^2(T^{k,2}(f)\right) (\tilde{x})+M_s\left( T^{k,2}(f)\right) (\tilde{x})). \end{aligned}$$

Theorem 2

Let T be the singular integral operator as Definition 2, the sequence \(\{jC_j\}\in l^1, 0<r<1, q'\le s<\infty \) and \(b\in { BMO}(R^n)\). If \(g\in L^\rho (R^n)(1<\rho <\infty )\) and \(S_1(g)=0\), then there exists a constant \(C>0\) such that, for any \(f\in C_0^\infty (R^n)\) and \(\tilde{x}\in R^n\),

$$\begin{aligned} (S_b(f))^{\#}_r(\tilde{x})\le & {} C||b||_{{ BMO}}\sum _{k=1}^m\Big (M^2\left( I_\alpha T^{k,4}(f)\Big )(\tilde{x})+M_s\left( I_\alpha T^{k,4}(f)\right) (\tilde{x})\right. \\&\left. +M_{\alpha ,s}\left( T^{k,6}(f)\right) (\tilde{x})\right) . \end{aligned}$$

Theorem 3

Let T be the singular integral operator as Definition 2, the sequence \(\{jC_j\}\in l^1, q'<p<\infty , 0<D<2^n, w\in A_1\) and \(b\in { BMO}(R^n)\). If \(g\in L^\rho (R^n)(1<\rho <\infty )\) and \(T_1(g)=0\), then \(T_b\) is bounded on \(L^{p,\varphi }(R^n, w)\).

Theorem 4

Let T be the singular integral operator as Definition 2, the sequence \(\{jC_j\}\in l^1, 0<D<2^n, q'<u<n/\alpha , 1/v=1/u-\alpha /n, w\in A_1\) and \(b\in { BMO}(R^n)\). If \(g\in L^\rho (R^n)(1<\rho <\infty )\) and \(S_1(g)=0\), then \(S_b\) is bounded from \(L^{u,\varphi }(R^n, w)\) to \(L^{v,\varphi }(R^n, w)\).

To prove the theorems, we need the following lemmas.

Lemma 1

([6, p. 485]) Let \(0<p<q<\infty \) and for any function \(f\ge 0\). We define that, for \(1/r=1/p-1/q\)

$$\begin{aligned} ||f||_{WL^q}= & {} \sup _{\lambda >0}\lambda \left| \left\{ x\in R^n: f(x)>\lambda \right\} \right| ^{1/q}, \\ N_{p,q}(f)= & {} \sup _E ||f\chi _E||_{L^p}/ ||\chi _E||_{L^r}, \end{aligned}$$

where the sup is taken for all measurable sets E with \(0<|E|<\infty \). Then

$$\begin{aligned} ||f||_{WL^q}\le N_{p,q}(f)\le (q/(q-p))^{1/p} ||f||_{WL^q}. \end{aligned}$$

Lemma 2

(see [15]) We have

$$\begin{aligned} \frac{1}{|Q|}\int _Q |f(x)g(x)|dx\le ||f||_{expL, Q}||g||_{L(logL), Q}. \end{aligned}$$

Lemma 3

(see [1]) Let T be the singular integral operator as Definition 2, the sequence \(\{C_k\}\in l^1\). Then T is bounded on \(L^p(R^n)\) for \(1<p<\infty \) and weak \((L^1, L^1)\) bounded.

Lemma 4

(see [6]) Let \(0<p, \eta <\infty \) and \(w\in \cup _{1\le r<\infty } A_r\). Then, for any smooth function f for which the left-hand side is finite,

$$\begin{aligned} \int _{R^n}M_\eta (f)(x)^pw(x)dx\le C\int _{R^n}f^{\#}_\eta (x)^pw(x)dx. \end{aligned}$$

Lemma 5

(see [2, 6]) Let \(w\in A_1, 0<\alpha <n, 1\le s<p<n/\alpha \) and \(1/r=1/p-\alpha /n\). Then

$$\begin{aligned} ||M_s(f)||_{L^p(w)}\le & {} C||f||_{L^p(w)},\\ ||M_{\alpha , s}(f)||_{L^r(w)}\le & {} C||f||_{L^p(w)} \end{aligned}$$

and

$$\begin{aligned} ||I_\alpha (f)||_{L^q(w)}\le C||f||_{L^p(w)}. \end{aligned}$$

Lemma 6

(see [4, 10]) Let \(1<p<\infty , w\in A_1\) and \(0<D<2^n\). Then, for any smooth function f for which the left-hand side is finite,

$$\begin{aligned} ||M(f)||_{L^{p,\varphi }(w)}\le C||f||_{L^{p,\varphi }(w)}. \end{aligned}$$

Lemma 7

Let \(1<p<\infty , 0<\eta <\infty , w\in A_1\) and \(0<D<2^n\). Then, for any smooth function f for which the left-hand side is finite,

$$\begin{aligned} ||M_\eta (f)||_{L^{p,\varphi }(w)}\le C||f^{\#}_\eta ||_{L^{p,\varphi }(w)}. \end{aligned}$$

Proof

For any cube \(Q=Q(x_0, d)\) in \(R^n\), we know \(M(w\chi _Q)\in A_1\) for any cube \(Q=Q(x,d)\) by [6]. If \(x\in Q^c\), by Lemma 4, we have, for \(f\in L^{p,\varphi }(R^n, w)\),

$$\begin{aligned}&\int _Q\left| M_\eta (f)(y)\right| ^pw(y)dy \\&\quad =\int _{R^n} M_\eta (f)(y)^pw(y)\chi _Q(y)dy \\&\quad \le \int _{R^n}\left| M_\eta (f)(y)\right| ^pM(w\chi _Q)(y)dy \\&\quad \le C\int _{R^n}\left| f^{\#}_\eta (y)\right| ^p M(w\chi _Q)(y)dy \\&\quad = C\left( \int _Q\left| f^{\#}_\eta (y)\right| ^p M(w\chi _Q)(y)dy+\sum _{k=0}^\infty \int _{2^{k+1}Q\setminus 2^kQ}\left| f^{\#}_\eta (y)\right| ^pM(w\chi _Q)(y)dy\right) \\&\quad \le C\left( \int _Q\left| f^{\#}_\eta (y)\right| ^pw(y)dy+\sum _{k=0}^\infty \int _{2^{k+1}Q\setminus 2^kQ}\left| f^{\#}_\eta (y)\right| ^p\frac{w(Q)}{|2^{k+1}Q|}dy\right) \\&\quad \le C\left( \int _Q\left| f^{\#}_\eta (y)\right| ^pw(y)dy+\sum _{k=0}^\infty \int _{2^{k+1}Q}\left| f^{\#}_\eta (y)\right| ^p\frac{M(w)(y)}{2^{n(k+1)}}dy\right) \\&\quad \le C\left( \int _Q\left| f^{\#}_\eta (y)\right| ^pw(y)dy+\sum _{k=0}^\infty \int _{2^{k+1}Q}\left| f^{\#}_\eta (y)\right| ^p\frac{w(y)}{2^{nk}}dy\right) \\&\quad \le C\left| \left| f^{\#}_\eta \right| \right| _{L^{p,\varphi }(w)}^p\sum _{k=0}^\infty 2^{-nk}\varphi \left( 2^{k+1}d\right) \\&\quad \le C\left| \left| f^{\#}_\eta \right| \right| _{L^{p,\varphi }(w)}^p\sum _{k=0}^\infty \left( 2^{-n}D\right) ^k \varphi (d) \\&\quad \le C\left| \left| f^{\#}_\eta \right| \right| _{L^{p,\varphi }(w)}^p \varphi (d), \end{aligned}$$

thus

$$\begin{aligned} \left( \frac{1}{\varphi (d)}\int _QM_\eta (f)(x)^pw(x)dx\right) ^{1/p}\le C\left( \frac{1}{\varphi (d)}\int _Qf^{\#}_\eta (x)^pw(x)dx\right) ^{1/p} \end{aligned}$$

and

$$\begin{aligned} \left| \left| M_\eta (f)\right| \right| _{L^{p,\varphi }(w)}\le C\left| \left| f^{\#}_\eta \right| \right| _{L^{p,\varphi }(w)}. \end{aligned}$$

This finishes the proof. \(\square \)

Lemma 8

Let \(w\in A_1, 0<\alpha <n, 0<D<2^n, 1\le s<p<n/\alpha \) and \(1/r=1/p-\alpha /n\). Then

$$\begin{aligned} \left| \left| M_s(f)\right| \right| _{L^{p,\varphi }(w)}\le & {} C\left| \left| f\right| \right| _{L^{p,\varphi }(w)},\\ ||M_{\alpha , s}(f)||_{L^{r,\varphi }(w)}\le & {} C||f||_{L^{p,\varphi }(w)} \end{aligned}$$

and

$$\begin{aligned} ||I_\alpha (f)||_{L^{r,\varphi }(w)}\le C||f||_{L^{p,\varphi }(w)}. \end{aligned}$$

Lemma 9

Let T be the bounded linear operators on \(L^q(R^n,w)\) for any \(1<q<\infty \) and \(w\in A_1\). Then, for \(1<p<\infty , w\in A_1\) and \(0<D<2^n\),

$$\begin{aligned} \left| \left| T(f)\right| \right| _{L^{p,\varphi }(w)}\le C\left| \left| f\right| \right| _{L^{p,\varphi }(w)}. \end{aligned}$$

The proofs of two lemmas are similar to that of Lemma 7 by Lemma 5, we omit the details.

4 Proofs of Theorems

Proof of Theorem 1

It suffices to prove for \(f\in C_0^{\infty }(R^n)\) and some constant \(C_0\), the following inequality holds:

$$\begin{aligned} \left( \frac{1}{|Q|}\int _Q\big |T_b(f)(x)-C_0\big |^rdx\right) ^{1/r}\le & {} C||b||_{{ BMO}}\sum _{k=1}^m\left( M^2(T^{k,2}(f)\right) (\tilde{x})\\&+M_s\left( T^{k,2}(f)\right) (\tilde{x})). \end{aligned}$$

Without loss of generality, we may assume \(T^{k,1}\) are \(T(k=1,\ldots ,m)\). Fix a cube \(Q=Q(x_0,d)\) and \(\tilde{x}\in Q\). By \(T_1(g)=0\), we have

$$\begin{aligned} T_b(f)(x)= & {} T_{b-b_{2Q}}(f)(x)=T_{(b-b_{2Q})\chi _{2Q}}(f)(x)+T_{(b-b_{2Q})\chi _{(2Q)^c}}(f)(x)\\= & {} f_1(x)+f_2(x) \end{aligned}$$

and

$$\begin{aligned}&\left( \frac{1}{|Q|}\int _Q\big |T_b(f)(x)-f_2(x_0)\big |^rdx\right) ^{1/r} \\&\quad \le C\left( \frac{1}{|Q|}\int _Q\big |f_1(x)\big |^rdx\right) ^{1/r}+C\left( \frac{1}{|Q|}\int _Q\big |f_2(x)-f_2(x_0)\big |^rdx\right) ^{1/r} \\&\quad = I+II. \end{aligned}$$

For I, by Lemmas 1, 2 and 3, we obtain

$$\begin{aligned}&\left( \frac{1}{|Q|}\int _Q|T^{k,1}M_{(b-b_{2Q})\chi _{2Q}}T^{k,2}(f)(x)|^rdx\right) ^{1/r}\\&\quad \le |Q|^{-1}\frac{||T^{k,1}M_{(b-b_{2Q})\chi _{2Q}}T^{k,2}(f)\chi _Q||_{L^r}}{|Q|^{1/r-1}}\\&\quad \le C|Q|^{-1}||T^{k,1}M_{(b-b_{2Q})\chi _{2Q}}T^{k,2}(f)||_{WL^1} \\&\quad \le C|Q|^{-1}||M_{(b-b_{2Q})\chi _{2Q}}T^{k,2}(f)||_{L^1} \\&\quad \le C|Q|^{-1}\int _{2Q}|b(x)-b_{2Q}||T^{k,2}(f)(x)|dx \\&\quad \le C||b-b_{2Q}||_{expL, 2Q}||T^{k,2}(f)||_{L(logL),2Q} \\&\quad \le C||b||_{{ BMO}}M^2(T^{k,2}(f))(\tilde{x}), \end{aligned}$$

thus

$$\begin{aligned} I\le & {} \sum _{k=1}^m\left( \frac{1}{|Q|}\int _Q|T^{k,1}M_{(b-b_{2Q})\chi _{2Q}}T^{k,2}(f)(x)|^rdx\right) ^{1/r} \\\le & {} C||b||_{{ BMO}}\sum _{k=1}^mM^2(T^{k,2}(f))(\tilde{x}). \end{aligned}$$

For II, recalling that \(s>q'\), taking \(1<p<\infty , 1<t<s\) with \(1/p+1/q+1/t=1\), by the Hölder’s inequality, we get, for \(x\in Q\),

$$\begin{aligned}&|T^{k,1}M_{(b-b_Q)\chi _{(2Q)^c}}(f)(x)-T^{k,1}M_{(b-b_Q)\chi _{(2Q)^c}}T^{k,2}(f)(x_0)| \\&\quad \le \sum _{j=1}^\infty \int _{2^{j}d\le |y-x_0|<2^{j+1}d}|K(x,y)-K(x_0,y)||b(y)-b_{2Q}||T^{k,2}(f)(y)|dy\\&\quad \le \sum _{j=1}^\infty \left( \int _{2^{j}d\le |y-x_0|<2^{j+1}d}|K(x,y)-K(x_0,y)|^qdy\right) ^{1/q} \\&\qquad \times \left( \int _{2^{j+1}Q}\left| b(y)-b_Q\right| ^pdy\right) ^{1/p}\left( \int _{2^{j+1}Q}\left| T^{k,2}(f)(y)\right| ^tdy\right) ^{1/t} \\&\quad \le C\left| \left| b\right| \right| _{{ BMO}}\sum _{j=1}^\infty C_j(2^jd)^{-n/q'}j(2^jd)^{n/p}(2^jd)^{n/s}\\&\qquad \times \left( \frac{1}{|2^{j+1}Q|}\int _{2^{j+1}Q}\left| T^{k,2}(f)(y)\right| ^sdy\right) ^{1/s} \\&\quad \le C||b||_{{ BMO}}M_s\left( T^{k,2}(f)\right) (\tilde{x})\sum _{j=1}^\infty jC_j \\&\quad \le C||b||_{{ BMO}}M_s\left( T^{k,2}(f)\right) (\tilde{x}), \end{aligned}$$

thus

$$\begin{aligned} II\le & {} \frac{1}{|Q|}\int _Q\sum _{k=1}^m|T^{k,1}M_{(b-b_Q)\chi _{(2Q)^c}}T^{k,2}(f)(x)\!-\!T^{k,1}M_{(b-b_Q)\chi _{(2Q)^c}}T^{k,2}(f)(x_0)|dx\\\le & {} C||b||_{{ BMO}}\sum _{k=1}^lM_s\left( T^{k,2}(f)\right) (\tilde{x}). \end{aligned}$$

This completes the proof of Theorem 1. \(\square \)

Proof of Theorem 2

It suffices to prove for \(f\in C_0^{\infty }(R^n)\) and some constant \(C_0\), the following inequality holds:

$$\begin{aligned} \left( \frac{1}{|Q|}\int _Q\big |S_b(f)(x)-C_0\big |^rdx\right) ^{1/r}\le & {} C||b||_{{ BMO}}\sum _{k=1}^m(M^2\left( I_\alpha T^{k,4}(f)\right) (\tilde{x})\\&+M_s\left( I_\alpha T^{k,4}(f)\right) (\tilde{x})\!+\!M_{\alpha ,s}\left( T^{k,6}(f)\right) (\tilde{x})). \end{aligned}$$

Without loss of generality, we may assume \(T^{k,3}\) are \(T(k=1,\ldots ,m)\). Fix a cube \(Q=Q(x_0,d)\) and \(\tilde{x}\in Q\). Write

$$\begin{aligned} S_b(f)(x)= & {} \sum _{k=1}^mT^{k,3}M_bI_\alpha T^{k,4}(f)(x)+\sum _{k=1}^mT^{k,5}I_\alpha M_bT^{k,6}(f)(x)\\= & {} A_b(x)+B_b(x)=A_{b-b_Q}(x)+B_{b-b_Q}(x), \end{aligned}$$

where

$$\begin{aligned} A_{b-b_Q}(x)= & {} \sum _{k=1}^mT^{k,3}M_{(b-b_Q)\chi _{2Q}}I_\alpha T^{k,4}(f)(x)\\&+\sum _{k=1}^mT^{k,3} M_{(b-b_Q)\chi _{(2Q)^c}}I_\alpha T^{k,4}(f)(x)=A_1(x)+A_2(x) \end{aligned}$$

and

$$\begin{aligned} B_{b-b_Q}(x)= & {} \sum _{k=1}^mT^{k,5}I_\alpha M_{(b-b_Q)\chi _{2Q}}T^{k,6}(f)(x)\\&+\sum _{k=1}^mT^{k,5}I_\alpha M_{(b-b_Q)\chi _{(2Q)^c}}T^{k,6}(f)(x)=B_1(x)+B_2(x). \end{aligned}$$

Then

$$\begin{aligned}&\left( \frac{1}{|Q|}\int _Q\left| A_{b-b_Q}(f)(x)-A_2(x_0)\right| ^rdx\right) ^{1/r} \\&\quad \le C\left( \frac{1}{|Q|}\int _Q|A_1(x)|^rdx\right) ^{1/r}+C\left( \frac{1}{|Q|}\int _Q|A_2(x)-A_2(x_0)|^rdx\right) ^{1/r} \\&\quad =I_1+I_2 \end{aligned}$$

and

$$\begin{aligned}&\left( \frac{1}{|Q|}\int _Q\left| B_{b-b_Q}(f)(x)-B_2(x_0)\right| ^rdx\right) ^{1/r} \\&\quad \le C\left( \frac{1}{|Q|}\int _Q|B_1(x)|^rdx\right) ^{1/r}+C\left( \frac{1}{|Q|}\int _Q|B_2(x)-B_2(x_0)|^rdx\right) ^{1/r} \\&\quad =I_3+I_4. \end{aligned}$$

By using the same argument as in the proof of Theorem 1, we get, for \(1<p<\infty , 1<t_1<s\) with \(1/p+1/q+1/t_1=1, 1/t_2=1/p-\alpha /n\) with \(1<p<s\),

$$\begin{aligned} I_1\le & {} C\sum _{k=1}^m\left( \frac{1}{|Q|}\int _{R^n}|T^{k,3}M_{(b-b_Q)\chi _{2Q}}I_\alpha T^{k,4}(f)(x)|^rdx\right) ^{1/r}\\\le & {} \sum _{k=1}^m|Q|^{-1}\frac{\left| \left| T^{k,3}M_{(b-b_Q)\chi _{2Q}}I_\alpha T^{k,4}(f)\chi _Q\right| \right| _{L^r}}{|Q|^{1/r-1}}\\\le & {} C\sum _{k=1}^m|Q|^{-1}\left| \left| T^{k,3}M_{(b-b_Q)\chi _{2Q}}I_\alpha T^{k,4}(f)\right| \right| _{WL^1} \\\le & {} C\sum _{k=1}^m|Q|^{-1}\left| \left| M_{(b-b_Q)\chi _{2Q}}I_\alpha T^{k,4}(f)\right| \right| _{L^1} \\\le & {} C\sum _{k=1}^m|Q|^{-1}\int _{2Q}\big |b(x)-b_{2Q}\big |\left| I_\alpha T^{k,4}(f)(x)\right| dx \\\le & {} C\sum _{k=1}^m||b-b_{2Q}||_{expL, 2Q}||I_\alpha T^{k,4}(f)||_{L(logL),2Q} \\\le & {} C||b||_{{ BMO}}\sum _{k=1}^mM^2\left( I_\alpha T^{k,4}(f)\right) (\tilde{x}), \end{aligned}$$
$$\begin{aligned} I_2\le & {} C\sum _{k=1}^m\frac{1}{|Q|}\int _Q\sum _{j=1}^\infty \int _{2^{j}d\le |y-x_0|<2^{j+1}d}|b(y)-b_{2Q}||K(x,y)\\&-K(x_0,y)||I_\alpha T^{k,4}(f)(y)|dydx\\\le & {} C\sum _{k=1}^m\frac{C}{|Q|}\int _Q\sum _{j=1}^\infty \left( \int _{2^{j}d\le |y-x_0|<2^{j+1}d}|K(x,y)-K(x_0,y)|^qdy\right) ^{1/q} \\&\times \left( \int _{2^{j+1}Q}|b(y)-b_Q|^pdy\right) ^{1/p}\left( \int _{2^{j+1}Q}|I_\alpha T^{k,4}(f)(y)|^{r_2}dy\right) ^{1/{t_1}}dx \\\le & {} C||b||_{{ BMO}}\sum _{k=1}^m\sum _{j=1}^{\infty }C_j(2^jd)^{-n/q'}j(2^jd)^{n/p}(2^jd)^{n/s}\\&\quad \times \left( \frac{1}{|2^{j+1}Q|}\int _{2^{j+1}Q}|I_\alpha T^{k,4}(f)(y)|^sdy\right) ^{1/s} \\\le & {} C||b||_{{ BMO}}\sum _{k=1}^mM_s\left( I_\alpha T^{k,4}(f)\right) (\tilde{x})\sum _{j=1}^{\infty }jC_j \\\le & {} C||b||_{{ BMO}}\sum _{k=1}^mM_s\left( I_\alpha T^{k,4}(f)\right) (\tilde{x}), \end{aligned}$$
$$\begin{aligned} I_3\le & {} C\sum _{k=1}^m\left( \frac{1}{|Q|}\int _{R^n}|I_\alpha M_{(b-b_Q)\chi _{2Q}}T^{k,6}(f)(x)|^{t_2}dx\right) ^{1/t_2}\\\le & {} C\sum _{k=1}^m|Q|^{-1/{t_2}}\left( \int _{2Q}(|b(x)-b_Q||T^{k,6}(f)(x)|)^pdx\right) ^{1/p}\\\le & {} C\sum _{k=1}^m\left( \frac{1}{|Q|}\int _{2Q}|b(x)-b_Q|^{ps/(s-p)}dx\right) ^{(s-p)/ps}\\&\times \left( \frac{1}{|Q|^{1-s\alpha /n}}\int _{2Q}|T^{k,6}(f)(x)|^sdx\right) ^{1/s}\\\le & {} C||b||_{{ BMO}}\sum _{k=1}^mM_{\alpha ,s}\left( T^{k,6}(f)\right) (\tilde{x}), \end{aligned}$$
$$\begin{aligned} I_4\le & {} |Q|^{-1}\sum _{k=1}^m\int _Q\int _{(2Q)^c}|b(y)-b_{2Q}|\left| \frac{1}{|x-y|^{n-\alpha }}-\frac{1}{|x_0-y|^{n-\alpha }}\right| \\&\times |T^{k,6}(f)(y)|dydx\\\le & {} C\sum _{k=1}^m\sum _{j=1}^\infty \int _{2^{j}d\le |y-x_0|<2^{j+1}d}|b(y)-b_{2Q}|\frac{d}{|x_0-y|^{n-\alpha +1}}|T^{k,6}(f)(y)|dy \\\le & {} C\sum _{k=1}^m\sum _{j=1}^{\infty }d(2^jd)^{-n+\alpha -1}(2^jd)^{n(1-1/s)}(2^jd)^{n/s-\alpha }\\&\times \left( \frac{1}{|2^{j+1}Q|}\int _{2^{j+1}Q}|b(y)-b_Q|^{s'}dy\right) ^{1/s'}\\&\times \left( \frac{1}{|2^{j+1}Q|^{1-s\alpha /n}}\int _{2^{j+1}Q}|T^{k,6}(f)(y)|^sdy\right) ^{1/s} \\\le & {} C||b||_{{ BMO}}\sum _{k=1}^mM_{\alpha ,s}\left( T^{k,6}(f)\right) (\tilde{x})\sum _{j=1}^{\infty }j2^{-j} \\\le & {} C||b||_{{ BMO}}\sum _{k=1}^mM_{\alpha ,s}\left( T^{k,6}(f)\right) (\tilde{x}). \end{aligned}$$

This completes the proof of Theorem 2. \(\square \)

Proof of Theorem 3

Choose \(q'<s<p\) in Theorem 1, we get, by Lemmas 6, 7, 8 and 9,

$$\begin{aligned}&||T_b(f)||_{L^{p,\varphi }(w)}\le \Vert M_r(T_b(f))\Vert _{L^{p,\varphi }(w)}\\&\quad \le C\Vert (T_b(f))^{\#}_r\Vert _{L^{p,\varphi }(w)} \\&\quad \le C||b||_{{ BMO}}\sum _{k=1}^m(\Vert M^2(T^{k,2}(f))\Vert _{L^{p,\varphi }(w)}+\Vert M_s(T^{k,2}(f))\Vert _{L^{p,\varphi }(w)}) \\&\quad \le C||b||_{{ BMO}}\sum _{k=1}^m\Vert T^{k,2}(f)\Vert _{L^{p,\varphi }(w)} \\&\quad \le C||b||_{{ BMO}}\Vert f\Vert _{L^{p,\varphi }(w)}. \end{aligned}$$

This completes the proof. \(\square \)

Proof of Theorem 4

Choose \(q'<s<p\) in Theorem 2, we get, by Lemmas 6, 7, 8 and 9,

$$\begin{aligned}&||S_b(f)||_{L^{v,\varphi }(w)}\le \Vert M_r(S_b(f))\Vert _{L^{v,\varphi }(w)}\le C\Vert (S_b(f))^{\#}_r\Vert _{L^{v,\varphi }(w)} \\&\quad \le C||b||_{{ BMO}}\sum _{k=1}^m(\Vert M^2\left( I_\alpha T^{k,4}(f)\right) \Vert _{L^{v,\varphi }(w)}+\Vert M_s\left( I_\alpha T^{k,4}(f)\right) \Vert _{L^{v,\varphi }(w)}\\&\quad \quad +\Vert M_{\alpha ,s}\left( T^{k,6}(f)\right) \Vert _{L^{v,\varphi }(w)}) \\&\quad \le C||b||_{{ BMO}}\sum _{k=1}^m\left( \Vert I_\alpha T^{k,4}(f)\Vert _{L^{v,\varphi }(w)}+\Vert T^{k,4}(f)\Vert _{L^{u,\varphi }(w)}\right) \\&\quad \le C||b||_{{ BMO}}\sum _{k=1}^m\left( \Vert T^{k,4}(f)\Vert _{L^{u,\varphi }(w)}+\Vert f\Vert _{L^{u,\varphi }(w)}\right) \\&\quad \le C||b||_{{ BMO}}\Vert f\Vert _{L^{u,\varphi }(w)}. \end{aligned}$$

This completes the proof. \(\square \)