Correction to: Journal of Dynamics and Differential Equations https://doi.org/10.1007/s10884-022-10155-0

1 Introduction

We correct a mistake on the Melnikov function given in (Battelli and Fečkan in J Dyn Differ Equ, 2022. https://doi.org/10.1007/s10884-022-10155-0) for the persistence of periodic solutions in perturbed slowly varying discontinuous differential equations.

In [1] the following piecewise \(C^r\) system of differential equations

$$\begin{aligned} \begin{array}{l} {\dot{x}} = f(x,y) \\ \dot{y} = \varepsilon g(x,y,\varepsilon ), \quad \varepsilon \in {\mathbb {R}}\end{array} \end{aligned}$$
(1.1)

has been considered where

$$\begin{aligned} f(x,y) := \left\{ \begin{array}{ll} f_-(x,y) &{} \hbox {if }h(x,y)<0 \\ f_+(x,y) &{} \hbox {if }h(x,y)>0 \end{array} \right. \end{aligned}$$
(1.2)

and \(f_\pm (x,y)\) and h(xy) are \(C^r\)-functions, \(r\ge 2\), \(x\in {\mathbb {R}}^n\), \(y\in {\mathbb {R}}^m\). Suppose that the unperturbed system

$$\begin{aligned} {\dot{x}} = f(x,\eta ), \; \eta \in {\mathbb {R}}^m \end{aligned}$$

has a family of \({\hat{T}}(\alpha ,\eta )\)-periodic, continuous and piecewise \(C^r\), solutions \({\bar{u}}(t,\alpha ,\eta )\), with \((\alpha ,\eta )\in {\mathbb {R}}^d\times {\mathbb {R}}^m\), where \({\hat{T}}(\alpha ,\eta )\) is a smooth function of \((\alpha ,\eta )\in {\mathbb {R}}^d\times {\mathbb {R}}^m\). Moreover there exist \(t_*(\alpha ,\eta )<t^*(\alpha ,\eta )\) such that the following hold

  • \(h({\bar{u}}(t,\alpha ,\eta ),\eta )>0\) for \(0\le t < t_*(\alpha ,\eta )\) and \(t^*(\alpha ,\eta )< t \le {\hat{T}}(\alpha ,\eta )\)

  • \(h({\bar{u}}(t,\alpha ,\eta ),\eta )<0\) for \(t_*(\alpha ,\eta )< t < t^*(\alpha ,\eta )\)

  • \(\bar{u}(t,\alpha ,\eta )\) intersects transversally the manifold \(\{x | h(x,\eta )=0\}\) at \(t=t_*(\alpha ,\eta )\), \(t=t^*(\alpha ,\eta )\).

[Actually in [1] \(t_*(\alpha ,\eta )\), \(t^*(\alpha ,\eta )\) are denoted with \({\hat{t}}_*(\alpha ,\eta )\), \({\hat{t}}^*(\alpha ,\eta )\)]. In [1] the following result has been stated:

Theorem 1.1

Suppose that conditions \((A_1){-}(A_5)\) in [1] hold and let \(B_*, B^*, b_*, b^*\) be as in [1, Proposition 3.9]. Then the adjoint linear system

$$\begin{aligned} {\dot{x}} = -f_x({\bar{u}}(t,\alpha ,\eta ),\eta )^t x = \left\{ \begin{array}{ll} -f_{+,x}({\bar{u}}(t,\alpha ,\eta ),\eta )^t x &{} \hbox {if }h({\bar{u}}(t,\alpha ,\eta ),\eta )>0 \\ -f_{-,x}({\bar{u}}(t,\alpha ,\eta ),\eta )^t x &{} \hbox {if }h({\bar{u}}(t,\alpha ,\eta ),\eta )<0 \end{array}\right. \end{aligned}$$

has a d-dimensional space of \({\hat{T}}(\alpha ,\eta )\)-periodic solutions \(v(t,\alpha ,\eta )\) that are \(C^r\) for \(t\ne t_*(\alpha ,\eta ), t^*(\alpha ,\eta )\) with jumps at these points given by:

$$\begin{aligned} \begin{array}{l} v(t_*(\alpha ,\eta )^+,\alpha ,\eta ) = [B_*^{-1}]^tv(t_*(\alpha ,\eta )^-,\alpha ,\eta ), \\ v(t^*(\alpha ,\eta )^+,\alpha ,\eta ) = [B^{*-1}]^tv(t^*(\alpha ,\eta )^-,\alpha ,\eta ) \end{array} \end{aligned}$$
(1.3)

Moreover if \(\{v_1(t,\alpha ,\eta ),\ldots ,v_d(t,\alpha ,\eta )\}\) is a \(C^{r-1}\)-basis of the space of \({\hat{T}}(\alpha ,\eta )\)-periodic solutions of the adjoint linear system satisfying (1.3) and the \((d+m)\)-dimensional Melnikov vector

$$\begin{aligned} \mathcal{M}(\alpha ,\eta ) := \begin{pmatrix} \mathcal{M}_1(\alpha ,\eta ) \\ \mathcal{M}_2(\alpha ,\eta ) \end{pmatrix} \end{aligned}$$

where

$$\begin{aligned} \displaystyle \mathcal{M}_1(\alpha ,\eta )= & {} \Big [\int _0^{{\hat{T}}(\alpha ,\eta )} v_j(t,\alpha ,\eta )^t f_y({\bar{u}}(t,\alpha ,\eta ),\eta )g({\bar{u}}(t,\alpha ,\eta ),\eta ,0) dt \\{} & {} +\, v_j({\hat{t}}_*(\alpha ,\eta )^+,\alpha ,\eta )^t b_* + v_j({\hat{t}}^*(\alpha ,\eta )^+,\alpha ,\eta )^t b^*\Big ]_{j=1,\ldots d} \\ \displaystyle \mathcal{M}_2(\alpha ,\eta )= & {} \int _0^{{\hat{T}}(\alpha ,\eta )} g({\bar{u}}(t,\alpha ,\eta ),\eta ,0) dt, \end{aligned}$$

has a simple zero at \((\alpha ,\eta )=(\alpha _0,\eta _0)\), then there exists \(\varepsilon _0>0\) such that for \(|\varepsilon |<\varepsilon _0\) there exist \(C^r\) functions \(\alpha (\varepsilon ), \eta (\varepsilon )\) with \((\alpha (0),\eta (0))=(\alpha _0,\eta _0)\) such that system (1.1) has a unique \({\tilde{T}}(\varepsilon )\)-periodic solution \((x(t,\varepsilon ),y(t,\varepsilon ))\) satisfying

$$\begin{aligned} \sup _{0\le t\le {\tilde{T}}(\varepsilon )} |(x(t,\varepsilon ) - {\bar{u}}(t,\alpha (\varepsilon ),\eta (\varepsilon ))| + |(y(t,\varepsilon ) - \eta (\varepsilon )| \rightarrow 0 \end{aligned}$$

as \(\varepsilon \rightarrow 0\), and \(\lim _{\varepsilon \rightarrow 0} {\tilde{T}}(\varepsilon )={\hat{T}}(\alpha _0,\eta _0)\).

We have now realised that the expression of \( \mathcal{M}_1(\alpha ,\eta )\) given in the Theorem 1.1 above is not correct. Indeed Theorem 1.1 is obtained as an application of [1, Theorem 3.4] that correctly states

Theorem 1.2

Suppose that conditions \((A_1){-}(A_5)\) in [1] hold and let

$$\begin{aligned} J_{11}(\alpha ,\eta ) = \frac{\partial }{\partial \xi }[u(T(\xi ,\eta ),\xi ,\eta )-\xi ]_{\xi =\xi (\alpha ,\eta )} \end{aligned}$$

where \(u(t,\xi ,\eta )\) and \(T(\xi ,\eta )\), \(\xi (\alpha ,\eta )\) have been defined in [1]. Let

$$\begin{aligned} \{\zeta _1(\alpha ,\eta ),\ldots \zeta _d(\alpha ,\eta )\} \end{aligned}$$

be a smooth basis of \(\mathcal{N}J_{11}(\alpha ,\eta )^t\). Suppose, further, that \((\alpha ,\eta )=(0,0)\) is a simple solution of the system

$$\begin{aligned} \left\{ \begin{array}{l} \zeta _j(\alpha ,\eta )^t\mathcal{P}(\alpha ,\eta )x_\varepsilon ({\hat{T}}(\alpha ,\eta ),\xi (\alpha ,\eta ),\eta ,0) = 0, \quad j=1,\ldots , d \\ y_\varepsilon ({\hat{T}}(\alpha ,\eta ),\xi (\alpha ,\eta ),\eta ,0) = 0. \end{array}\right. \end{aligned}$$
(1.4)

where

$$\begin{aligned} \mathcal{P}(\alpha ,\eta )x = x - \frac{f(0,0)^tx}{f(0,0)^tf(\xi (\alpha ,\eta ),\eta )}f(\xi (\alpha ,\eta ),\eta ) \end{aligned}$$

is the projection with range \(\{f(0,0)\}^\perp \) and kernel the span of \(f(\xi (\alpha ,\eta ),\eta )\).

Then there exists \(\varepsilon _0>0\) such that, for any \(|\varepsilon |<\varepsilon _0\) equation (1.1) has a \({\tilde{T}}(\varepsilon )\)-periodic solution \((x(t,\varepsilon ),y(t,\varepsilon ))\), with \(\tilde{T}(\varepsilon )=T(\xi (\varepsilon ),\eta (\varepsilon ),\varepsilon )\) such that

$$\begin{aligned} \sup _{0\le t\le {\tilde{T}}(0)} |x(t,\varepsilon ) - u(t,0,0)| + |y(t,\varepsilon )-\eta (\varepsilon )| \rightarrow 0 \end{aligned}$$

as \(\varepsilon \rightarrow 0\).

Now, the mistake in \(\mathcal{M}_1(\alpha ,\eta )\) comes from the fact that \(x_\varepsilon (t,\xi (\alpha ,\eta ),\eta ,0)\) is a piecewise \(C^r\), bounded, solution of the linear inhomogeneous system

$$\begin{aligned} \begin{array}{l} {\dot{x}} = f_x(\bar{u}(t,\alpha ,\eta ),\eta )x + f_y(\bar{u}(t,\alpha ,\eta ),\eta )\int _0^t g({\bar{u}}(s,\alpha ,\eta ),\eta ,0)ds \\ x(0) = 0 \end{array} \end{aligned}$$
(1.5)

and not of

$$\begin{aligned} \begin{array}{l} {\dot{x}} = f_x(\bar{u}(t,\alpha ,\eta ),\eta )x + f_y(\bar{u}(t,\alpha ,\eta ),\eta )g(u(t,\xi ,\eta ),\eta ,0) \\ x(0) = 0 \end{array} \end{aligned}$$
(1.6)

as it was erroneously stated in [1, equation (3.32)].

As a matter of facts repeating the arguments given in [1, Section 3.2] we see that the correct statement of Theorem 1.1 is the following

Theorem 1.3

Suppose that conditions \((A_1){-}(A_5)\) in [1] hold and let \(B_*, B^*, b_*, b^*\) be as in [1, Proposition 3.9]. Then the adjoint linear system

$$\begin{aligned} {\dot{x}} = -f_x({\bar{u}}(t,\alpha ,\eta ),\eta )^t x = \left\{ \begin{array}{ll} -f_{+,x}({\bar{u}}(t,\alpha ,\eta ),\eta )^t x &{} \hbox {if }h({\bar{u}}(t,\alpha ,\eta ),\eta )>0 \\ -f_{-,x}({\bar{u}}(t,\alpha ,\eta ),\eta )^t x &{} \hbox {if }h({\bar{u}}(t,\alpha ,\eta ),\eta )<0. \end{array}\right. \end{aligned}$$

has a d-dimensional space of \({\hat{T}}(\alpha ,\eta )\)-periodic solutions \(v(t,\alpha ,\eta )\) that are \(C^r\) for \(t\ne {\hat{t}}_*(\alpha ,\eta ,0), {\hat{t}}^*(\alpha ,\eta ,0)\) with jumps at these points given by:

$$\begin{aligned} \begin{array}{l} v(t_*(\alpha ,\eta )^+,\alpha ,\eta ) = [B_*^{-1}]^tv(t_*(\alpha ,\eta )^-,\alpha ,\eta ), \\ v(t^*(\alpha ,\eta )^+,\alpha ,\eta ) = [B^{*-1}]^tv(t^*(\alpha ,\eta )^-,\alpha ,\eta ) \end{array} \end{aligned}$$
(1.7)

Moreover if \(\{v_1(t,\alpha ,\eta ),\ldots ,v_d(t,\alpha ,\eta )\}\) is a \(C^{r-1}\)-basis of the space of \({\hat{T}}(\alpha ,\eta )\)-periodic solutions of the adjoint linear system satisfying (1.7) and the \((d+m)\)-dimensional Melnikov vector

$$\begin{aligned} \mathcal{M}(\alpha ,\eta ) := \begin{pmatrix} \mathcal{M}_1(\alpha ,\eta ) \\ \mathcal{M}_2(\alpha ,\eta ) \end{pmatrix} \end{aligned}$$

where

$$\begin{aligned} \displaystyle \mathcal{M}_1(\alpha ,\eta )= & {} \Big [\int _0^{{\hat{T}}(\alpha ,\eta )} v_j(t,\alpha ,\eta )^t f_y({\bar{u}}(t,\alpha ,\eta ),\eta )\int _0^t g({\bar{u}}(s,\alpha ,\eta ),\eta ,0)ds\, dt \\{} & {} +\, v_j({\hat{t}}_*(\alpha ,\eta )^+,\alpha ,\eta )^t b_* + v_j({\hat{t}}^*(\alpha ,\eta )^+,\alpha ,\eta )^t b^*\Big ]_{j=1,\ldots d} \\ \displaystyle \mathcal{M}_2(\alpha ,\eta )= & {} \int _0^{{\hat{T}}(\alpha ,\eta )} g({\bar{u}}(t,\alpha ,\eta ),\eta ,0) dt , \end{aligned}$$

has a simple zero at \((\alpha ,\eta )=(\alpha _0,\eta _0)\), then there exists \(\varepsilon _0>0\) such that for \(|\varepsilon |<\varepsilon _0\) there exist \(C^r\) functions \(\alpha (\varepsilon ), \eta (\varepsilon )\) with \((\alpha (0),\eta (0))=(\alpha _0,\eta _0)\) such that system (1.1) has a unique \({\tilde{T}}(\varepsilon )\)-periodic solution \((x(t,\varepsilon ),y(t,\varepsilon ))\) satisfying

$$\begin{aligned} \sup _{0\le t\le {\tilde{T}}(\varepsilon )} |(x(t,\varepsilon ) - {\bar{u}}(t,\alpha (\varepsilon ),\eta (\varepsilon ))| + |(y(t,\varepsilon ) - \eta (\varepsilon )| \rightarrow 0 \end{aligned}$$

as \(\varepsilon \rightarrow 0\), and \(\lim _{\varepsilon \rightarrow 0} {\tilde{T}}(\varepsilon )={\hat{T}}(\alpha _0,\eta _0)\).

2 An example

It turns out, (see Appendix) that the correct Melnikov function for the example given in [1] does not have a zero. Because of this here we give another example, similar to the example in [1], using the correct result. To simplify matter, here we consider the 3-dimensional equation

$$\begin{aligned} \begin{array}{l} {\dot{x}}_1= -x_2 \\ {\dot{x}}_2= x_1-y\,{\textrm{sgn}}({x_1}) \\ \dot{y} = \varepsilon Y(x_1,x_2,y,\varepsilon ), \end{array} \end{aligned}$$
(2.1)

whose associated unperturbed system is the 2-dimensional system depending on the parameter \(y\in {\mathbb {R}}\):

$$\begin{aligned} \begin{array}{l} {\dot{x}}_1 = - x_2,\\ {\dot{x}}_2 = x_1-y\,{\textrm{sgn}}({x_1}). \end{array} \end{aligned}$$
(2.2)

As in [1, Proposition 4.1] we prove that, for \(x_1>2y\), (2.2) has the family of \({\hat{T}}(\alpha )\)-periodic solutions

$$\begin{aligned} u(t,\alpha ,y) = \left\{ \begin{array}{ll} y\left( {\begin{matrix} {(\alpha - 1)\cos t + 1} \\ {(\alpha - 1)\sin t} \end{matrix}} \right) &{} \hbox {if }-t_1\le t\le t_1 \\ \\ y \left( {\begin{matrix} {(1-\alpha )\cos (t-2t_1)-1} \\ {(1-\alpha )\sin (t-2t_1)} \end{matrix}} \right) &{} \hbox {if }t_1\le t\le 3t_1 \\ \\ \end{array}\right. \end{aligned}$$
(2.3)

where

$$\begin{aligned} \frac{1}{4}{\hat{T}}(\alpha ) = t_1 := \arccos \left( \frac{1}{1-\alpha }\right) , \quad \alpha = \frac{x_1}{y}, \quad x_1>0. \end{aligned}$$
(2.4)

Note that \(x_1>2y \Leftrightarrow \alpha >2\), so in the remaining part of this note we take \(\alpha >2\). As in [1] we see that

$$\begin{aligned} u(t+2t_1,\alpha ,y) = -u(t,\alpha ,y). \end{aligned}$$
(2.5)

Arguing as is [1] we prove that all assumptions \((A_1){-}(A_5)\) are satisfied and using the correct form of the Melnikov vector for the existence of periodic solutions of system (2.2) given here, we obtain

$$\begin{aligned} \begin{array}{l} \displaystyle \mathcal{M}_1(\alpha ,y) = \int _{-t_1}^{3t_1}v(t,\alpha ,y)^t \begin{pmatrix} 0 \\ \mp 1 \end{pmatrix} \int _0^t Y(u(s,\alpha ,y),y,0)ds dt \\ \displaystyle \mathcal{M}_2(\alpha ,y) = \int _{-t_1}^{3t_1} Y(u(t,\alpha ,y),y,0) dt \end{array} \end{aligned}$$
(2.6)

where we take \(-1\) in \([-t_1,t_1]\) and \(+1\) in \([t_1,3t_1]\). As in [1] it can be proved that

$$\begin{aligned} v(t,\alpha ,y) = \left\{ \begin{array}{l} \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} \quad -t_1\le t\le t_1 \\ -\begin{pmatrix} \cos (t-2t_1) \\ \sin (t-2t_1) \end{pmatrix} \quad t_1\le t\le 3t_1 \\ \end{array} \right. \end{aligned}$$

Hence we obtain, instead of [1, eq. (4.18)],

$$\begin{aligned}{} & {} \mathcal{M}_1(\alpha ,y) = \displaystyle \int _{-t_1}^{t_1} \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}^t \begin{pmatrix} 0 \\ -1 \end{pmatrix} \int _0^t Y(u(s,\alpha ,y),y,0)ds dt \\{} & {} \quad -\, \displaystyle \int _{t_1}^{3t_1} \begin{pmatrix} \cos (t-2t_1) \\ \sin (t-2t_1) \end{pmatrix}^t \begin{pmatrix} 0 \\ 1 \end{pmatrix} \int _0^t Y(u(s,\alpha ,y),y,0)ds \\{} & {} \qquad = \displaystyle - \int _{-t_1}^{t_1} \sin t \int _0^t Y(u(s,\alpha ,y),y,0)ds dt - \int _{t_1}^{3t_1} \sin (t-2t_1) \int _0^t Y(u(s,\alpha ,y),y,0) ds dt \\{} & {} \qquad = \displaystyle -\int _{-t_1}^{t_1} \sin t \int _0^t Y(u(s,\alpha ,y),y,0)ds dt - \int _{-t_1}^{t_1} \sin t \int _0^{t+2t_1} Y(u(s,\alpha ,y),y,0)ds dt\\{} & {} \qquad = \displaystyle -\int _{-t_1}^{t_1} \sin t \int _0^t Y(u(s,\alpha ,y),y,0)ds dt- \int _{-t_1}^{t_1} \sin t \int _{2t_1}^{t+2t_1} Y(u(s,\alpha ,y),y,0) ds dt \\{} & {} \qquad = \displaystyle - \int _{-t_1}^{t_1} \sin t \int _0^t [Y(u(s,\alpha ,y),y,0) + Y(u(s+2t_1,\alpha ,y),y,0)]ds dt \\{} & {} \qquad =\displaystyle - 2 \int _{-t_1}^{t_1} \sin t \int _0^t Y_{ev}(u(s,\alpha ,y),y,0)ds dt \end{aligned}$$

where we used (2.5) and set

$$\begin{aligned} Y_{ev}(x,y,0) = \frac{1}{2}[Y(x,y,0)+Y(-x,y,0)]. \end{aligned}$$

Simplifying further, and using (2.4) we get

$$\begin{aligned} \displaystyle \mathcal{M}_1(\alpha ,y)= & {} 2 \int _{-t_1}^{t_1} \left[ \frac{d}{dt}\cos t\right] \int _0^t Y_{ev}(u(s,\alpha ,y),y,0) ds dt \\ \displaystyle= & {} 2 \left[ \cos t_1 \int _0^{t_1} Y_{ev}(u(s,\alpha ,y),y,0) ds - \cos (- t_1) \int _0^{-t_1} Y_{ev}(u(s,\alpha ,y),y,0) ds \right] \\{} & {} \displaystyle -\, 2 \int _{-t_1}^{t_1} Y_{ev}(u(t,\alpha ,y),y,0)\cos t dt \\ \displaystyle= & {} \frac{2}{1-\alpha } \int _{-t_1}^{t_1} Y_{ev}(u(t,\alpha ,y),y,0) dt - 2\int _{-t_1}^{t_1} Y_{ev}(u(t,\alpha ,y),y,0)\cos t dt \\ \displaystyle= & {} - 2\int _{t_1}^{t_1} Y_{ev}(u(t,\alpha ,y),y,0) \left( \frac{1}{\alpha -1} + \cos t \right) dt . \end{aligned}$$

Next, it is easy to check that

$$\begin{aligned} \mathcal{M}_2(\alpha ,y) = 2\int _{-t_1}^{t_1} Y_{ev}(u(t,\alpha ,y),y,0) dt. \end{aligned}$$

Note also that, if \(Y(x,y,\varepsilon )\) is an odd function with respect to x, then \(\mathcal{M}_1(\alpha ,y) = \mathcal{M}_2(\alpha ,y) = 0\). To give a concrete example of application of Theorem 1.1 we take

$$\begin{aligned} Y(x_1,x_2,y,0)=x_2^2 + yx_1^2 - 1 \end{aligned}$$

Note that \(Y_{ev}(x,y)=Y(x,y)\) and

$$\begin{aligned} Y(x_1,x_2,y,0) = Y(x_1,-x_2,y,0). \end{aligned}$$
(2.7)

As

$$\begin{aligned}{} & {} u_1(-t,\alpha ,y) = y(\alpha -1)\cos (-t) + y = y(\alpha -1)\cos t + y = u_1(t,\alpha ,y) \\{} & {} u_2(-t,\alpha ,y) = y(\alpha -1)\sin (- t) = - y(\alpha -1)\sin t = - u_2(t,\alpha ,y) \end{aligned}$$

we see that

$$\begin{aligned}\begin{array}{l} Y(u(-t,\alpha ,y),y,0) = Y(u_1(-t,\alpha ,y),u_2(-t,\alpha ,y),y,0) \\ \quad = Y(u_1(t,\alpha ,y),-u_2(t,\alpha ,y),y,0) = Y(u(t,\alpha ,y),y,0) . \end{array}\end{aligned}$$

Then, replacing \(\alpha \) with \(\alpha +1\) (and then \(t_1=\arccos \left( -\frac{1}{\alpha }\right) \)) we get:

$$\begin{aligned} \begin{array}{l} \displaystyle \mathcal{M}_1(\alpha +1,y) = -4\int _{0}^{t_1} Y(u(t,\alpha +1,y),y,0)\left( \frac{1}{\alpha } + \cos t \right) dt \\ \displaystyle \quad = -\frac{4}{\alpha }\int _0^{t_1} \left( y^2\alpha ^2\sin ^2 t + y^3(\alpha \cos t + 1)^2 - 1\right) \left( \alpha \cos t +1 \right) dt \\ \displaystyle \quad = -4y^2\alpha \int _0^{t_1}\sin ^2 t dt - 4y^2\alpha ^2 \int _0^{t_1} \sin ^2 t \cos t \, dt \\ \displaystyle \qquad + \frac{4}{\alpha }\int _0^{t_1} (\alpha \cos t + 1)\, dt - \frac{4}{\alpha }\int _0^{t_1} y^3(\alpha \cos t + 1)^3\, dt \\ \displaystyle \quad =-2y^2\alpha (t_1-\sin t_1\cos t_1) - \frac{4}{3}y^2\alpha ^2\sin ^3 t_1 + 4\sin t_1 + \frac{4t_1}{\alpha } \\ \displaystyle \qquad -4y^3\sin t_1 \left( \frac{3}{2}\alpha \cos t_1-\frac{1}{3}\alpha ^2\sin ^2 t_1 + \alpha ^2+3 \right) -\frac{2y^3}{\alpha }(3\alpha ^2+2)t_1 \\ \displaystyle \quad = - 2y^2\alpha \left( \arccos \left( -\frac{1}{\alpha }\right) + \frac{\sqrt{\alpha ^2-1}}{\alpha ^2}\right) - \frac{4}{3}y^2\frac{(\alpha ^2-1)^{3/2}}{\alpha } + 4\frac{\sqrt{\alpha ^2-1}}{\alpha } + \frac{4}{\alpha }\arccos \left( -\frac{1}{\alpha }\right) \\ \displaystyle \qquad -\,4y^3\frac{\sqrt{\alpha ^2-1}}{\alpha } \left( -\frac{3}{2} - \frac{1}{3}(\alpha ^2-1) + \alpha ^2 + 3 \right) -\frac{2y^3}{\alpha }(3\alpha ^2+2)\arccos \left( -\frac{1}{\alpha }\right) \\ \displaystyle \quad = \left[ \frac{4}{\alpha }(1-y^3) -2\alpha y^2(1+3y)\right] \arccos \left( -\frac{1}{\alpha }\right) - 2y^2 \frac{\sqrt{\alpha ^2-1}}{\alpha } - \frac{4}{3}y^2\frac{(\alpha ^2-1)^{3/2}}{\alpha } \\ \displaystyle \qquad +\, 4\frac{\sqrt{\alpha ^2-1}}{\alpha } - 4y^3\frac{\sqrt{\alpha ^2-1}}{3\alpha } \left( \frac{11}{2} + 2\alpha ^2 \right) = \left[ \frac{4}{\alpha }(1-y^3) -2\alpha y^2(1+3y)\right] \arccos \left( -\frac{1}{\alpha }\right) \\ \displaystyle \qquad -\, \frac{2\sqrt{\alpha ^2-1}}{3\alpha } \left[ y^2(2\alpha ^2+1) + y^3(4\alpha ^2+11) - 6\right] . \end{array} \end{aligned}$$

Similarly

$$\begin{aligned} \begin{array}{l} \displaystyle \mathcal{M}_2(\alpha +1,y) = 2\int _{-t_1}^{t_1}Y(u(t,\alpha +1,y),y,0) dt \\ \displaystyle \quad = 4\int _{0}^{t_1}Y(u(t,\alpha +1,y),y,0)\, dt \quad = 4\int _{0}^{t_1}\, [(\alpha \cos t +1)^2y^3+\alpha ^2y^2\sin ^2 t - 1]\, dt \\ \quad = 4y^3\left( \frac{\alpha ^2}{2} \sin t_1\cos t_1 + 2\alpha \sin t_1 +\left( 1+\frac{\alpha ^2}{2}\right) t_1\right) + 2\alpha ^2y^2( t_1 -\sin t_1\cos t_1) - 4t_1 \\ \quad = 4y^3 \left( -\frac{1}{2}\sqrt{\alpha ^2-1} + 2\sqrt{\alpha ^2-1} + \left( 1+\frac{\alpha ^2}{2}\right) \arccos \left( -\frac{1}{\alpha }\right) \right) \\ \qquad + \,(2\alpha ^2y^2-4)\arccos \left( -\frac{1}{\alpha }\right) + 2y^2\sqrt{\alpha ^2-1} \\ \quad = 2y^2(3y+1)\sqrt{\alpha ^2-1} + 2[(\alpha ^2+2)y^3+\alpha ^2y^2-2]\arccos \left( -\frac{1}{\alpha }\right) . \end{array} \end{aligned}$$

So

$$\begin{aligned} \begin{array}{l} \mathcal{M}(\alpha +1,y) = \\ \left( \begin{array}{c} \left[ \frac{4}{\alpha }(1-y^3) -2\alpha y^2(1+3y)\right] \arccos \left( -\frac{1}{\alpha }\right) - \frac{2\sqrt{\alpha ^2-1}}{3\alpha } \left[ y^2(2\alpha ^2+1) + y^3(4\alpha ^2+11) - 6\right] \\ 2y^2(3y+1)\sqrt{\alpha ^2-1} + 2[(\alpha ^2+2)y^3+\alpha ^2y^2-2]\arccos \left( -\frac{1}{\alpha }\right) \end{array}\right) \end{array}\nonumber \\ \end{aligned}$$
(2.8)

with \(\alpha >1\). Using Newton method we find the following approximate solution of equation \(\mathcal{M}(\alpha +1,y)=0\)

$$\begin{aligned} \alpha \sim 2.237893508862806, \; y \sim 0.4392165858210144 \end{aligned}$$

and the Jacobian matrix at this point is invertible, its determinant being approximately equal to 37.25014840155305. Numerical computation shows that

$$\begin{aligned} \mathcal{M}(3.237893508862806,0.4392165858210144) = \begin{pmatrix} 0.999200722162641 \\ -1.332267629550188 \end{pmatrix}10^{-15}. \end{aligned}$$

In Figures -- we plot the periodic solution of the perturbed equation (2.1) with \(Y(x_1,x_2,y,\varepsilon )=x_2^2+yx_1^2-1\).

Fig. 1
figure 1

In red the \((x_1(t),x_2(t))\)-component of the periodic solution of (2.1) with \(\varepsilon =0.02\), in blue the periodic solution of the unperturbed equation (\(\varepsilon =0\))

Fig. 2
figure 2

y(t)-component of the periodic solution of (2.1) with \(\varepsilon =0.02\)

Fig. 3
figure 3

\((x_1(t),x_2(t),y(t))\) versus time of the periodic solution of (2.1) with \(\varepsilon =0.02\)

3 Conclusion

We have corrected a mistake in the Melnikov function given in [1] for the existence of periodic solutions of equation (1.1). The error in [1] comes from the fact that in [1, equation (3.32)] we missed an integral sign and we continued to use the wrong formula in the proof of the theorem. However we emphasize that the arguments in [1] give the true Melnikov condition when using the correct formula for the differential equation that \(x_\varepsilon (t,\xi (\alpha ,\eta ),\eta ,0)\) must satisfy, i.e. (1.5) instead of (1.6).