Skip to main content
Log in

Perovskite solar cells with a performance exceeding 20% with benzoic acid-assisted green anti-solvent

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Emerging solar cells, perovskite solar cells (PSCs), promises the world community green energy at a reasonable price. However, more research is needed to improve their efficiency and sustainability. Improving carrier mobilities of the formamidinium triiodide (FAPbI3) perovskite layer is one of the state-of-the-art strategies to increase the photovoltaic performance of PSCs. Here, we employed this strategy thanks to the benzoic acid additive for anisole anti-solvent. Our findings indicate that the benzoic acid improves the crystalline properties of the FAPbI3 photoactive layer, and consequently, the nonradiative recombination is effectively suppressed. The benzoic acid-based PSCs show improved carrier mobilities due to improved interfacial charge extraction and facilitated charge transfer. The acid-treated devices record a maximum efficiency of 22.44% with a reduced hysteresis, while the control devices obtain an efficiency of 19.34%. moreover, the acid-modified PSCs show improved stability behavior against humidity and sun illumination, which paves the way for the PSCs’ commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Data will be available based on reasonable request.

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J.T.-W. Wang, Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Gao, Y. Wu, Y. Liu, M. Lu, L. Yang, Y. Wang, W.Y. William, X. Bai, Y. Zhang, Q. Dai, Interface and grain boundary passivation for efficient and stable perovskite solar cells: the effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors. Nanoscale Horiz. 5, 1574–1585 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014)

    Article  CAS  Google Scholar 

  5. N.e.c. National Renewable Energy Laboratory, https://www.nrel.gov/pv/assets/images/efficiency-chart.png. Accessed 3 Jan 2023

  6. A. Kumar, S. Singh, A. Sharma, E.M. Ahmed, Efficient and stable perovskite solar cells by interface engineering at the interface of electron transport layer/perovskite. Opt. Mater. 132, 112846 (2022)

    Article  CAS  Google Scholar 

  7. A. Kumar, S. Singh, D.K. Sharma, M. Al-Bahrani, M.R.H. Alhakeem, A. Sharma, T.C.A. Kumar, Cetrimonium bromide and potassium thiocyanate assisted post-vapor treatment approach to enhance power conversion efficiency and stability of FAPbI 3 perovskite solar cells. RSC Adv. 13, 1402–1411 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019)

    Article  CAS  Google Scholar 

  9. B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. Y. Sun, J. Zhang, H. Yu, C. Huang, J. Huang, Several triazine-based small molecules assisted in the preparation of high-performance and stable perovskite solar cells by trap passivation and heterojunction engineering. ACS Appl. Mater. Interfaces 14, 6625–6637 (2022)

    Article  CAS  PubMed  Google Scholar 

  11. Q. Sun, P. Fassl, D. Becker-Koch, A. Bausch, B. Rivkin, S. Bai, P.E. Hopkinson, H.J. Snaith, Y. Vaynzof, Role of microstructure in oxygen induced photodegradation of methylammonium lead triiodide perovskite films. Adv. Energy Mater. 7, 1700977 (2017)

    Article  Google Scholar 

  12. A.O. El-Ballouli, O.M. Bakr, O.F. Mohammed, Compositional, processing, and interfacial engineering of nanocrystal-and quantum-dot-based perovskite solar cells. Chem. Mater. 31, 6387–6411 (2019)

    Article  CAS  Google Scholar 

  13. H. Tan, A. Jain, O. Voznyy, X. Lan, F.P.G. De Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. T. Wu, J. Wu, Y. Tu, X. He, Z. Lan, M. Huang, J. Lin, Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%. J. Power. Sources 365, 1–6 (2017)

    Article  CAS  Google Scholar 

  15. X. Xiao, Y. Chu, C. Zhang, Z. Zhang, Z. Qiu, C. Qiu, H. Wang, A. Mei, Y. Rong, G. Xu, Enhanced perovskite electronic properties via A-site cation engineering. Fundam. Res. 1, 385–392 (2021)

    Article  CAS  Google Scholar 

  16. J. Xie, X. Yu, J. Huang, X. Sun, Y. Zhang, Z. Yang, M. Lei, L. Xu, Z. Tang, C. Cui, Self-organized fullerene interfacial layer for efficient and low-temperature processed planar perovskite solar cells with high UV-light stability. Adv. Sci. 4, 1700018 (2017)

    Article  Google Scholar 

  17. H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7, 632–652 (2023)

    Article  CAS  PubMed  Google Scholar 

  18. M. Dehghanipour, A. Behjat, A. Shabani, M. Haddad, Toward desirable 2D/3D hybrid perovskite films for solar cell application with additive engineering approach. J. Mater. Sci. Mater. Electron. 33(16), 12953–12964 (2022)

    Article  CAS  Google Scholar 

  19. J.H. Heo, D.H. Shin, M.H. Jang, M.L. Lee, M.G. Kang, S.H. Im, Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl 3-doped graphene electrodes. J. Mater. Chem. A 5, 21146–21152 (2017)

    Article  CAS  Google Scholar 

  20. C. Wang, L. Guan, D. Zhao, Y. Yu, C.R. Grice, Z. Song, R.A. Awni, J. Chen, J. Wang, X. Zhao, Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells. ACS Energy Lett. 2, 2118–2124 (2017)

    Article  CAS  Google Scholar 

  21. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. (2014). https://doi.org/10.1002/adma.201401685

    Article  PubMed  Google Scholar 

  22. N. Zhang, Z. Zhang, T. Liu, T. He, P. Liu, J. Li, F. Yang, G. Song, Z. Liu, M. Yuan, Efficient and stable MAPbI3 perovskite solar cells via green anti-solvent diethyl carbonate. Org. Electron. 113, 106709 (2023)

    Article  CAS  Google Scholar 

  23. M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi, Y. Jo, Y.J. Yoon, J.W. Kim, J. Lee, D. Huh, Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019)

    Article  CAS  Google Scholar 

  24. G.A. Nemnes, C. Besleaga, A.G. Tomulescu, L.N. Leonat, V. Stancu, M. Florea, A. Manolescu, I. Pintilie, The hysteresis-free behavior of perovskite solar cells from the perspective of the measurement conditions. J. Mater. Chem. C 7, 5267–5274 (2019)

    Article  CAS  Google Scholar 

  25. S.H. Kareem, M.H. Elewi, A.M. Naji, D.S. Ahmed, M.K. Mohammed, Efficient and stable pure α-phase FAPbI3 perovskite solar cells with a dual engineering strategy: additive and dimensional engineering approaches. Chem. Eng. J. 443, 136469 (2022)

    Article  Google Scholar 

  26. M.K. Mohammed, M.I. Abualsayed, A.M. Alshehri, A. Kumar, M. Dehghanipour, R. Sh Alnayli, S. Aftab, E. Akman, Synergistic effects of energy level alignment and trap passivation via 3, 4-dihydroxyphenethylamine hydrochloride for efficient and air-stable perovskite solar cells. ACS Appl. Energy Mater. (2024). https://doi.org/10.1021/acsaem.3c03144

    Article  Google Scholar 

  27. D.A. Noori, A. Behjat, M. Dehghanipour, Operational stability study of hole transport-free perovskite solar cells using lithium fluoride in electron transport layer. J. Mater. Sci. Mater. Electron. 34, 592 (2023)

    Article  CAS  Google Scholar 

  28. A.D. Taylor, Q. Sun, K.P. Goetz, Q. An, T. Schramm, Y. Hofstetter, M. Litterst, F. Paulus, Y. Vaynzof, A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun. 12, 1878 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602–1608 (2015)

    Article  CAS  Google Scholar 

  30. J.-J. Li, J.-Y. Ma, J.-S. Hu, D. Wang, L.-J. Wan, Influence of N, N-dimethylformamide annealing on the local electrical properties of organometal halide perovskite solar cells: an atomic force microscopy investigation. ACS Appl. Mater. Interfaces 8, 26002–26007 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. M. Dehghanipour, A. Behjat, H.A. Bioki, Fabrication of stable and efficient 2D/3D perovskite solar cells through post-treatment with TBABF 4. J. Mater. Chem. C 9, 957–966 (2021)

    Article  CAS  Google Scholar 

  32. A. Kumar, M. Sayyed, A.M. Idris, M.U. Khandaker, P. Singh, H.A. Abbas, K. Myaser Abd Alaziz, H. Sharif, Mixed-dimensional engineering to generate a desirable 2D/3D heterostructure perovskite layer to record stable and efficient carbon-based perovskite solar cells. Energy Fuels 37, 16924–16932 (2023)

    Article  CAS  Google Scholar 

  33. S.M. Majeed, D.S. Ahmed, M.K. Mohammed, Anti-solvent engineering via potassium bromide additive for highly efficient and stable perovskite solar cells. Org. Electron. 99, 106310 (2021)

    Article  CAS  Google Scholar 

  34. M. Dehghanipour, A. Behjat, A. Shabani, M. Haddad, Toward desirable 2D/3D hybrid perovskite films for solar cell application with additive engineering approach. J. Mater. Sci. Mater. Electron. 33, 12953–12964 (2022)

    Article  CAS  Google Scholar 

  35. Y. Wu, Q. Liang, H. Zhu, X. Dai, B.B. Yu, Y. Hu, M. Chen, L.B. Huang, S.M. Zakeeruddin, Z. Shen, Molecularly tailored surface defect modifier for efficient and stable perovskite solar cells. Adv. Func. Mater. 33, 2302404 (2023)

    Article  CAS  Google Scholar 

  36. T.P. Baumeler, E.A. Alharbi, G. Kakavelakis, G.C. Fish, M.T. Aldosari, M.S. Albishi, L. Pfeifer, B.I. Carlsen, J.-H. Yum, A.S. Alharbi, Surface passivation of FAPbI3-rich perovskite with cesium iodide outperforms bulk incorporation. ACS Energy Lett. 8, 2456–2462 (2023)

    Article  CAS  Google Scholar 

  37. A. Kumar, A.K. Al-Mousoi, M.J. Saadh, M.K. Mohammed, G. Sarma, N. Ahmad, R. Tiwari, Investigation of the cobalt-additive role in improving the performance of formamidium lead triiodide based solar cells. Electron. Mater. Lett. 19, 471–482 (2023)

    Article  CAS  Google Scholar 

  38. C.M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Nonradiative Recombination in Perovskite Solar Cells

  39. H. Mohseni, M. Dehghanipour, N. Dehghan, F. Tamaddon, M. Ahmadi, M. Sabet, A. Behjat, Enhancement of the photovoltaic performance and the stability of perovskite solar cells via the modification of electron transport layers with reduced graphene oxide/polyaniline composite. Sol. Energy 213, 59–66 (2021)

    Article  CAS  Google Scholar 

  40. M.U. Rothmann, W. Li, J. Etheridge, Y.B. Cheng, Microstructural characterisations of perovskite solar cells–from grains to interfaces: techniques, features, and challenges. Adv. Energy Mater. 7, 1700912 (2017)

    Article  Google Scholar 

  41. C.-C. Chung, S. Narra, E. Jokar, H.-P. Wu, E.W.-G. Diau, Inverted planar solar cells based on perovskite/graphene oxide hybrid composites. J. Mater. Chem. A 5, 13957–13965 (2017)

    Article  CAS  Google Scholar 

  42. A. Maqsood, Y. Li, J. Meng, D. Song, B. Qiao, S. Zhao, Z. Xu, Perovskite solar cells based on compact, smooth FA 0.1 MA 0.9 PbI 3 film with efficiency exceeding 22%. Nanoscale Res. Lett. 15, 1–9 (2020)

    Article  Google Scholar 

  43. S. Shao, M.A. Loi, The role of the interfaces in perovskite solar cells. Adv. Mater. Interfaces 7, 1901469 (2020)

    Article  CAS  Google Scholar 

  44. J. Liu, X. Chen, K. Chen, W. Tian, Y. Sheng, B. She, Y. Jiang, D. Zhang, Y. Liu, J. Qi, Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells. Science 383, 1198–1204 (2024)

    Article  CAS  PubMed  Google Scholar 

  45. Y. Dai, X. Ge, B. Shi, P. Wang, Y. Zhao, X. Zhang, Enhancing ultraviolet stability and performance of wide bandgap perovskite solar cells through ultraviolet light-absorbing passivator. Small Methods (2024). https://doi.org/10.1002/smtd.202301793

    Article  PubMed  Google Scholar 

  46. P. Liu, Z. Liu, C. Qin, T. He, B. Li, L. Ma, K. Shaheen, J. Yang, H. Yang, H. Liu, High-performance perovskite solar cells based on passivating interfacial and intergranular defects. Sol. Energy Mater. Sol. Cells 212, 110555 (2020)

    Article  CAS  Google Scholar 

  47. Y. Kumar, E. Regalado-Pérez, A.M. Ayala, N. Mathews, X. Mathew, Effect of heat treatment on the electrical properties of perovskite solar cells. Sol. Energy Mater. Sol. Cells 157, 10–17 (2016)

    Article  CAS  Google Scholar 

  48. Y. Li, D. Wang, L. Yang, S. Yin, Preparation and performance of perovskite solar cells with two dimensional MXene as active layer additive. J. Alloy. Compd. 904, 163742 (2022)

    Article  CAS  Google Scholar 

  49. J.W. Jung, S.T. Williams, A.K.-Y. Jen, Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. RSC Adv. 4, 62971–62977 (2014)

    Article  CAS  Google Scholar 

  50. J. Zhang, G. Zhai, W. Gao, C. Zhang, Z. Shao, F. Mei, J. Zhang, Y. Yang, X. Liu, B. Xu, Accelerated formation and improved performance of CH 3 NH 3 PbI 3-based perovskite solar cells via solvent coordination and anti-solvent extraction. J. Mater. Chem. A 5, 4190–4198 (2017)

    Article  CAS  Google Scholar 

  51. M. Xiao, L. Zhao, M. Geng, Y. Li, B. Dong, Z. Xu, L. Wan, W. Li, S. Wang, Selection of an anti-solvent for efficient and stable cesium-containing triple cation planar perovskite solar cells. Nanoscale 10, 12141–12148 (2018)

    Article  CAS  PubMed  Google Scholar 

  52. X. Guo, C. McCleese, C. Kolodziej, A.C. Samia, Y. Zhao, C. Burda, Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI 3 perovskite. Dalton Trans. 45, 3806–3813 (2016)

    Article  CAS  PubMed  Google Scholar 

  53. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. H. Li, C. Li, T. Yin, Q. Yu, S. Jin, H. He, Q. Shen, M. Huang, P. Zhong, N. Cui, Undercoordinated Pb2+ defects passivation via tetramethoxysilane-modified for efficient and stable perovskite solar cells. Org. Electron. 99, 106332 (2021)

    Article  CAS  Google Scholar 

  55. M. Abdel-Shakour, T.H. Chowdhury, K. Matsuishi, Y. Moritomo, A. Islam, Chemical passivation of the under coordinated Pb 2+ defects in inverted planar perovskite solar cells via β-diketone Lewis base additives. Photochem. Photobiol. Sci. 20, 357–367 (2021)

    Article  CAS  PubMed  Google Scholar 

  56. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015)

    Article  CAS  PubMed  Google Scholar 

  57. S. Wozny, M. Yang, A.M. Nardes, C.C. Mercado, S. Ferrere, M.O. Reese, W. Zhou, K. Zhu, Controlled humidity study on the formation of higher efficiency formamidinium lead triiodide-based solar cells. Chem. Mater. 27, 4814–4820 (2015)

    Article  CAS  Google Scholar 

  58. J. Song, W. Hu, X.-F. Wang, G. Chen, W. Tian, T. Miyasaka, HC (NH 2) 2 PbI 3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells. J. Mater. Chem. A 4, 8435–8443 (2016)

    Article  CAS  Google Scholar 

  59. S. Wang, H. Luo, Z. Gu, R. Zhao, L. Guo, N. Wang, Y. Lou, Q. Xu, S. Peng, Y. Zhang, Crystal growth regulation of α-FAPbI3 perovskite films for high-efficiency solar cells with long-term stability. Adv. Func. Mater. 33, 2214834 (2023)

    Article  CAS  Google Scholar 

  60. S. Raeisi, M. Mohammadi, A. Hoseini, M. Dashti, Z. Heidary, Crystallization tailoring for efficient and stable perovskite solar cells via introduction of propionic acid in a green anti-solvent. J. Electron. Mater. 52, 1419–1425 (2023)

    Article  CAS  Google Scholar 

  61. M. Zhang, Z. Wang, B. Zhou, X. Jia, Q. Ma, N. Yuan, X. Zheng, J. Ding, W.H. Zhang, Green anti-solvent processed planar perovskite solar cells with efficiency beyond 19%. Solar Rrl 2, 1700213 (2018)

    Article  Google Scholar 

  62. F. Yang, W. Zuo, H. Liu, J. Song, H. Liu, J. Li, S.M. Jain, Ion-migration and carrier-recombination inhibition by the cation-π interaction in planar perovskite solar cells. Org. Electron. 75, 105387 (2019)

    Article  CAS  Google Scholar 

  63. V. La Ferrara, A. De Maria, G. Rametta, Green anisole as antisolvent in planar triple-cation perovskite solar cells with varying cesium concentrations. Micromachines 15, 136 (2024)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors present their appreciation to King Saud University for funding this research through Researchers Supporting Program number (RSP2024R397), King Saud University, Riyadh, Saudi Arabia.

Funding

This study was supported by King Saud University for funding this research through Researchers Supporting Program number RSP2024R397, M. Atif.

Author information

Authors and Affiliations

Authors

Contributions

Anjan Kumar- Writing—original draft; Mandeep Kaur- Methodology, Investigation; M. Atif-Editing and fund Acquisition; Jatinder Kaur- Review & editing; Johar MGM—Writing- review & editing; Muhammad Irsyad Abdullah- Conceptualization; Mohammed A. El-Meligy- Editing and fund Acquisition; Parminder Singh-Experimentation.

Corresponding author

Correspondence to Anjan Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kaur, M., Atif, M. et al. Perovskite solar cells with a performance exceeding 20% with benzoic acid-assisted green anti-solvent. J Mater Sci: Mater Electron 35, 1753 (2024). https://doi.org/10.1007/s10854-024-13523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13523-2

Navigation