Skip to main content
Log in

Elevated thermal stability of the dielectric properties of CaMoO4–TiO2 composites under temperature variations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, the dielectric properties of the ceramic CaMoO4 (CMO) with additions of 0, 8, 12, and 20% by mass (wt %) of TiO2 in the radiofrequency (RF) region were studied. X-ray diffraction analysis showed that no secondary phases formed after the addition of TiO2. Scanning electron microscopy was used to analyse the effects on the morphology of the CMO. Complex Impedance Spectroscopy (CIS) was performed to evaluate the electrical properties of the materials, while temperature coefficient of capacitance (TCC) analysis showed that at 10 kHz, CMO12 (CMO with 12 wt % TiO2) presented a TCC equal to zero, demonstrating that this material is thermally stable at this frequency. The activation energy (Ea) was calculated by AC conductivity and imaginary part of the electric modulus (M″) at different temperatures. The Ea values were close, indicating that the thermally activated conduction process is the same. Moreover, the addition of TiO2 resulted in a decrease in the Ea, implying an increased conductivity of the material. The results obtained show that the materials evaluated would be interesting candidates for application in electronic circuits that operate in the radiofrequency region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. R.K. Pandey (ed.), Fundamentals of Electroceramics (John Wiley & Sons Inc, Hoboken, 2019)

    Google Scholar 

  2. J. M. H. A. J. Moulson, Electroceramics Materials, Properties, Applications, 2nd edn. (2003).

  3. N.D. Scarisoreanu, A.C. Galca, L. Nedelcu, A. Ioachim, M.I. Toacsan, E. Morintale, S.D. Stoica, M. Dinescu, Appl. Surf. Sci. 256, 6526 (2010)

    Article  CAS  Google Scholar 

  4. Y. Jiang, Y. Shen, J. Yang, Z. Fang, X. Zhang, P. Zhao, B. Tang, Mater. Chem. Phys. 277, 125457 (2022)

    Article  CAS  Google Scholar 

  5. S.V. Trukhanov, T.I. Zubar, V.A. Turchenko, A.V. Trukhanov, T. Kmječ, J. Kohout, L. Matzui, O. Yakovenko, D.A. Vinnik, A.Y. Starikov, V.E. Zhivulin, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 272, 115345 (2021)

    Article  CAS  Google Scholar 

  6. J.H. Chung, J.H. Ryu, S.W. Mhin, K.M. Kim, K.B. Shim, J. Mater. Chem. 22, 3997 (2012)

    Article  CAS  Google Scholar 

  7. J.H. Chung, J.H. Ryu, J.W. Eun, J.H. Lee, S.Y. Lee, T.H. Heo, B.G. Choi, K.B. Shim, J. Alloys Compd. 522, 30 (2012)

    Article  CAS  Google Scholar 

  8. A.A.G. Santiago, E.M. Macedo, F.K.F. Oliveira, R.L. Tranquilin, M.D. Teodoro, E. Longo, F.V. Motta, M.R.D. Bomio, Mater. Res. Bull. 146, 111621 (2022)

    Article  CAS  Google Scholar 

  9. P. Dixit, V. Chauhan, S.B. Rai, P.C. Pandey, J. Alloys Compd. 897, 162820 (2022)

    Article  CAS  Google Scholar 

  10. C. Bouzidi, K. Horchani-Naifer, Z. Khadraoui, H. Elhouichet, M. Ferid, Phys. B Condens. Matter 497, 34 (2016)

    Article  CAS  Google Scholar 

  11. F.E.A. Nogueira, T.O. Abreu, V.C. Martins, R.F. Abreu, F.F. do Carmo, J.P.C. do Nascimento, A. Ghosh, A.J.M. Sales, M.A.S. da Silva, R.S. da Silva, A.S.B. Sombra, J. Electron. Mater. 52, 2843 (2023)

    Article  CAS  Google Scholar 

  12. S. Vidya, S. Solomon, J.K. Thomas, Phys. Status Solidi Appl. Mater. Sci. 209, 1067 (2012)

    CAS  Google Scholar 

  13. E.C. Xiao, Q. Ren, Z. Cao, G. Dou, Z.M. Qi, F. Shi, J. Mater. Sci. Mater. Electron. 31, 5686 (2020)

    Article  CAS  Google Scholar 

  14. Y.-C. Liang, K.-J. Chiang, Nanomaterials 10, 1005 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K.R. Acchutharaman, N. Santhosh, M. Senthil Pandian, P. Ramasamy, Mater. Res. Bull. 160, 112141 (2023)

    Article  CAS  Google Scholar 

  16. K.C. Kao, Dielectric Phenomena in Solids (Elsevier Science, 2004)

    Google Scholar 

  17. J.M.S. Filho, C.A. Rodrigues Junior, D.G. Sousa, R.G.M. Oliveira, M.M. Costa, G.C. Barroso, A.S.B. Sombra, J. Electron. Mater. 46, 4344 (2017)

    Article  CAS  Google Scholar 

  18. J.P.C. de Nascimento, R.G.M. Oliveira, F.F. de Carmo, J.E.V. de Morais, J.C. Sales, M.A.S. Silva, D.X. Gouveia, H.D. de Andrade, I.S. Queiroz Júnior, A.S.B. Sombra, J. Electron. Mater. 49, 6016 (2020)

    Article  Google Scholar 

  19. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy, 3rd edn. (John Wiley & Sons Inc, Hoboken, 2018)

    Book  Google Scholar 

  20. T. Acharya, R.N.P. Choudhary, Phys. Lett. Sect. A Gen At. Solid State Phys. 380, 2437 (2016)

    CAS  Google Scholar 

  21. M.A.S. Silva, R.G.M. Oliveira, A.S.B. Sombra, Ceram. Int. 45, 20446 (2019)

    Article  CAS  Google Scholar 

  22. V. Purohit, R. Padhee, R.N.P. Choudhary, Ceram. Int. 44, 3993 (2018)

    Article  CAS  Google Scholar 

  23. T. Acharya, R.N.P. Choudhary, J. Electron. Mater. 44, 271 (2015).

    Article  CAS  Google Scholar 

  24. R.F. Abreu, F.A.C. Nobrega, D.M. Da Colares, S.O. Saturno, J.P.C. do Nascimento, T.O. Abreu, A. Ghosh, F.F. do Carmo, M.A.S. Silva, A.J.M. Sales, R.S. Silva, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 34, 457 (2023)

    Article  CAS  Google Scholar 

  25. K. Snini, M. Akyol, M. Ellouze, L. El Mir, F. Ghribi, A. Ekicibil, J. Alloys Compd. 874, 159866 (2021)

    Article  CAS  Google Scholar 

  26. R.G.M. Oliveira, D.C. Souza, J.E.V. de Morais, G.S. Batista, M.A.S. Silva, D.X. Gouveia, S. Trukhanov, A. Trukhanov, L. Panina, C. Singh, D. Zhou, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 31, 13078 (2020)

    Article  CAS  Google Scholar 

  27. U. Dash, S. Sahoo, S.K.S. Parashar, P. Chaudhuri, J. Adv. Ceram. 3, 98 (2014)

    Article  CAS  Google Scholar 

  28. Z. Xing, C. Yin, Z. Yu, J. Khaliq, C. Li, Ceram. Int. 46, 22460 (2020)

    Article  CAS  Google Scholar 

  29. F.M. Casallas-Caicedo, E. Vera-López, J. Roa-Rojas, Phys. B Condens. Matter 607, 412865 (2021)

    Article  CAS  Google Scholar 

  30. A.M. Abdel-karim, A.M. Fayad, I.M. El-kashef, H.A. Saleh, J. Electron. Mater. 52, 2409 (2023)

    Article  CAS  Google Scholar 

  31. K.P. Padmasree, A.F. Fuentes, Mater. Chem. Phys. 223, 466 (2019)

    Article  CAS  Google Scholar 

  32. M. Naveed, M. Mumtaz, R. Khan, A.A. Khan, M.N. Khan, J. Alloys Compd. 712, 696 (2017)

    Article  CAS  Google Scholar 

  33. A.J.N. de Castro, V.L. Bessa, J.E.V. de Morais, L.P. Silva, R.G.M. Oliveira, J.P.C. do Nascimento, J.C. Sales, M.A.S. Silva, J.C. Goes, D.X. Gouveia, A.S.B. Sombra, Mater. Res. Bull. 113, 169 (2019)

    Article  Google Scholar 

  34. Y. Chen, J. Xu, Y. Cui, G. Shang, J. Qian, J.E. Yao, Prog. Nat. Sci. Mater. Int. 26, 158 (2016)

    Article  CAS  Google Scholar 

  35. X.-Z. Yuan, C. Song, H. Wang, J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells (Springer, London, 2010)

    Book  Google Scholar 

  36. S. Samanta, B. Paramanik, D. Das, Ceram. Int. 48, 31370 (2022)

    Article  CAS  Google Scholar 

  37. S. Rabha, P. Dobbidi, J. Alloys Compd. 872, 159726 (2021)

    Article  CAS  Google Scholar 

  38. R.F. Abreu, S.O. Saturno, F.A.C. Nobrega, D.M. da Colares, J.P.C. do Nascimento, S.J.T. Vasconcelos, F.E.A. Nogueira, D.B. de Freitas, F.F. do Carmo, A. Ghosh, T.O. Abreu, M.A.S. Silva, R.S. Silva, S.V. Trukhanov, D. Zhou, C. Singh, A.S.B. Sombra, Appl. Phys. A 130, 138 (2024)

    Article  CAS  Google Scholar 

Download references

Funding

This work was partly sponsored by the Brazilian Research Agencies CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant INCT NANO(BIO)SIMES), CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant Project PNPD), FINEP-Financiadora de Estudos e Projetos (Grant INFRAPESQ-11 and INFRAPESQ-12), and the U. S. Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127).

Author information

Authors and Affiliations

Authors

Contributions

Authors statement for the manuscript entitled “High Thermal Stability of the Radiofrequency Dielectric Properties of the CaMoO4 Matrix with TiO2 Addition Under Temperature Variation”. All the authors participated in the work; however, some dedicated more time to some specific activities, which we describe below: Conceptualization—Francisco Enilton Alves Nogueira, Felipe Felix do Carmo. Methodology—Software—Francisco Enilton Alves Nogueira, Roterdan Fernandes Abreu. Validation—Di Zhou, C. Singh. Formal analysis—João Paulo Costa do Nascimento, Tallison Oliveira Abreu. Investigation—Anupama Ghosh, Roterdan Fernandes Abreu. Resources—Antonio Sergio Bezerra Sombra, Ronaldo Santos da Silva. Data curation—S. V. Trukhanov, Anupama Ghosh. Writing—original draft preparation—Francisco Enilton Alves Nogueira, João Paulo Costa do Nascimento. Writing—review and editing—Marcelo Antonio Santos da Silva, João Paulo Costa do Nascimento. Visualization—Francisco Enilton Alves Nogueira, Felipe Felix do Carmo. Supervision—Felipe Felix do Carmo, Marcelo Antonio Santos da Silva. Project administration—Ronaldo Santos da Silva, Antonio Sergio Bezerra Sombra. Funding acquisition—Antonio Sergio Bezerra Sombra.

Corresponding authors

Correspondence to Francisco Enilton Alves Nogueira or João Paulo Costa do Nascimento.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, F.E.A., do Nascimento, J.P.C., Abreu, T.O. et al. Elevated thermal stability of the dielectric properties of CaMoO4–TiO2 composites under temperature variations. J Mater Sci: Mater Electron 35, 1470 (2024). https://doi.org/10.1007/s10854-024-13227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13227-7

Navigation