Skip to main content
Log in

Structural, optical, dielectric, conductivity and solid-state behaviour of 2-methylpropan-2-ammonium 2,4,6-trinitrophenolate (TBAP) single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

t-butyl ammonium picrate (TBAP) crystallized in a P-1 space group with two molecules per unit cell. The solid has hydrogen bonding (1.86 and 1.88 Å) in the b-axis between the phenolate oxygen and one of the –NH3+ hydrogen. In the unit cell, if one picrate ion is on the left and the cation is on the right along the b-axis. The other molecule is just below along the b-axis with cation on the left and picrate ion on the right disposition. Each phenolate ion forms H-bonding with two different t-butyl ammonium ions. Thus the two cations and two anions are held together by H-bonding. The IR spectrum had characteristic bands due to ν(C−O) phenolic, ν(NO2), ν(NH3+) and ν(C–H) peaks. The 1H NMR spectrum showed a broad peak at 7.7 ppm due to NH3+ protons along with the characteristic aromatic and –CH3 protons. The 13C NMR showed peaks due to tertiary (51.15 ppm), aromatic (124–160 ppm) and methyl carbons (27.15 ppm). The peaks at 235 and 380 nm are due to π → π* and n → π* observed from the UV–Visible spectrum and having a band gap of 2.82 eV. The crystal melts at 476.5 K followed by decomposition. The dielectric constant and dielectric loss at 323 K were found to be maximum at lower frequencies. The values are lesser at 373 K and 423 K due to phase changes as shown by DTA. AC conductivity studies indicated that the conductance is maximum at 323 K and lesser at both 373 K and 423 K due to phase changes. The I–V studies showed a negative effect, that is the photocurrent is lower than the dark current due to Fermi energy gaps nearer to VB and CB. The polarizability was found to be 8.342 × 10–23 cm3 which indicated that the molecule can be used as an optoelectronic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

CCDC: 1009718 contains the supplementary crystallographic data for this paper. This data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Tel: + 44 (0)1223 336408.

References

  1. DC Santra MK Bera PK Sukul S Malik 2016 Chem. Eur. J. 22 2012

    CAS  PubMed  Google Scholar 

  2. M Amudha J Madhavan P Praveen Kumar 2017 J. Opt. 46 382

    Google Scholar 

  3. JU Maheswari C Krishnan S Kalyanaraman P Selvarajan 2016 Phys. B Condens. Matter 502 32

    CAS  Google Scholar 

  4. M Manonmani C Balakrishnan SR Ahamed G Vinitha SP Meenakshisundaram RM Sockalingam 2019 J. Mol. Struct. 1190 1

    CAS  Google Scholar 

  5. N Sudharsana B Keerthana R Nagalakshmi V Krishnakumar L Guru Prasad 2012 Mater. Chem. Phys. 134 736

    CAS  Google Scholar 

  6. R Bharathikannan A Chandramohan MA Kandhaswamy J Chandrasekaran R Renganathan V Kandavelu 2008 Cryst. Res. Technol. 43 683

    CAS  Google Scholar 

  7. S Suguna D Anbuselvi D Jayaraman KS Nagaraja B Jeyaraj 2014 Spectrochim. Acta A Mol. Biomol. Spectrosc. 132 330

    CAS  PubMed  Google Scholar 

  8. RM Jauhar V Viswanathan P Vivek G Vinitha D Velmurugan P Murugakoothan 2016 RSC Adv. 6 57977

    CAS  Google Scholar 

  9. G Anandha Babu A Chandramohan P Ramasamy G Bhagavannarayana B Varghese 2011 Mater. Res. Bull. 46 464

    Google Scholar 

  10. V Kalaipoonguzhali S Surendarnath M Vimalan K SenthilKannan 2023 J. Mater. Sci. Mater. Electron. 34 1

    Google Scholar 

  11. K SenthilKannan N Balamurugapandian T Jayanalina GA Vincy MG Prasath M Vimalan P Sasikumar 2023 J. Mater. Sci. Mater. Electron. 34 1

    Google Scholar 

  12. H Ganesan KS Radha M Vimalan K SenthilKannan 2024 Polycycl. Aromat. Compd. 44 1850

    CAS  Google Scholar 

  13. P Kalhor ZW Yu 2020 J. Mol. Struct. 1215 128257

    CAS  Google Scholar 

  14. K Elangovan KE Ingle R Dhanasekaran M Mahadevan M Dhilip 2024 Spectrochim. Acta A Mol. Biomol. Spectrosc. 308 123680

    CAS  PubMed  Google Scholar 

  15. C Indumathi TC Sabari Girisun K Anitha S Alfred Cecil Raj 2017 J. Phys. Chem. Solids 106 37

    CAS  Google Scholar 

  16. K Senthilkumar N Kanagathara V Natarajan V Ragavendran T Srinivasan MK Marchewka 2020 J. Mol. Struct. 1220 128764

    CAS  Google Scholar 

  17. GM Sheldrick 2007 Acta Crystallogr. A Found. Crystallogr. 64 112

    Google Scholar 

  18. OV Dolomanov LJ Bourhis RJ Gildea JAK Howard H Puschmann 2009 J. Appl. Crystallogr.Crystallogr. 42 339

    CAS  Google Scholar 

  19. A Szumna J Jurczak Z Urbańczyk-Lipkowska 2000 J. Mol. Struct. 526 165

    CAS  Google Scholar 

  20. B Chidambaranathan S Sivaraj S Selvakumar V Jancik 2023 Acta Crystallogr. E Crystallogr. Commun. 79 8

    CAS  PubMed  PubMed Central  Google Scholar 

  21. YJ Li 2009 Acta Crystallogr. Sect. E Struct. Rep. Online 65 o2566

    CAS  PubMed  PubMed Central  Google Scholar 

  22. S Ramalingam E John David RC Ramachandra P Jobe Prabakar 2014 J. Theor. Comput. Sci. 1 1

    Google Scholar 

  23. S Selvaraj P Rajkumar M Kesavan S Gunasekaran S Kumaresan 2019 Vib. Spectrosc. 100 30

    CAS  Google Scholar 

  24. C Karnan KS Nagaraja S Manivannan A Manikandan V Ragavendran 2021 J. Mol. Model. https://doi.org/10.1007/s00894-021-04842-w

    Article  PubMed  Google Scholar 

  25. A Ponnuvel S Nivithaa A Kala GR Ramkumaar KS Nagaraja C Karnan 2023 J. Chem. Crystallogr.Crystallogr. https://doi.org/10.1007/s10870-023-00989-x

    Article  Google Scholar 

  26. S Nishanth S Nivithaa C Sridhar KS Nagaraja C Karnan 2023 J. Mol. Struct. 1285 135501

    CAS  Google Scholar 

  27. R Gandhimathi S Dheivamalar R Dhanasekaran 2015 Eur. Phys. J. Appl. Phys. 69 10202

    Google Scholar 

  28. A Ponnuvel AP Kala KS Nagaraja C Karnan 2021 Acta Crystallogr. E Crystallogr. Commun. 77 1019

    CAS  PubMed  PubMed Central  Google Scholar 

  29. R Samui AK Bhunia S Saha 2023 J. Mater. Sci. Mater. Electron. 34 1

    Google Scholar 

  30. TN Ghosh SS Pradhan SK Sarkar AK Bhunia 2021 J. Mater. Sci. Mater. Electron. 32 19157

    CAS  Google Scholar 

  31. KD Mandal AK Rai L Singh O Parkash 2012 Bull. Mater. Sci. 35 433

    CAS  Google Scholar 

  32. CP Smyth 1955 Dielectric Behaviour and Structure McGraw-Hill New York

    Google Scholar 

  33. KM Chauhan SK Arora 2009 Cryst. Res. Technol. 44 189

    CAS  Google Scholar 

  34. D Kalaiselvi R Jayavel 2012 Appl. Phys. A Mater. Sci. Process. 107 93

    CAS  Google Scholar 

  35. AK Bhunia SS Pradhan K Bhunia AK Pradhan S Saha 2021 J. Mater. Sci. Mater. Electron. 32 22561

    CAS  Google Scholar 

  36. KV Rao A Smakula 1966 J. Appl. Phys. 37 319

    CAS  Google Scholar 

  37. A Bera D Basak 2008 Appl. Phys. Lett. https://doi.org/10.1063/1.2968131

    Article  Google Scholar 

  38. VN Joshi 1990 Photoconductivity Marcel Dekker New York

    Google Scholar 

  39. RH Bube 1981 Photoconductivity of Solids Wiley New York

    Google Scholar 

  40. QH Li T Gao YG Wang TH Wang 2005 Appl. Phys. Lett. 86 1

    Google Scholar 

  41. AK Bhunia S Sen PK Guha S Saha 2023 Eur. Phys. J. Plus https://doi.org/10.1140/epjp/s13360-023-04244-2

    Article  Google Scholar 

  42. NM Ravindra RP Bhardwaj KS Kumar VK Srivastava 1981 Infrared Phys. 21 369

    CAS  Google Scholar 

  43. DR Penn 1962 Phys. Rev. 128 2093

    CAS  Google Scholar 

  44. NM Ravindra VK Srivastava 1980 Infrared Phys. 20 67

    CAS  Google Scholar 

  45. RR Reddy YN Ahammed 1996 Infrared Phys. Technol. 37 505

    CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S. Suguna: formal analysis, investigation, methodology, data curation, writing—original draft. K.S. Nagaraja: conceptualization, resources, writing—original draft, writing—review and editing. C. Karnan: visualization, validation, writing—review and editing, supervision, project administration.

Corresponding author

Correspondence to C. Karnan.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 267 kb)

Supplementary file2 (CIF 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suguna, S., Nagaraja, K.S. & Karnan, C. Structural, optical, dielectric, conductivity and solid-state behaviour of 2-methylpropan-2-ammonium 2,4,6-trinitrophenolate (TBAP) single crystal. J Mater Sci: Mater Electron 35, 1173 (2024). https://doi.org/10.1007/s10854-024-12916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12916-7

Navigation