Skip to main content
Log in

Role of proton conducting polyelectrolyte on the organic photovoltaics efficiency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Most of the efficient organic solar cells (OSC) often utilize reactive low-work-function metals like calcium and LiF as a buffer layer. Over a period of time, these types of buffer layer degrade, reacts and diffuses into electrode, photoactive layer. These type of changes results in reduction in efficiency and less lifetime of the OSC. This work demonstrated fabrication of OSC with ionic conducting non-conjugated polyelectrolytes polyethyleneimine (PEI) and perfluorinated ionomer (PFI) instead of conventional transport layer. PEI and PFI were used as a cathode and anode buffer, respectively, in the following device configuration ITO/PEI/P3HT:PC61BM/PFI/Ag. For various PFI thickness, OSC efficiency was optimized. The highest efficiency of 1.82% was obtained for 1:15 PFI ratio device, which was significant improvement than the reference device without PFI. The obtained results were analyzed and critical changes were discussed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data support the findings of this study are available within the article.

References

  1. A.V. Kesavan, P.C. Ramamurthy, Nickel electrode for improving current density in organic electronic device. IETE Tech. Rev. 33, 29–33 (2016). https://doi.org/10.1080/02564602.2015.1045308

    Article  Google Scholar 

  2. I. Joseph, H. Louis, T.O. Unimuke, I.S. Etim, M.M. Orosun, J. Odey, An overview of the operational principles, light harvesting and trapping technologies, and recent advances of the dye sensitized solar cells (Review). Appl. Sol. Energy 56, 334–363 (2020). https://doi.org/10.3103/S0003701X20050072

    Article  Google Scholar 

  3. J. Du, K. Hu, J. Zhang, L. Meng, J. Yue, I. Angunawela, H. Yan, S. Qin, X. Kong, Z. Zhang, B. Guan, H. Ade, Y. Li, Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nat. Commun. 12, 5264 (2021). https://doi.org/10.1038/s41467-021-25638-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. V.N. Viswanathan, A.V. Kesavan, P.C. Ramamurthy, Molecular architecturing of a small two dimensional A–D-A molecule for photovoltaic application. MRS Adv. 1, 2917–2922 (2016). https://doi.org/10.1557/adv.2016.383

    Article  CAS  Google Scholar 

  5. K. Ding, X. Huang, Y. Li, S.R. Forrest, Photogeneration and the bulk quantum efficiency of organic photovoltaics. Energy Environ. Sci. 14, 1584–1593 (2021). https://doi.org/10.1039/D0EE03885G

    Article  CAS  Google Scholar 

  6. Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei, J. Hou, Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 33, 2102420 (2021). https://doi.org/10.1002/adma.202102420

    Article  CAS  Google Scholar 

  7. W. Si, X. Zhang, S. Lu, T. Yasuda, N. Asao, L. Han, Y. Yamamoto, T. Jin, Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature. Sci. Rep. 5, 13920 (2015). https://doi.org/10.1038/srep13920

    Article  PubMed  PubMed Central  Google Scholar 

  8. S. Weng, M. Zhao, D. Jiang, Use of organic polymer P3HT:PC61BM as the active layer to improve the performance of ZnO ultraviolet photodetector. J. Phys. Chem. C 125, 20639–20649 (2021). https://doi.org/10.1021/acs.jpcc.1c06291

    Article  CAS  Google Scholar 

  9. A.D. Rao, M.G. Murali, A.V. Kesavan, P.C. Ramamurthy, Experimental investigation of charge transfer, charge extraction, and charge carrier concentration in P3HT:PBD-DT-DPP:PC70BM ternary blend photovoltaics. Sol. Energy 174, 1078–1084 (2018). https://doi.org/10.1016/j.solener.2018.09.072

    Article  CAS  Google Scholar 

  10. A. Boroomandnia, A.B. Kasaeian, A. Nikfarjam, A. Akbarzadeh, R. Mohammadpour, Effect of crystallinity and morphology of TiO2 nano-structures on TiO2:P3HT hybrid photovoltaic solar cells. Appl. Sol. Energy 51, 34–40 (2015). https://doi.org/10.3103/S0003701X15010065

    Article  Google Scholar 

  11. S.H. Yoo, J.M. Kum, S.O. Cho, Tuning the electronic band structure of PCBM by electron irradiation. Nanoscale Res. Lett. 6, 545 (2011). https://doi.org/10.1186/1556-276X-6-545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S.A. Bakhramov, U.K. Makhmanov, A.M. Kokhkharov, Synthesis of nanoscale fullerene C60 filaments in the volume of an evaporating drop of a molecular solution and preparation of thin nanostructured coatings on their basis. Appl. Sol. Energy 55, 309–314 (2019). https://doi.org/10.3103/S0003701X19050049

    Article  Google Scholar 

  13. C.-J. Cho, S.-Y. Chen, C.-C. Kuo, L. Veeramuthu, A.-N. Au-Duong, Y.-C. Chiu, S.-H. Chang, Morphology and optoelectronic characteristics of organic field-effect transistors based on blends of polylactic acid and poly(3-hexylthiophene). Polym. J. 50, 975–987 (2018). https://doi.org/10.1038/s41428-018-0087-x

    Article  CAS  Google Scholar 

  14. N. Chaudhary, R. Chaudhary, J.P. Kesari, A. Patra, Effect of composition ratio of P3HT:PC 61 BM in organic solar cells: optical and morphological properties. Mater. Res. Innov. 22, 282–286 (2018). https://doi.org/10.1080/14328917.2017.1317061

    Article  CAS  Google Scholar 

  15. R. Wang, Z.-Y. Di, P. Müller-Buschbaum, H. Frielinghaus, Effect of PCBM additive on morphology and optoelectronic properties of P3HT-b-PS films. Polymer (Guildf) 121, 173–182 (2017). https://doi.org/10.1016/j.polymer.2017.06.016

    Article  CAS  Google Scholar 

  16. T.M. Khan, Y. Zhou, A. Dindar, J.W. Shim, C. Fuentes-Hernandez, B. Kippelen, Organic photovoltaic cells with stable top metal electrodes modified with polyethylenimine. ACS Appl. Mater. Interfaces 6, 6202–6207 (2014). https://doi.org/10.1021/am501236z

    Article  CAS  PubMed  Google Scholar 

  17. P.G.V. Sampaio, M.O.A. González, A review on organic photovoltaic cell. Int. J. Energy Res. 46, 17813–17828 (2022). https://doi.org/10.1002/er.8456

    Article  Google Scholar 

  18. SKh. Suleimanov, P. Berger, V.G. Dyskin, M.U. Dzhanklich, A.G. Bugakov, O.A. Dudko, N.A. Kulagina, M. Kim, Antireflection composite coatings for organic solar cells. Appl. Sol. Energy 52, 157–158 (2016). https://doi.org/10.3103/S0003701X1602016X

    Article  Google Scholar 

  19. S.C. Akcaoğlu, G. Martinopoulos, C. Koidis, D. Kiymaz, C. Zafer, Investigation of cell-level potential-induced degradation mechanisms on perovskite, dye-sensitized and organic photovoltaics. Sol. Energy 190, 301–318 (2019). https://doi.org/10.1016/j.solener.2019.08.031

    Article  CAS  Google Scholar 

  20. J. Miao, Y. Wang, J. Liu, L. Wang, Organoboron molecules and polymers for organic solar cell applications. Chem. Soc. Rev. 51, 153–187 (2022). https://doi.org/10.1039/D1CS00974E

    Article  PubMed  Google Scholar 

  21. J. Wang, L. Ma, Y.W. Lee, H. Yao, Y. Xu, S. Zhang, H.Y. Woo, J. Hou, Design of ultra-high luminescent polymers for organic photovoltaic cells with low energy loss. Chem. Commun. 57, 9132–9135 (2021). https://doi.org/10.1039/D1CC02706A

    Article  CAS  Google Scholar 

  22. G. Li, W.-H. Chang, Y. Yang, Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat. Rev. Mater. 2, 17043 (2017). https://doi.org/10.1038/natrevmats.2017.43

    Article  CAS  Google Scholar 

  23. L. Sun, K. Fukuda, T. Someya, Recent progress in solution-processed flexible organic photovoltaics. Npj Flex Electron. 6, 89 (2022). https://doi.org/10.1038/s41528-022-00222-3

    Article  Google Scholar 

  24. J.W. Jo, J.H. Yun, S. Bae, M.J. Ko, H.J. Son, Development of a conjugated donor-acceptor polyelectrolyte with high work function and conductivity for organic solar cells. Org. Electron. 50, 1–6 (2017). https://doi.org/10.1016/j.orgel.2017.07.006

    Article  CAS  Google Scholar 

  25. J. Brebels, J. Kesters, M. Defour, G. Pirotte, B. Van Mele, J. Manca, L. Lutsen, D. Vanderzande, W. Maes, A PCPDTTPD-based narrow bandgap conjugated polyelectrolyte for organic solar cells. Polymer (Guildf) 137, 303–311 (2018). https://doi.org/10.1016/j.polymer.2018.01.027

    Article  CAS  Google Scholar 

  26. Y. Li, X. Qi, G. Liu, Y. Zhang, N. Zhu, Q. Zhang, X. Guo, D. Wang, H. Hu, Z. Chen, L. Xiao, B. Qu, High performance of low-temperature processed perovskite solar cells based on a polyelectrolyte interfacial layer of PEI. Org. Electron. 65, 19–25 (2019). https://doi.org/10.1016/j.orgel.2018.10.028

    Article  CAS  Google Scholar 

  27. P. Fabbri, M. Messori, Surface Modification of Polymers (Elsevier, Amsterdam, 2017), pp.109–130

    Google Scholar 

  28. P. Ding, H. An, P. Zellner, T. Guan, J. Gao, P. Müller-Buschbaum, B.M. Weckhuysen, W. van der Stam, I.D. Sharp, Elucidating the roles of Nafion/solvent formulations in copper-catalyzed CO2 electrolysis. ACS Catal. 13, 5336–5347 (2023). https://doi.org/10.1021/acscatal.2c05235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A.O. Krasnova, N.V. Glebova, A.G. Kastsova, M.K. Rabchinskii, A.A. Nechitailov, Thermal stabilization of Nafion with nanocarbon materials. Polymers (Basel) 15, 2070 (2023). https://doi.org/10.3390/polym15092070

    Article  CAS  PubMed  Google Scholar 

  30. EYu. Safronova, O.V. Korchagin, V.A. Bogdanovskaya, A.B. Yaroslavtsev, Chemical stability of hybrid materials based on Nafion® membrane and hydrated oxides. Membr. Membr. Technol. 4, 414–422 (2022). https://doi.org/10.1134/S2517751622060087

    Article  CAS  Google Scholar 

  31. R. Sigwadi, M.S. Dhlamini, T. Mokrani, F. Nemavhola, Enhancing the mechanical properties of zirconia/Nafion® nanocomposite membrane through carbon nanotubes for fuel cell application. Heliyon 5, e02112 (2019). https://doi.org/10.1016/j.heliyon.2019.e02112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Kusoglu, A.Z. Weber, New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017). https://doi.org/10.1021/acs.chemrev.6b00159

    Article  CAS  PubMed  Google Scholar 

  33. L.-Y. Zhu, Y.-C. Li, J. Liu, J. He, L.-Y. Wang, J.-D. Lei, Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications. Pet. Sci. 19, 1371–1381 (2022). https://doi.org/10.1016/j.petsci.2021.11.004

    Article  CAS  Google Scholar 

  34. Y. Ke, W. Yuan, F. Zhou, W. Guo, J. Li, Z. Zhuang, X. Su, B. Lu, Y. Zhao, Y. Tang, Y. Chen, J. Song, A critical review on surface-pattern engineering of nafion membrane for fuel cell applications. Renew. Sustain. Energy Rev. 145, 110860 (2021). https://doi.org/10.1016/j.rser.2021.110860

    Article  CAS  Google Scholar 

  35. H. Lu, J. Lin, N. Wu, S. Nie, Q. Luo, C.-Q. Ma, Z. Cui, Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Appl. Phys. Lett. 106, 093302 (2015). https://doi.org/10.1063/1.4913697

    Article  CAS  Google Scholar 

  36. M. Guerre, G. Lopez, B. Améduri, M. Semsarilar, V. Ladmiral, Solution self-assembly of fluorinated polymers, an overview. Polym. Chem. 12, 3852–3877 (2021). https://doi.org/10.1039/D1PY00221J

    Article  CAS  Google Scholar 

  37. X. Yu, X. Yu, J. Zhang, D. Zhang, H. Cai, Y. Zhao, Interfacial modification for improving inverted organic solar cells by poly(N-vinylpyrrolidone). RSC Adv. 5, 58966–58972 (2015). https://doi.org/10.1039/C5RA09427E

    Article  CAS  Google Scholar 

  38. K.A. Vishnumurthy, A.V. Kesavan, S.K. Swathi, P.C. Ramamurthy, Low band gap thienothiophene-diketopyrrolopyrole copolymers with V2O5 as hole transport layer for photovoltaic application. Opt. Mater. (Amst) 109, 110303 (2020). https://doi.org/10.1016/j.optmat.2020.110303

    Article  CAS  Google Scholar 

  39. B.L. Oksengendler, O.B. Ismailova, M.B. Marasulov, N.N. Turaeva, I.N. Nurgaliev, Possible mechanisms of charge separation during exiton decay in the polymer matrices of third-generation solar cells. Appl. Sol. Energy 50, 4–9 (2014). https://doi.org/10.3103/S0003701X14010101

    Article  Google Scholar 

  40. B. Abd El Halim, A. Mahfoud, D. Mohammed Elamine, Numerical analysis of potential buffer layer for Cu2ZnSnS4 (CZTS) solar cells. Optik Stuttg 204, 164155 (2020). https://doi.org/10.1016/j.ijleo.2019.164155

    Article  CAS  Google Scholar 

  41. A.V. Kesavan, V. Adiga, G.K. Chandrasekar, K.M. Panidhara, P.C. Ramamurthy, Nanoscale small molecule self-assembled ITO for photon harvesting in polymer and perovskite solar cells. Sol. Energy 240, 201–210 (2022). https://doi.org/10.1016/j.solener.2022.05.002

    Article  CAS  Google Scholar 

  42. H. Lee, E. Puodziukynaite, Y. Zhang, J.C. Stephenson, L.J. Richter, D.A. Fischer, D.M. DeLongchamp, T. Emrick, A.L. Briseno, Poly(sulfobetaine methacrylate)s as electrode modifiers for inverted organic electronics. J. Am. Chem. Soc. 137, 540–549 (2015). https://doi.org/10.1021/ja512148d

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Researchers Supporting Project number (RSP2024R373), King Saud University, Riyadh, Saudi Arabia. The authors would like to thank, IISC Bangalore-560012 Karnataka, India, for providing laboratory access. The authors would like to thank, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India, for providing the required infrastructure.

Funding

The authors declare that this work is partially supported by Science and Engineering Research Board, New Delhi, India. The grant number is SRG/2021/001690.

Author information

Authors and Affiliations

Authors

Contributions

DA: Data curation; Formal analysis; Writing & Editing. GR: Data curation; writing. MS: Writing; Review & Editing. AVK: Conceptualization, methodology, Formal analysis; Writing, Reviewing & Editing, Investigation. PCR: Conceptualization; Resources; Funding acquisition; review & editing; Project administration; Supervision. ASH: Review and Edited original manuscript.

Corresponding authors

Correspondence to Praveen C. Ramamurthy or Arul Varman Kesavan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhakanantham, D., Raghu, G., Selvamani, M. et al. Role of proton conducting polyelectrolyte on the organic photovoltaics efficiency. J Mater Sci: Mater Electron 35, 776 (2024). https://doi.org/10.1007/s10854-024-12547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12547-y

Navigation