Skip to main content
Log in

The thermochromic characteristics of ITO/VO2 composite films on SiO2 nanospheres

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As a promising thermochromic material for smart windows, VO2-based films have received extensive attention. To enhance the luminous transmittance (Tlum) of thermochromic smart windows without seriously affecting the solar modulation efficiency (ΔTsol), this paper prepared VO2 films by rapid thermal annealing of sputtered vanadium thin films on an ordered SiO2 nanosphere array, and then the ITO as antireflection layer was deposited on VO2 film by reactive magnetron sputtering. The surface morphology, crystal structure and optical transmittance of the films were characterized by Scanning Electron Microscopy, X-ray diffraction and UV–VIS–NIR spectrophotometer, respectively. The SiO2 nanospheres provide continuous refractive index gradient, while the deposition of the ITO antireflection layer creates conditions for thin film interference, thereby synergistically reducing surface reflection in the VO2-based smart window. Compared with the planar VO2 thin film (Tlum, 39.1%), the ITO/VO2/SiO2 composite structure can significantly increase the Tlum from 39.1 to 55.5%, an increase of nearly 16.4%, while the ΔTsol is basically unchanged. The results provide an effective strategy for improving the performance of smart windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data contained in this study can be obtained by contacting the authors.

References

  1. H.B. Ahmed, H.E. Emam, J. Mol. Liq. 321, 114669 (2021)

    CAS  Google Scholar 

  2. N.S. Salman, H.A. Alshamsi, J. Polym. Environ. 30, 5100 (2022)

    CAS  Google Scholar 

  3. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Composites B 174, 106930 (2019)

    CAS  Google Scholar 

  4. S. Zinatloo-Ajabshir, S. Rakhshani, Z. Mehrabadi, M. Farsadrooh, M. Feizi-Dehnayebi, S. Rakhshani, M. Du, T.M. Aminabhavi, J. Environ. Manag. 350, 119545 (2024)

    CAS  Google Scholar 

  5. A. Al-Nayili, W.A. Alhaidry, Res. Chem. Intermed. 49, 4239 (2023)

    CAS  Google Scholar 

  6. G. Hosseinzadeh, S.M. Sajjadi, L. Mostafa, A. Yousefi, R.H. Vafaie, S. Zinatloo-Ajabshir, Surf. Interfaces 42, 103349 (2023)

    CAS  Google Scholar 

  7. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Composites B 167, 643 (2019)

    CAS  Google Scholar 

  8. S. Hamzeh, H. Mahmoudi-Moghaddam, S. Zinatloo-Ajabshir, M. Amiri, S.A. Razavi Nasab, Food Chem. 433, 137363 (2024)

    CAS  PubMed  Google Scholar 

  9. F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci. Mater. Electron. 26, 5043 (2015)

    CAS  Google Scholar 

  10. M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, M. Ghodrati, J. Mater. Sci. Mater. Electron. 31, 17332 (2020)

    Google Scholar 

  11. K.H. Jung, S.J. Yun, T. Slusar, H.-T. Kim, T.M. Roh, Appl. Surf. Sci. 589, 152962 (2022)

    CAS  Google Scholar 

  12. M. Aburas, V. Soebarto, T. Williamson, R. Liang, H. Ebendorff-Heidepriem, Y. Wu, Appl. Energy 255, 113522 (2019)

    Google Scholar 

  13. J.-L. Wang, S.-Z. Sheng, Z. He, R. Wang, Z. Pan, H.-Y. Zhao, J.-W. Liu, S.-H. Yu, Nano Lett. 21, 9976 (2021)

    CAS  PubMed  Google Scholar 

  14. K. Li, S. Meng, S. Xia, X. Ren, G. Gao, ACS Appl. Mater. Interfaces 12, 42193 (2020)

    CAS  PubMed  Google Scholar 

  15. L.Y.L. Wu, Q. Zhao, H. Huang, R.J. Lim, Surf. Coat. Technol. 320, 601 (2017)

    CAS  Google Scholar 

  16. D. Cao, C. Xu, W. Lu, C. Qin, S. Cheng, Sol. RRL 2, 1700219 (2018)

    Google Scholar 

  17. F.J. Morin, Phys. Rev. Lett. 3, 34 (1959)

    CAS  Google Scholar 

  18. T. Chang, X. Cao, L.R. Dedon, S. Long, A. Huang, Z. Shao, N. Li, H. Luo, P. Jin, Nano Energy 44, 256 (2018)

    CAS  Google Scholar 

  19. J. Houska, D. Kolenaty, J. Vlcek, T. Barta, J. Rezek, R. Cerstvy, Sol. Energy Mater. Sol. Cells 191, 365 (2019)

    CAS  Google Scholar 

  20. Y. Xue, S. Yin, Nanoscale 14, 11054 (2022)

    CAS  PubMed  Google Scholar 

  21. M. Feng, X. Bu, J. Yang, D. Li, Z. Zhang, Y. Dai, X. Zhang, J. Mater. Sci. 55, 8444 (2020)

    CAS  Google Scholar 

  22. X. Lv, X. Chai, L. Lv, Y. Cao, Y. Zhang, L. Song, Jpn. J. Appl. Phys. 60, 085501 (2021)

    CAS  Google Scholar 

  23. Y.-C. Lu, C.-H. Hsueh, A.C.S. Appl, Nano Mater. 5, 2923 (2022)

    CAS  Google Scholar 

  24. X. Qian, N. Wang, Y. Li, J. Zhang, Z. Xu, Y. Long, Langmuir 30, 10766 (2014)

    CAS  PubMed  Google Scholar 

  25. L. Zhou, J. Liang, M. Hu, P. Li, X. Song, Y. Zhao, X. Qiang, Appl. Phys. Lett. 110, 193901 (2017)

    Google Scholar 

  26. T. Chang, X. Cao, N. Li, S. Long, Y. Zhu, J. Huang, H. Luo, P. Jin, Matter 1, 734 (2019)

    CAS  Google Scholar 

  27. J. Zhang, J. Wang, C. Yang, H. Jia, X. Cui, S. Zhao, Y. Xu, Sol. Energy Mater. Sol. Cells 162, 134 (2017)

    CAS  Google Scholar 

  28. H. Koo, D. Shin, S.-H. Bae, K.-E. Ko, S.-H. Chang, C. Park, J. Mater. Eng. Perform. 23, 402 (2014)

    CAS  Google Scholar 

  29. J. Zhang, X. Li, M. Zhong, Z. Zhang, M. Jia, J. Li, X. Gao, L. Chen, Q. Li, W. Zhang, D. Xu, Small 18, 2201716 (2022)

    CAS  Google Scholar 

  30. C. Cao, B. Hu, G. Tu, X. Ji, Z. Li, F. Xu, T. Chang, P. Jin, X. Cao, ACS Appl. Mater. Interfaces 14, 28105 (2022)

    CAS  PubMed  Google Scholar 

  31. I. Karakurt, J. Boneberg, P. Leiderer, R. Lopez, A. Halabica, R.F. Haglund, Appl. Phys. Lett. 91, 091907 (2007)

    Google Scholar 

  32. J.-R. Liang, M.-J. Wu, M. Hu, J. Liu, N.-W. Zhu, X.-X. Xia, H.-D. Chen, Chin. Phys. B 23, 076801 (2014)

    Google Scholar 

  33. S. Moshtaghi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci. Mater. Electron. 27, 425 (2016)

    CAS  Google Scholar 

  34. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Ceram. Int. 46, 17186 (2020)

    CAS  Google Scholar 

  35. S. Zhao, X. Zhang, Q. Wang, Z. Lv, S. Liu, C. Liu, N. Wang, Y. Cui, W. Ding, H. Wang, W. Jiang, Mater. Lett. 257, 126770 (2019)

    CAS  Google Scholar 

  36. S. Liu, C.Y. Tso, H.H. Lee, Y. Zhang, K.M. Yu, C.Y.H. Chao, Sci. Rep. 10, 11376 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Y. Cao, C. Zhou, J. Magn. Magn. Mater. 333, 1 (2013)

    CAS  Google Scholar 

  38. D. Kolenaty, J. Houska, J. Vlcek, J. Alloys Compd. 767, 46 (2018)

    CAS  Google Scholar 

  39. P. Jin, G. Xu, M. Tazawa, K. Yoshimura, Appl. Phys. A 77, 455 (2003)

    CAS  Google Scholar 

  40. Y. Ke, I. Balin, N. Wang, Q. Lu, A.I.Y. Tok, T.J. White, S. Magdassi, I. Abdulhalim, Y. Long, ACS Appl. Mater. Interfaces 8, 33112 (2016)

    CAS  PubMed  Google Scholar 

  41. P. Jin, G. Xu, M. Tazawa, K. Yoshimura, Jpn. J. Appl. Phys. 41, L278 (2002)

    CAS  Google Scholar 

  42. T. Chang, X. Cao, N. Li, S. Long, X. Gao, L.R. Dedon, G. Sun, H. Luo, P. Jin, ACS Appl. Mater. Interfaces 9, 26029 (2017)

    CAS  PubMed  Google Scholar 

  43. S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, P. Jin, RSC Adv. 6, 106435 (2016)

    CAS  Google Scholar 

  44. J. Wu, Z. Wang, B. Li, B. Liu, X. Zhao, G. Tang, D. Zeng, S. Tian, Materials 16, 273 (2022)

    PubMed  PubMed Central  Google Scholar 

  45. L. Kang, Y. Gao, H. Luo, J. Wang, B. Zhu, Z. Zhang, J. Du, M. Kanehira, Y. Zhang, Sol. Energy Mater. Sol. Cells 95, 3189 (2011)

    CAS  Google Scholar 

  46. J. Zhao, D. Chen, C. Hao, W. Mi, L. Zhou, Opt. Mater. 133, 112960 (2022)

    CAS  Google Scholar 

  47. T. Huang, M. Qiu, P. Xu, W. Yang, L. Zhang, Y. Shao, Z. Chen, X. Chen, N. Dai, J. Mater. Chem. C 11, 513 (2023)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62004140, 52302339), the Natural Science Foundation of Tianjin (Grant No. 22JCQNJC01370), the Open Project Program of Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems (Grant No. 2023SZKF23).

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62004140, 52302339), Natural Science Foundation of Tianjin (Grant No. 22JCQNJC01370), Open Project Program of Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems (Grant No. 2023SZKF23).

Author information

Authors and Affiliations

Authors

Contributions

Xiaofei Zeng: data curation, validation, writing—review & editing. Liwei Zhou: conceptualization, methodology, writing, funding acquisition—original draft. Wei Mi: validation. Di Wang: investigation. Linan He: supervision, writing—review & editing, funding acquisition. Dongdong Qi: supervision, formal analysis.

Corresponding author

Correspondence to Liwei Zhou.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Zhou, L., Mi, W. et al. The thermochromic characteristics of ITO/VO2 composite films on SiO2 nanospheres. J Mater Sci: Mater Electron 35, 752 (2024). https://doi.org/10.1007/s10854-024-12539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12539-y

Navigation