Skip to main content
Log in

On the plastic anisotropy of gradient nanostructured nickel

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The plastic anisotropy of gradient nanostructured (GNS) metals profoundly influences their mechanical behaviors and performances, a complete understanding of which is crucial to the real-world industrial applications of this novel class of materials. To this end, a dislocation density-based crystal plasticity finite element model is used in this work to investigate the plastically anisotropic behaviors of GNS Ni, with a focus on their origin as well as the structure–property relationship of GNS metals in general. It is found that GNS Ni demonstrates significant plastic anisotropy, which can be attributed to both the grain size gradient and the texture. Under 90° loading, the presence of the grain size gradient leads to the plastic strain being mostly accommodated by the plastically softer coarse grains at the bottom of the specimen, resulting in diminished yield and flow stresses and consequently significant plastic anisotropy. The texture, on the other hand, induces plastic anisotropy via the Schmid effect, where the loading direction with the lowest average Schmid factor demonstrates the highest yield stress and vice versa. Increasing the grain size gradient gives rise to an increase in the plastic anisotropy measured by the average Lankford coefficient \(\overline{\text{R} }\), as a result of the increasing texture gradient. In addition, a new plastic anisotropy measure is proposed for GNS metals, which demonstrates an approximately linear relationship with \(\overline{\text{R} }\). The conclusions made in this work are instrumental to optimizing GNS metals via microstructural design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure  2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ma E, Zhu T (2017) Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today 20(6):323–331

    Article  CAS  Google Scholar 

  2. Li X, Lu L, Li J, Zhang X, Gao H (2020) Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat Rev Mater 5(9):706–723

    Article  CAS  Google Scholar 

  3. Wu X, Zhu Y (2021) Gradient and lamellar heterostructures for superior mechanical properties. MRS Bull 46(3):244–249

    Article  CAS  Google Scholar 

  4. Zhu Y, Ameyama K, Anderson PM, Beyerlein IJ, Gao H, Kim HS, Lavernia E, Mathaudhu S, Mughrabi H, Ritchie RO, Tsuji N, Zhang X, Wu X (2021) Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Letters 9(1):1–31

    Article  Google Scholar 

  5. Yang M, Pan Y, Yuan F, Zhu Y, Wu X (2016) Back stress strengthening and strain hardening in gradient structure. Mater Res Letters 4(3):145–151

    Article  CAS  Google Scholar 

  6. Zhu Y, Wu X (2019) Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Letters 7(10):393–398

    Article  Google Scholar 

  7. Wu X, Jiang P, Chen L, Yuan F, Zhu YT (2014) Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci 111(20):7197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee HH, Yoon JI, Park HK, Kim HS (2019) Unique microstructure and simultaneous enhancements of strength and ductility in gradient-microstructured Cu sheet produced by single-roll angular-rolling. Acta Mater 166:638–649

    Article  CAS  Google Scholar 

  9. Wu X, Zhu Y, Lu K (2020) Ductility and strain hardening in gradient and lamellar structured materials. Scripta Mater 186:321–325

    Article  CAS  Google Scholar 

  10. Wu X, Zhu Y (2017) Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Letters 5(8):527–532

    Article  CAS  Google Scholar 

  11. Wu X, Yang M, Li R, Jiang P, Yuan F, Wang Y, Zhu Y, Wei Y (2021) Plastic accommodation during tensile deformation of gradient structure. Sci China Mater 64(6):1534–1544

    Article  Google Scholar 

  12. Lu K (2014) Making strong nanomaterials ductile with gradients. Science 345(6203):1455

    Article  CAS  PubMed  Google Scholar 

  13. Lin Y, Pan J, Luo Z, Lu Y, Lu K, Li Y (2020) A grain-size-dependent structure evolution in gradient-structured (GS) Ni under tension. Nano Mater Sci 2(1):39–49

    Article  Google Scholar 

  14. Fang TH, Li WL, Tao NR, Lu K (2011) Revealing Extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331(6024):1587

    Article  CAS  PubMed  Google Scholar 

  15. Wu L, Tang X, Liu J, Deng W, Du J, Luo K, Cai J, Lu J (2023) Improvement of strength-ductility synergy of Mg–Al–Mn alloy using laser shock peening-induced gradient nanostructure. Mater Sci Eng, A 871:144844

    Article  CAS  Google Scholar 

  16. Zeng L, Zeng L, Xu P, Liu W, Liang T, Li W, Zhang X (2023) Enhanced strength-ductility synergy in high-entropy alloys via architecting three-level gradient hierarchical nanostructure. Mater Sci Eng, A 885:145597

    Article  CAS  Google Scholar 

  17. Yang J, Liu D, Li M, Ren Z, Liu D, Xu X, Zhang X, Zhang H, Xiang J, Ye C (2023) Evolution mechanism for a surface gradient nanostructure in GH4169 superalloy induced by an ultrasonic surface rolling process. Mater Sci Eng, A 879:145271

    Article  CAS  Google Scholar 

  18. Chen L, Li W, Sun Y, Luo M (2022) Effect of microstructure evolution on the mechanical properties of a Mg–Y–Nd–Zr alloy with a gradient nanostructure produced via ultrasonic surface rolling processing. J Alloy Compd 923:166495

    Article  CAS  Google Scholar 

  19. Lei L, Zhao Q, Zhao Y, Wu C, Huang S, Jia W, Zeng W (2022) Gradient nanostructure, phase transformation, amorphization and enhanced strength-plasticity synergy of pure titanium manufactured by ultrasonic surface rolling. J Mater Process Technol 299:117322

    Article  CAS  Google Scholar 

  20. Li X, Guan B, Wang Y-L, Wei Y-L, Li B (2023) Ascertaining the microstructural evolution and strengthening mechanisms of the gradient nanostructured pure titanium fabricated by ultrasonic surface rolling process. Surf Coat Technol 473:130047

    Article  CAS  Google Scholar 

  21. Xiong Z, Jiang Y, Yang M, Zhang Y, Lei L (2022) Achieving superior strength and ductility in 7075 aluminum alloy through the design of multi-gradient nanostructure by ultrasonic surface rolling and aging. J Alloy Compd 918:165669

    Article  CAS  Google Scholar 

  22. Griesbach C, Bronkhorst CA, Thevamaran R (2024) Crystal plasticity simulations reveal cooperative plasticity mechanisms leading to enhanced strength and toughness in gradient nanostructured metals. Acta Mater 270:119835

    Article  CAS  Google Scholar 

  23. Wang Y, Ding Z (2024) Constitutive modeling and tensile behavior of a fully austenitic gradient nanostructured stainless steel. Mater Sci Eng, A 901:146575

    Article  CAS  Google Scholar 

  24. Sun YT, Kong X, Wang ZB (2022) Superior mechanical properties and deformation mechanisms of a 304 stainless steel plate with gradient nanostructure. Int J Plast 155:103336

    Article  CAS  Google Scholar 

  25. Ding Z, Xie J, Wang C, Wang T, Chen A, Wang X, Gan B (2023) Twin-induced transformation strengthening of CoCrNi-based medium-entropy alloy with a gradient nanostructure. J Market Res 24:3969–3976

    CAS  Google Scholar 

  26. Barrios A, Nathaniel JE, Monti J, Milne Z, Adams DP, Hattar K, Medlin DL, Dingreville R, Boyce BL (2023) Gradient nanostructuring via compositional means. Acta Mater 247:118733

    Article  CAS  Google Scholar 

  27. Xu L, Huang Z, Shen Q, Chen F (2022) Atomistic simulations of plasticity heterogeneity in gradient nano-grained FCC metals. Mater Des 221:110929

    Article  CAS  Google Scholar 

  28. Lu W, Luo X, Ning D, Wang M, Yang C, Li M, Yang Y, Li P, Huang B (2022) Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy. J Mater Sci Technol 112:195–201

    Article  CAS  Google Scholar 

  29. Yao N, Lu T, Sun B, Chen X, Cheng W, Yang C, Xie Y, Zhang X-C, Tu S-T (2024) Gradient nanostructure induces exceptional cryogenic mechanical properties in an additively manufactured medium entropy alloy. Scripta Mater 241:115885

    Article  CAS  Google Scholar 

  30. Yu L (2022) Prediction of the overall mechanical response of gradient nano-grained materials based on grain size distribution profile. Int J Solids Struct 248:111686

    Article  CAS  Google Scholar 

  31. He C-Y, Yang X-F, Chen H, Zhang Y, Yuan G-J, Jia Y-F, Zhang X-C (2022) Size-dependent deformation mechanisms in copper gradient nano-grained structure: a molecular dynamics simulation. Mater Today Commun 31:103198

    Article  CAS  Google Scholar 

  32. Tian Y, Ren F, Chen F (2022) Twin-boundary-spacing-dependent strength in gradient nano-grained copper. Mater Today Commun 33:104836

    Article  CAS  Google Scholar 

  33. Zhao J, Liu B, Wang Y, Liang Y, Li J, Zhang X (2023) Dispersed strain bands promote the ductility of gradient nano-grained material: a strain gradient constitutive modeling considering damage effect. Mech Mater 179:104599

    Article  Google Scholar 

  34. Zhou X, Mao X, Su G, Sun W, Zhang C (2022) The deformation behavior of the gradient nanostructured microstructure of low-carbon steel under the tensile stress. Mater Sci Eng, A 844:143209

    Article  CAS  Google Scholar 

  35. R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 5th ed., Wiley, 2012.

  36. W.F. Hosford, R.M. Caddell, Metal Forming: Mechanics and Metallurgy, 4th ed., Cambridge University Press2011.

  37. Ebrahimi M, Wang Q, Attarilar S (2023) A comprehensive review of magnesium-based alloys and composites processed by cyclic extrusion compression and the related techniques. Prog Mater Sci 131:101016

    Article  CAS  Google Scholar 

  38. Beyerlein IJ, Tóth LS (2009) Texture evolution in equal-channel angular extrusion. Prog Mater Sci 54(4):427–510

    Article  CAS  Google Scholar 

  39. Xin-yun W, Hu HE, Ju-chen X (2009) Effect of deformation condition on plastic anisotropy of as-rolled 7050 aluminum alloy plate. Mater Sci Eng, A 515(1):1–9

    Article  Google Scholar 

  40. Hosford W, Kim C (1976) The dependence of deep-drawability on normal anisotropy. Crystallogr Anal Metall Trans A 7(3):468–472

    Article  Google Scholar 

  41. Hu P, Liu YQ, Wang JC (2001) Numerical study of the flange earring of deep-drawing sheets with stronger anisotropy. Int J Mech Sci 43(1):279–296

    Article  Google Scholar 

  42. Jacobs LJM, Atzema EH, Moerman J, de Rooij MB (2023) Quantification of the influence of anisotropic plastic yielding on cold rolling force. J Mater Process Technol 319:118055

    Article  CAS  Google Scholar 

  43. Barnwal VK, Raghavan R, Tewari A, Narasimhan K, Mishra SK (2017) Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet. Mater Sci Eng, A 679:56–65

    Article  CAS  Google Scholar 

  44. Xu T, Li F, Zhang G, Fan X (2023) Effect of plastic anisotropy on notch deformation behavior of 7075 high-strength aluminum alloy sheet subjected to axial tension. Theoret Appl Fract Mech 124:103828

    Article  CAS  Google Scholar 

  45. Kakehi K (1999) Effect of plastic anisotropy on tensile strength of single crystals of an ni-based superalloy. Scripta Mater 42(2):197–202

    Article  Google Scholar 

  46. Meng B, Zhang YY, Cheng C, Han JQ, Wan M (2018) Effect of plastic anisotropy on microscale ductile fracture and microformability of stainless steel foil. Int J Mech Sci 148:620–635

    Article  Google Scholar 

  47. Izadi E, Opie S, Lim H, Peralta P, Rajagopalan J (2018) Effect of plastic anisotropy on the deformation behavior of bicrystalline aluminum films – experiments and modeling. Acta Mater 142:58–70

    Article  CAS  Google Scholar 

  48. Nizolek T, Beyerlein IJ, Mara NA, Avallone JT, Pollock TM (2016) Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates. Appl Phys Lett 108(5):051903

    Article  Google Scholar 

  49. You Z, Li X, Gui L, Lu Q, Zhu T, Gao H, Lu L (2013) Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater 61(1):217–227

    Article  CAS  Google Scholar 

  50. Bian X, Yuan F, Wu X, Zhu Y (2017) The evolution of strain gradient and anisotropy in gradient-structured metal. Metall Mater Trans A 48(9):3951–3960

    Article  CAS  Google Scholar 

  51. Li Q, Xue S, Zhang Y, Sun X, Wang H, Zhang X (2020) Plastic anisotropy and tension-compression asymmetry in nanotwinned Al–Fe alloys: an in-situ micromechanical investigation. Int J Plast 132:102760

    Article  CAS  Google Scholar 

  52. Voyiadjis GZ, Al-Rub RKA, Palazotto AN (2003) Non-local coupling of viscoplasticity and anisotropic viscodamage for impact problems using the gradient theory. Arch Mech 55:39–89

    Google Scholar 

  53. Lu J, Papadopoulos P (2000) A covariant constitutive description of anisotropic non-linear elasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP 51(2):204–217

    Article  Google Scholar 

  54. Sumelka W, Nowak M, Nassr AA, Al-Rifaie H, Malendowski M, Gajewski T, Peksa P, Studziński R, Sielicki PW (2021) Dynamic failure of the aluminium plate under air-blast loading in the framework of the fractional viscoplasticity model - theory and validation. Int J Impact Eng 158:104024

    Article  Google Scholar 

  55. Safaei M, Lee M-G, Zang S-L, De Waele W (2014) An evolutionary anisotropic model for sheet metals based on non-associated flow rule approach. Comput Mater Sci 81:15–29

    Article  CAS  Google Scholar 

  56. Manzari MT, Yonten K (2014) On implementation and performance of an anisotropic constitutive model for clays. Int J Comput Methods 11(02):1342009

    Article  Google Scholar 

  57. Sielicki PW, Sumelka W, Łodygowski T (2019) Close range explosive loading on steel column in the framework of anisotropic viscoplasticity. Metals 9(4):454

    Article  CAS  Google Scholar 

  58. Yang X, Ma X, Moering J, Zhou H, Wang W, Gong Y, Tao J, Zhu Y, Zhu X (2015) Influence of gradient structure volume fraction on the mechanical properties of pure copper. Mater Sci Eng, A 645:280–285

    Article  CAS  Google Scholar 

  59. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater 58(4):1152–1211

    Article  CAS  Google Scholar 

  60. Li J, Chen T, Chen T, Yun Z, Xia X (2022) Computational modelling of frictional deformation of bimodal nanograined metals. Int J Mech Sci 222:107220

    Article  Google Scholar 

  61. Li J, Chen T, Chen T, Lu W (2021) Enhanced frictional performance in gradient nanostructures by strain delocalization. Int J Mech Sci 201:106458

    Article  Google Scholar 

  62. Eghtesad A, Knezevic M (2021) A full-field crystal plasticity model including the effects of precipitates: application to monotonic, load reversal, and low-cycle fatigue behavior of Inconel 718. Mater Sci Eng, A 803:140478

    Article  CAS  Google Scholar 

  63. Feng Z, Zecevic M, Knezevic M (2021) Stress-assisted (γ→α′) and strain-induced (γ→ε→α′) phase transformation kinetics laws implemented in a crystal plasticity model for predicting strain path sensitive deformation of austenitic steels. Int J Plast 136:102807

    Article  CAS  Google Scholar 

  64. Evers LP, Brekelmans WAM, Geers MGD (2004) Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int J Solids Struct 41(18):5209–5230

    Article  Google Scholar 

  65. Bayley CJ, Brekelmans WAM, Geers MGD (2006) A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int J Solids Struct 43(24):7268–7286

    Article  Google Scholar 

  66. Yuan R (2022) Establishing a quantitative relationship between strain gradient and hetero-deformation-induced stress in gradient-structured metals. Acta Mech 233(3):961–989

    Article  Google Scholar 

  67. Yuan R (2023) Effects of grain size, texture and grain growth capacity gradients on the deformation mechanisms and mechanical properties of gradient nanostructured nickel. Acta Mech 234(9):4147–4181

    Article  Google Scholar 

  68. Lu X, Zhang X, Shi M, Roters F, Kang G, Raabe D (2019) Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper. Int J Plast 113:52–73

    Article  CAS  Google Scholar 

  69. Marin EB, Dawson PR (1998) On modelling the elasto-viscoplastic response of metals using polycrystal plasticity. Comput Methods Appl Mech Eng 165(1):1–21

    Article  Google Scholar 

  70. Lin Y, Pan J, Zhou HF, Gao HJ, Li Y (2018) Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Mater 153:279–289

    Article  CAS  Google Scholar 

  71. R. Hill, E. Orowan, A (1948). Theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London. Series A. 193 (1033): 281–297.

  72. Banabic D (2000) Anisotropy of Sheet Metal. In: Banabic D, Bunge HJ, Pöhlandt K, Tekkaya AE, Banabic D (eds) Formability of Metallic Materials: Plastic Anisotropy Formability Testing, Forming Limits. Springer Berlin Heidelberg, Heidelberg, pp 119–172

    Chapter  Google Scholar 

  73. Knezevic M, Nizolek T, Ardeljan M, Beyerlein IJ, Mara NA, Pollock TM (2014) Texture evolution in two-phase Zr/Nb lamellar composites during accumulative roll bonding. Int J Plast 57:16–28

    Article  CAS  Google Scholar 

  74. Zhilyaev AP, Samigullina AA, Nazarov AA, Shayakhmetova ER (2018) Structure evolution in coarse-grained nickel under ultrasonic treatment. Mater Sci Eng, A 731:231–238

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant No. 12002269 and by Xi’an University of Science and Technology under Grant No. 2019QDJ009.

Funding

National Natural Science Foundation of China, 12002269, Rui Yuan, and Xi’an University of Science and Technology, 2019QDJ009, Rui Yuan

Author information

Authors and Affiliations

Authors

Contributions

Rui Yuan contributed to conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing—original draft, writing—review and editing, visualization, supervision, project administration and funding acquisition. Chun Wang performed validation, formal analysis, investigation, writing—original draft, writing—review and editing, and visualization.

Corresponding author

Correspondence to Rui Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, R., Wang, C. On the plastic anisotropy of gradient nanostructured nickel. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-10216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-10216-3

Navigation