Skip to main content

Advertisement

Log in

Recent advances in ovarian cancer diagnosis using 2D nanomaterials-based electrochemical biosensors: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ovarian cancer (OC) is a deadly disease with a high mortality rate, primarily due to its often asymptomatic nature in early stages and the absence of effective screening methods. Conventional imaging methods have several drawbacks, such as difficulty in detecting small tumors, challenges in differentiating between benign and malignant tumors, dangerous radiation exposure, high cost, low sensitivity, and low specificity in detecting early-stage malignancies. On the other hand, 2D nanomaterials-based electrochemical biosensors present novel opportunities for early detection of ovarian cancer biomarkers, leveraging their unique properties such as high surface-to-volume ratio and excellent electrical conductivity. These materials enhance sensor sensitivity and selectivity, enabling the detection of biomarkers at ultra-low concentrations, thus improving diagnostic accuracy. Their compatibility with miniaturization further facilitates the development of portable, point-of-care devices, revolutionizing early screening efforts in ovarian cancer detection. This review paper overviews recent advancements in OC biomarker detection using 2D nanomaterials-based electrochemical biosensors. A detailed discussion is presented on the electrochemical detection of carbohydrate antigen 125 (CA125), mucin 1 (MUC1), and human epididymis protein 4 (HE4) biomarkers regarding sensing materials, sensing approach, analytical technique, and performance characteristics like limit of detection and linear range. Other OC biomarkers such as SKOV3, breast cancer gene 1 (BRCA1), stress-induced phosphoprotein 1 (STIP1), and flavin adenine dinucleotide are also briefly discussed. Finally, the review discusses the difficulties and future outlooks of diagnosing OC via an electrochemical sensing approach. The present review article emphasizes the application of 2D nanomaterials in the early diagnosis of ovarian cancer through an electrochemical sensing approach.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1 
Figure 2
Figure 3 
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10 
Figure 11
Figure 12 
Figure 13
Figure 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  2. Giampaolino P, Della Corte L, Foreste V, Vitale SG, Chiofalo B, Cianci S, Zullo F, Bifulco G (2019) Unraveling a difficult diagnosis: the tricks for early recognition of ovarian cancer. Minerva Med 110:279–291

    Article  PubMed  Google Scholar 

  3. Stewart C, Ralyea C, Lockwood S (2019) Ovarian cancer: an integrated review. Semin Oncol Nurs 35:151–156

    Article  PubMed  Google Scholar 

  4. Ebell MH, Culp M, Lastinger K, Dasigi T (2015) A systematic review of the bimanual examination as a test for ovarian cancer. Am J Prev Med 48:350–356

    Article  PubMed  Google Scholar 

  5. Qian L, Ren J, Liu A, Gao Y, Hao F, Zhao L, Wu H, Niu G (2020) MR imaging of epithelial ovarian cancer: a combined model to predict histologic subtypes. Eur Radiol 30:5815–5825

    Article  CAS  PubMed  Google Scholar 

  6. Shadab S, Tadayon T (2018) Histopathological diagnosis of ovarian mass. J Pathol Nepal 8:1261–1264

    Article  Google Scholar 

  7. Pan H-S, Lee S-L, Huang L-W, Chen Y-K (2011) Combined positron emission tomography–computed tomography and tumor markers for detecting recurrent ovarian cancer. Arch Gynecol Obstet 283:335–341

    Article  CAS  PubMed  Google Scholar 

  8. Ladegaard Baun M-L, Dueholm M, Heje HN, Hamilton W, Petersen LK, Vedsted P (2021) Direct access from general practice to transvaginal ultrasound for early detection of ovarian cancer: a feasibility study. Scand J Prim Health Care 39:230–239

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paraskevaidi M, Ashton KM, Stringfellow HF, Wood NJ, Keating PJ, Rowbottom AW, Martin-Hirsch PL, Martin FL (2018) Raman spectroscopic techniques to detect ovarian cancer biomarkers in blood plasma. Talanta 189:281–288

    Article  CAS  PubMed  Google Scholar 

  10. Das J, Kelley SO (2011) Protein detection using arrayed microsensor chips: tuning sensor footprint to achieve ultrasensitive readout of ca-125 in serum and whole blood. Anal Chem 83:1167–1172

    Article  CAS  PubMed  Google Scholar 

  11. Abou-Omar MN, Attia MS, Afify HG, Amin MA, Boukherroub R, Mohamed EH (2021) Novel optical biosensor based on a nano-gold coated by schiff base doped in sol/gel matrix for sensitive screening of oncomarker CA-125. ACS Omega 6:20812–20821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding Y, Liu J, Jin X, Shen G, Yu R (2008) A novel piezoelectric immunosensor for CA125 using a hydroxyapatite/chitosan nanocomposite-based biomolecular immobilization method. Aust J Chem 61:500–505

    Article  CAS  Google Scholar 

  13. Nunna BB, Mandal D, Lee JU, Singh H, Zhuang S, Misra D, Bhuyian MNU, Lee ES (2019) Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor. Nano Converg 6:1–12

    Article  Google Scholar 

  14. Zhao C, Li C, Li M, Qian L, Wang L, Li H (2022) Surface acoustic wave immunosensor based on au-nanoparticles-decorated graphene fluidic channel for CA125 detection. Sens Actuators B Chem 367:132063

    Article  CAS  Google Scholar 

  15. Wang J-X, Zhuo Y, Zhou Y, Yuan R, Chai Y-Q (2015) Electrochemiluminescence immunosensor based on multifunctional luminol-capped AuNPs@Fe3O4 nanocomposite for the detection of mucin-1. Biosens Bioelectron 71:407–413

    Article  CAS  PubMed  Google Scholar 

  16. Li N-S, Lin W-L, Hsu Y-P, Chen Y-T, Shiue Y-L, Yang H-W (2019) Combined detection of CA19–9 and MUC1 using a colorimetric immunosensor based on magnetic gold nanorods for ultrasensitive risk assessment of pancreatic cancer. ACS Appl Bio Mater 2:4847–4855

    Article  CAS  PubMed  Google Scholar 

  17. Saad FA, Salih E, Glimcher MJ (2008) Identification of osteopontin phosphorylation sites involved in bone remodeling and inhibition of pathological calcification. J Cell Biochem 103:852–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Y, Cai Q, Qin C, Jin Y, Wang J, Chen Y, Ouyang Y, Li H, Liu S (2020) Field-effect transistor bioassay for ultrasensitive detection of folate receptor 1 by ligand-protein interaction. Microchim Acta 187:637

    Article  CAS  Google Scholar 

  19. Ladd J, Lu H, Taylor AD, Goodell V, Disis ML, Jiang S (2009) Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. Coll Surf B Biointerfaces 70:1–6

    Article  CAS  Google Scholar 

  20. Liu Y-S, Sun Y, Vernier PT, Liang C-H, Chong SYC, Gundersen MA (2007) pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J Phys Chem C 111:2872–2878

    Article  CAS  Google Scholar 

  21. Samadi Pakchin P, Fathi M, Ghanbari H, Saber R, Omidi Y (2020) A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens Bioelectron 153:112029

    Article  CAS  PubMed  Google Scholar 

  22. Chen D, Wu Y, Tilley RD, Gooding JJ (2022) Rapid and ultrasensitive electrochemical detection of DNA methylation for ovarian cancer diagnosis. Biosens Bioelectron 206:114126

    Article  CAS  PubMed  Google Scholar 

  23. Rafique S, Tabassum S, Akram R (2020) Sensitive competitive label-free electrochemical immunosensor for primal detection of ovarian cancer. Chem Pap 74:2591–2603

    Article  CAS  Google Scholar 

  24. Er OF, Kivrak H, Ozok O, Kivrak A (2022) Novel 5-(2-phenylbenzo[b]thiophen-3-yl)furan-2-carbaldehyde based ovarian cancer carbohydrate antigen 125 electrochemical sensor. Mater Chem Phys 291:126560

    Article  CAS  Google Scholar 

  25. Johari-Ahar M, Rashidi MR, Barar J, Aghaie M, Mohammadnejad D, Ramazani A, Karami P, Coukos G, Omidi Y (2015) An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients. Nanoscale 7:3768–3779

    Article  CAS  PubMed  Google Scholar 

  26. Hasan MR, Ahommed MS, Daizy M, Bacchu MS, Ali MR, Al-Mamun MR, Saad Aly MA, Khan MZH, Hossain SI (2021) Recent development in electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron X 8:100075

    CAS  Google Scholar 

  27. Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438

    Article  CAS  PubMed  Google Scholar 

  28. Pourmadadi M, Moammeri A, Shamsabadipour A, Moghaddam YF, Rahdar A, Pandey S (2023) Application of various optical and electrochemical nanobiosensors for detecting cancer antigen 125 (CA-125): a review. Biosensors 13:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pourmadadi M, Rajabzadeh-Khosroshahi M, Eshaghi MM, Rahmani E, Motasadizadeh H, Arshad R, Rahdar A, Pandey S (2023) TiO2-based nanocomposites for cancer diagnosis and therapy: A comprehensive review. J Drug Deliv Sci Technol 82:104370

    Article  CAS  Google Scholar 

  30. Pourmadadi M, Shamsabadipour A, Aslani A, Eshaghi MM, Rahdar A, Pandey S (2023) Development of polyvinylpyrrolidone-based nanomaterials for biosensors applications: a review. Inorg Chem Commun 152:110714

    Article  CAS  Google Scholar 

  31. Sargazi S, Simge ER, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ (2022) Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: a review. Chem Biol interact 361:109964

    Article  CAS  PubMed  Google Scholar 

  32. Fahmy HM, Abu Serea ES, Salah-Eldin RE, Al-Hafiry SA, Ali MK, Shalan AE, Lanceros-Méndez S (2022) Recent progress in graphene- and related carbon-nanomaterial-based electrochemical biosensors for early disease detection. ACS Biomater Sci Eng 8:964–1000

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, Xiong Q, Xiao F, Duan H (2017) 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens Bioelectron 89:136–151

    Article  CAS  PubMed  Google Scholar 

  34. Yang Y, Huang Q, Xiao Z, Liu M, Zhu Y, Chen Q, Li Y, Ai K (2022) Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer. Mater Today Bio 13:100218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barani M, Bilal M, Sabir F, Rahdar A, Kyzas GZ (2021) Nanotechnology in ovarian cancer: diagnosis and treatment. Life Sci 266:118914

    Article  CAS  PubMed  Google Scholar 

  36. Diaconu I, Cristea C, Hârceagă V, Marrazza G, Berindan-Neagoe I, Săndulescu R (2013) Electrochemical immunosensors in breast and ovarian cancer. Clin Chim Acta 425:128–138

    Article  CAS  PubMed  Google Scholar 

  37. Anzar N, Rahil Hasan M, Akram M, Yadav N, Narang J (2020) Systematic and validated techniques for the detection of ovarian cancer emphasizing the electro-analytical approach. Process Biochem 94:126–135

    Article  CAS  Google Scholar 

  38. Razmi N, Hasanzadeh M (2018) Current advancement on diagnosis of ovarian cancer using biosensing of CA 125 biomarker: analytical approaches. TrAC Trends Anal Chem 108:1–12

    Article  CAS  Google Scholar 

  39. Sha R, Badhulika S (2020) Recent advancements in fabrication of nanomaterial based biosensors for diagnosis of ovarian cancer: a comprehensive review. Microchim Acta 187:181

    Article  CAS  Google Scholar 

  40. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  41. Corella D, Ordovás JM (2015) Biomarkers: background, classification and guidelines for applications in nutritional epidemiology. Nutr hosp 31:177–188

    PubMed  Google Scholar 

  42. Wang G, Jin F, Dai N, Zhong Z, Qing Y, Li M, Yuan R, Wang D (2012) Signal-enhanced electrochemiluminescence immunosensor based on synergistic catalysis of nicotinamide adenine dinucleotide hydride and silver nanoparticles. Anal Biochem 422:7–13

    Article  CAS  PubMed  Google Scholar 

  43. Wang C, Ye X, Wang Z, Wu T, Wang Y, Li C (2017) Molecularly imprinted photoelectrochemical sensor for human epididymis protein 4 based on polymerized ionic liquid hydrogel and gold nanoparticle/ZnCdHgSe quantum dots composite film. Anal Chem 89:12391–12398

    Article  CAS  PubMed  Google Scholar 

  44. Bharathi G, Lin F, Liu L, Ohulchanskyy TY, Hu R, Qu J (2021) An all-graphene quantum dot Förster resonance energy transfer (FRET) probe for ratiometric detection of HE4 ovarian cancer biomarker. Coll Surf B Biointerfaces 198:111458

    Article  CAS  Google Scholar 

  45. Pereira AC, Moreira FTC, Rodrigues LR, Sales MGF (2022) Paper-based aptasensor for colorimetric detection of osteopontin. Anal Chim Acta 1198:339557

    Article  CAS  PubMed  Google Scholar 

  46. Doering K, Meder G, Hinnenberger M, Woelcke J, Mayr LM, Hassiepen U (2008) A fluorescence lifetime-based assay for protease inhibitor profiling on human kallikrein 7. J Biomol Screen 14:1–9

    Article  Google Scholar 

  47. Yagishita A, Ueno T, Tsuchihara K, Urano Y (2021) Amino BODIPY-based blue fluorescent probes for aldehyde dehydrogenase 1-expressing cells. Bioconjug Chem 32:234–238

    Article  CAS  PubMed  Google Scholar 

  48. Lee H, Kim J, Kim H, Kim Y, Choi Y (2014) A folate receptor-specific activatable probe for near-infrared fluorescence imaging of ovarian cancer. Chem Commun 50:7507–7510

    Article  CAS  Google Scholar 

  49. Liu Y-L, Da H-M, Chai Y-Q, Yuan R, Liu H-Y (2019) Photoelectrochemical aptamer-based sensing of the vascular endothelial growth factor by adjusting the light harvesting efficiency of g-C3N4 via porous carbon spheres. Microchim Acta 186:275

    Article  Google Scholar 

  50. Lin C, Huang Q, Hong X, Hong S, Shu X, Wang E, Wang L, Fu W, Lin Z (2022) Electrochemiluminescence aptasensor for vascular endothelial growth factor 165 detection based on Ru(bpy)32+/Au nanoparticles film modified electrode and double signal amplification. Bioelectrochemistry 146:108151

    Article  CAS  PubMed  Google Scholar 

  51. Cao Y, Wang Z, Cao J, Mao X, Chen G, Zhao J (2017) A general protein aptasensing strategy based on untemplated nucleic acid elongation and the use of fluorescent copper nanoparticles: Application to the detection of thrombin and the vascular endothelial growth factor. Microchim Acta 184:3697–3704

    Article  CAS  Google Scholar 

  52. Wang H, Li Y, Chi Y, Wang C, Ma Q, Yang X (2022) A novel Cu:Al nanocluster-based electrochemiluminescence system with CeO2 NPs/polydopamine biomimetic film for BRCA detection. Microchem J 181:107687

    Article  CAS  Google Scholar 

  53. Chen F, Liu Y, Chen C, Gong H, Cai C, Chen X (2017) Respective and simultaneous detection tumor markers CA125 and STIP1 using aptamer-based fluorescent and RLS sensors. Sens Actuators B Chem 245:470–476

    Article  CAS  Google Scholar 

  54. Singh P, Pandey SK, Singh J, Srivastava S, Sachan S, Singh SK (2016) Biomedical perspective of electrochemical nanobiosensor. Nano Micro Lett 8:193–203

    Article  Google Scholar 

  55. Yang T, Yu R, Yan Y, Zeng H, Luo S, Liu N, Morrin A, Luo X, Li W (2018) A review of ratiometric electrochemical sensors: from design schemes to future prospects. Sens Actuators B Chem 274:501–516

    Article  CAS  Google Scholar 

  56. Nemčeková K, Labuda J (2021) Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: a review. Mater Sci Eng C 120:111751

    Article  Google Scholar 

  57. Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6:6546–6561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Villalonga A, Mayol B, Villalonga R, Vilela D (2022) Electrochemical aptasensors for clinical diagnosis a review of the last five years. Sens Actuators B Chem 369:132318

    Article  CAS  Google Scholar 

  59. Yang H (2012) Enzyme-based ultrasensitive electrochemical biosensors. Curr Opin Chem Biol 16:422–428

    Article  CAS  PubMed  Google Scholar 

  60. Li W, Yang Y, Ma C, Song Y, Hong C, Qiao X (2020) A sandwich-type electrochemical immunosensor for ultrasensitive detection of CEA based on core–shell Cu2O@Cu-MOF@Au NPs nanostructure attached with HRP for triple signal amplification. J Mater Sci 55:13980–13994

    Article  CAS  Google Scholar 

  61. Chen D-N, Jiang L-Y, Zhang J-X, Tang C, Wang A-J, Feng J-J (2022) Electrochemical label-free immunoassay of HE4 using 3D PtNi nanocubes assemblies as biosensing interfaces. Microchim Acta 189:455

    Article  CAS  Google Scholar 

  62. Santana GM, Silva AKS, Foguel MV, Dutra RF (2022) An ultrasensitive electrochemical immunosensor for hepatitis C antibodies based on one-step-eletrosynthetized polypyrrole–graphene nanocomposite. J Mater Sci 57:5586–5595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vestergaard M, Kerman K, Tamiya E (2007) An overview of label-free electrochemical protein sensors. Sensors 7:3442–3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Čadková M, Dvořáková V, Metelka R, Bílková Z, Korecká L (2015) Alkaline phosphatase labeled antibody-based electrochemical biosensor for sensitive HE4 tumor marker detection. Electrochem commun 59:1–4

    Article  Google Scholar 

  65. Hu R, Mu Z, Gong F, Qing M, Yuan Y, Bai L (2023) A signal-on electrochemical aptasensor for sensitive detection of human epididymis protein 4 based on functionalized metal–organic framework/ketjen black nanocomposite. J Mater Sci 58:9633–9645

    Article  CAS  Google Scholar 

  66. Chen J, Hu W, Wei J, Yu F, Wu L, Wang C, Wang W, Zuo S, Shang B, Chen Q (2019) An electrochemical aptasensing platform for carbohydrate antigen 125 based on the use of flower-like gold nanostructures and target-triggered strand displacement amplification. Microchim Acta 186:388

    Article  Google Scholar 

  67. Díaz-Fernández A, Lorenzo-Gómez R, Miranda-Castro R, De-Los-Santos-Álvarez N, Lobo-Castañón MJ (2020) Electrochemical aptasensors for cancer diagnosis in biological fluids—a review. Anal Chim Acta 1124:1–19

    Article  PubMed  Google Scholar 

  68. Vandghanooni S, Sanaat Z, Farahzadi R, Eskandani M, Omidian H, Omidi Y (2021) Recent progress in the development of aptasensors for cancer diagnosis: focusing on aptamers against cancer biomarkers. Microchem J 170:106640

    Article  CAS  Google Scholar 

  69. Bin Seo H, Gu MB (2017) Aptamer-based sandwich-type biosensors. J Biol Eng 11:11

    Article  Google Scholar 

  70. Forouzanfar S, Alam F, Pala N, Wang C (2020) Review—a review of electrochemical aptasensors for label-free cancer diagnosis. J Electrochem Soc 167:67511

    Article  CAS  Google Scholar 

  71. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  72. Rohaizad N, Mayorga-Martinez CC, Fojtů M, Latiff NM, Pumera M (2021) Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev 50:619–657

    Article  CAS  PubMed  Google Scholar 

  73. Ashok Kumar SS, Bashir S, Ramesh K, Ramesh S (2022) A review on graphene and its derivatives as the forerunner of the two-dimensional material family for the future. J Mater Sci 57:12236–12278

    Article  CAS  Google Scholar 

  74. Pacuła A, Socha RP, Pietrzyk P, Zimowska M, Ruggiero-Mikołajczyk M, Mucha D, Kosydar R, Mordarski G (2018) Physicochemical and electrochemical properties of the carbon materials containing nitrogen and cobalt derived from acetonitrile and Co–Al layered double hydroxides. J Mater Sci 53:11292–11314

    Article  Google Scholar 

  75. Fazeli Y, Etesami Z, Nourbakhsh Z, Vashaee D (2023) Unveiling the properties of transition-metal dichalcogenides: a comprehensive study of WTe2, WSe2, ZrTe2, and NiTe2 in bulk and monolayer forms. J Mater Sci 58:10023–10042

    Article  CAS  Google Scholar 

  76. Babu AM, Rajeev R, Thadathil DA, Varghese A, Hegde G (2022) Surface modulation and structural engineering of graphitic carbon nitride for electrochemical sensing applications. J Nanostructure Chem 12:765–807

    Article  CAS  Google Scholar 

  77. Pourmadadi M, Rajabzadeh-Khosroshahi M, Saeidi Tabar F, Ajalli N, Samadi A, Yazdani M, Yazdian F, Rahdar A, Díez-Pascual AM (2022) Two-dimensional graphitic carbon nitride (g-C3N4) nanosheets and their derivatives for diagnosis and detection applications. J Funct Biomater 13(4):204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. García-Miranda Ferrari A, Rowley-Neale SJ, Banks CE (2021) Recent advances in 2D hexagonal boron nitride (2D-hBN) applied as the basis of electrochemical sensing platforms. Anal Bioanal Chem 413:663–672

    Article  PubMed  Google Scholar 

  79. Xu K, Ma Y, Yao S, Liu X (2023) 3D porous rGO/MXene architecture with enhanced and customizable electrochemical performance. J Mater Sci 58:13957–13973

    Article  CAS  Google Scholar 

  80. Kaur S, Pandey SK, Sharma D, Sharma RK, Wangoo N (2022) Enkephalin loaded and RGD decorated PLGA–poloxamer nanoparticles for effective targeting in cancer cells. J Mater Sci 57:17416–17432

    Article  CAS  Google Scholar 

  81. Arivazhagan P, Usharani NJ, Raju MJS, Bhattacharya SS (2023) Studies on drug carrier potential of spherical boron nitride nanoparticles in cancer therapy. J Mater Sci 58:8076–8091

    Article  CAS  Google Scholar 

  82. Liu J, Lin G, Xiao C, Xue Y, Yang A, Ren H, Lu W, Zhao H, Li X, Yuan Z (2015) Sensitive electrochemical immunosensor for α-fetoprotein based on graphene/SnO2/Au nanocomposite. Biosens Bioelectron 71:82–87

    Article  CAS  PubMed  Google Scholar 

  83. Zhang A, Liu Q, Huang Z, Zhang Q, Wang R, Cui D (2022) Electrochemical cytosensor based on a gold nanostar-decorated graphene oxide platform for gastric cancer cell detection. Sensors 22:2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jalil O, Pandey CM, Kumar D (2020) Electrochemical biosensor for the epithelial cancer biomarker EpCAM based on reduced graphene oxide modified with nanostructured titanium dioxide. Microchim Acta 187:275

    Article  CAS  Google Scholar 

  85. Sadeghi M, Kashanian S, Naghib SM, Haghiralsadat F, Tofighi D (2022) An efficient electrochemical biosensor based on pencil graphite electrode mediated by 2d functionalized graphene oxide to detect her2 breast cancer biomarker. Int J Electrochem Sci 17(4):220459

    Article  CAS  Google Scholar 

  86. Hao L, Liu L, Meng X, Cui H, Wang Z (2017) Electrochemical analysis of Ki67 protein as pancreatic cancer biomarker based on graphene-polydopamine nanocomposite. Int J Electrochem Sci 12:3040–3049

    Article  CAS  Google Scholar 

  87. Assari P, Rafati AA, Feizollahi A, Asadpour Joghani R (2019) An electrochemical immunosensor for the prostate specific antigen based on the use of reduced graphene oxide decorated with gold nanoparticles. Microchim Acta 186:484

    Article  Google Scholar 

  88. Kumar S, Gupta N, Malhotra BD (2021) Ultrasensitive biosensing platform based on yttria doped zirconia-reduced graphene oxide nanocomposite for detection of salivary oral cancer biomarker. Bioelectrochemistry 140:107799

    Article  CAS  PubMed  Google Scholar 

  89. Chai X, Gao J, Cui Q, Zhao L (2022) Enzyme-free sandwich-type electrochemical immunosensor based on high catalytic binary PdCu mesoporous metal nanoparticles and conductive black phosphorous nanosheets for ultrasensitive detection of pro-SFTPB in non-small cell lung cancer. J Electroanal Chem 917:116415

    Article  CAS  Google Scholar 

  90. Yan R, Lu N, Han S, Lu Z, Xiao Y, Zhao Z, Zhang M (2022) Simultaneous detection of dual biomarkers using hierarchical MoS2 nanostructuring and nano-signal amplification-based electrochemical aptasensor toward accurate diagnosis of prostate cancer. Biosens Bioelectron 197:113797

    Article  CAS  PubMed  Google Scholar 

  91. Hu T, Zhang M, Wang Z, Chen K, Li X, Ni Z (2020) Layer-by-layer self-assembly of MoS2/PDDA hybrid film in microfluidic chips for ultrasensitive electrochemical immunosensing of alpha-fetoprotein. Microchem J 158:105209

    Article  CAS  Google Scholar 

  92. He L, Duan F, Song Y, Guo C, Zhao H, Tian J-Y, Zhang Z, Liu C-S, Zhang X, Wang P, Du M, Fang S-M (2017) 2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: consistency between electrochemical and surface plasmon resonance methods. 2D Materials 4:025098

    Article  Google Scholar 

  93. Pourmadadi M, Yazdian F, Ghorbanian S, Shamsabadipour A, Khandel E, Rashedi H, Rahdar A, Díez-Pascual AM (2022) Construction of aptamer-based nanobiosensor for breast cancer biomarkers detection utilizing g-C3N4/Magnetic Nano-Structure. Biosensors 12:921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang M, Cao K, Mei L, Wang X, Liao X, Qiao X, Hong C (2021) Detection of AFP by electrochemical immunosensor based on Ag/Fe3O4/g-C3N4. ChemistrySelect 6:3394–3398

    Article  CAS  Google Scholar 

  95. Duan F, Zhang S, Yang L, Zhang Z, He L, Wang M (2018) Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS2 quantum dots and g-C3N4 nanosheets decorated with chitosan-stabilized Au nanoparticles for selectively detecting prostate specific antigen. Anal Chim Acta 1036:121–132

    Article  CAS  PubMed  Google Scholar 

  96. Zhao P, Zheng J, Liang Y, Tian F, Peng L, Huo D, Hou C (2021) Functionalized carbon nanotube-decorated mxene nanosheet-enabled microfluidic electrochemical aptasensor for carcinoembryonic antigen determination. ACS Sustain Chem Eng 9:15386–15393

    Article  CAS  Google Scholar 

  97. Yang X, Zhao L, Lu L, Feng M, Xia J, Zhang F, Wang Z (2022) In situ reduction of gold nanoparticle-decorated Ti3C2 mxene for ultrasensitive electrochemical detection of microRNA-21 with a cascaded signal amplification strategy. J Electrochem Soc 169:57505

    Article  CAS  Google Scholar 

  98. Zhao J, He C, Wu W, Yang H, Dong J, Wen L, Hu Z, Yang M, Hou C, Huo D (2022) MXene-MoS2 heterostructure collaborated with catalyzed hairpin assembly for label-free electrochemical detection of microRNA-21. Talanta 237:122927

    Article  CAS  PubMed  Google Scholar 

  99. Öndeş B, Evli S, Uygun M, Aktaş Uygun D (2021) Boron nitride nanosheet modified label-free electrochemical immunosensor for cancer antigen 125 detection. Biosens Bioelectron 191:113454

    Article  PubMed  Google Scholar 

  100. Gupta D, Lis CG (2009) Role of CA125 in predicting ovarian cancer survival—a review of the epidemiological literature. J Ovarian Res 2:13

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gazze A, Ademefun R, Conlan RS, Teixeira SR (2018) Electrochemical impedence spectroscopy enabled CA125 detection; toward early ovarian cancer diagnosis using graphene biosensors. J Interdiscip Nanomed 3:82–88

    Article  CAS  Google Scholar 

  102. Hasanzadeh M, Sahmani R, Solhi E, Mokhtarzadeh A, Shadjou N, Mahboob S (2018) Ultrasensitive immunoassay of carcinoma antigen 125 in untreated human plasma samples using gold nanoparticles with flower like morphology: a new platform in early stage diagnosis of ovarian cancer and efficient management. Int J Biol Macromol 119:913–925

    Article  CAS  PubMed  Google Scholar 

  103. Samadi Pakchin P, Ghanbari H, Saber R, Omidi Y (2018) Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker. Biosens Bioelectron 122:68–74

    Article  CAS  PubMed  Google Scholar 

  104. Fan Y, Shi S, Ma J, Guo Y (2019) A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125. Biosens Bioelectron 135:1–7

    Article  CAS  PubMed  Google Scholar 

  105. Bahavarnia F, Saadati A, Hassanpour S, Hasanzadeh M, Shadjou N, Hassanzadeh A (2019) Paper based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: a new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD). Int J Biol Macromol 138:744–754

    Article  CAS  PubMed  Google Scholar 

  106. Wang FM, Huang SH, Yuan CC, Yeh CT, Chen WL, Wang XC, Runprapan N, Tsai YJ, Chuang YL, Su CH (2020) Detection of O-glycosylated CA125 by using an electrochemical immunosensor for ovarian cancer diagnosis. J Appl Electrochem 50:1189–1198

    Article  CAS  Google Scholar 

  107. Li S, Hu C, Chen C, Zhang J, Bai Y, Tan CS, Ni G, He F, Li W, Ming D (2021) Molybdenum disulfide supported on metal-organic frameworks as an ultrasensitive layer for the electrochemical detection of the ovarian cancer biomarker CA125. ACS Appl Bio Mater 4:5494–5502

    Article  CAS  PubMed  Google Scholar 

  108. Iyer MS, Fu-Ming W, Rajangam I (2021) Electrochemical detection of CA125 using thionine and gold nanoparticles supported on heteroatom-doped graphene nanocomposites. Appl Nanosci 11:2167–2180

    Article  CAS  Google Scholar 

  109. Zhang F, Fan L, Liu Z, Han Y, Guo Y (2022) A label-free electrochemical aptasensor for the detection of cancer antigen 125 based on nickel hexacyanoferrate nanocubes/polydopamine functionalized graphene. J Electroanal Chem 918:116424

    Article  CAS  Google Scholar 

  110. Wu M, Liu S, Qi F, Qiu R, Feng J, Ren X, Rong S, Ma H, Chang D, Pan H (2022) A label-free electrochemical immunosensor for CA125 detection based on CMK-3(Au/Fc@MgAl-LDH)n multilayer nanocomposites modification. Talanta 241:123254

    Article  CAS  PubMed  Google Scholar 

  111. Qu L, Wu M, Zhao L, Li J, Pan H (2023) A sandwich electrochemical immunosensor based on MXene@dual MOFs for detection of tumor marker CA125. Microchim Acta 190:147

    Article  CAS  Google Scholar 

  112. Hey NA, Meseguer M, Simón C, Smorodinsky NI, Wreschner DH, Ortíz ME, Aplin JD (2003) Transmembrane and truncated (SEC) isoforms of MUC1 in the human endometrium and fallopian tube. Reprod Biol Endocrinol 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  113. Obermair A, Schmid BC, Packer LM, Leodolter S, Birner P, Ward BG, Crandon AJ, McGuckin MA, Zeillinger R (2002) Expression of MUC1 splice variants in benign and malignant ovarian tumours. Int J Cancer 100:166–171

    Article  CAS  PubMed  Google Scholar 

  114. Jain S, Nadeem N, Ulfenborg B, Mäkelä M, Ruma SA, Terävä J, Huhtinen K, Leivo J, Kristjansdottir B, Pettersson K, Sundfeldt K (2022) Diagnostic potential of nanoparticle aided assays for MUC16 and MUC1 glycovariants in ovarian cancer. Int J Cancer 151:1175–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Farzin L, Sadjadi S, Shamsipur M, Chabok A, Sheibani S (2017) A sandwich-type electrochemical aptasensor for determination of MUC 1 tumor marker based on PSMA-capped PFBT dots platform and high conductive rGO-N′1, N′3-dihydroxymalonimidamide/thionine nanocomposite as a signal tag. J Electroanal Chem 807:108–118

    Article  CAS  Google Scholar 

  116. Rauf S, Mishra GK, Azhar J, Mishra RK, Goud KY, Nawaz MAH, Marty JL, Hayat A (2018) Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Anal Biochem 545:13–19

    Article  CAS  PubMed  Google Scholar 

  117. Hatami Z, Jalali F, Amouzadeh Tabrizi M, Shamsipur M (2019) Application of metal-organic framework as redox probe in an electrochemical aptasensor for sensitive detection of MUC1. Biosens Bioelectron 141:111433

    Article  CAS  PubMed  Google Scholar 

  118. Li Y, Hou L, Liu Z, Lu W, Zhao M, Xiao H, Hu T, Zheng Z, Jia J, Wu H (2020) A sensitive electrochemical MUC1 sensing platform based on electroactive Cu-MOFs Decorated by AuPt Nanoparticles. J Electrochem Soc 167:87502

    Article  CAS  Google Scholar 

  119. Zhang G, Liu Z, Fan L, Han Y, Guo Y (2021) A novel dual signal and label-free electrochemical aptasensor for mucin 1 based on hemin/graphene@ PdPtNPs. Biosens Bioelectron 173:112785

    Article  CAS  PubMed  Google Scholar 

  120. Kirchhoff C, Habben I, Ivell R, Krull N (1991) A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol Reprod 45:350–357

    Article  CAS  PubMed  Google Scholar 

  121. Hallamaa M, Suvitie P, Huhtinen K, Matomäki J, Poutanen M, Perheentupa A (2012) Serum HE4 concentration is not dependent on menstrual cycle or hormonal treatment among endometriosis patients and healthy premenopausal women. Gynecol Oncol 125:667–672

    Article  CAS  PubMed  Google Scholar 

  122. Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, Ducarme G (2019) Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res 12:28

    Article  PubMed  PubMed Central  Google Scholar 

  123. Moore RG, Jabre-Raughley M, Brown AK, Robison KM, Miller MC, Allard WJ, Kurman RJ, Bast RC, Skates SJ (2010) Comparison of a novel multiple marker assay vs the risk of malignancy index for the prediction of epithelial ovarian cancer in patients with a pelvic mass. Am J Obstet Gynecol 203:228.e1-228.e6

    Article  PubMed  Google Scholar 

  124. Lu L, Liu B, Leng J, Wang K, Ma X, Wu S (2016) Electrochemical sandwich immunoassay for human epididymis-specific protein 4 using a screen-printed electrode modified with graphene sheets and gold nanoparticles, and applying a modular magnetic detector device produced by 3D laser sintering. Microchim Acta 183:837–843

    Article  CAS  Google Scholar 

  125. Yan Q, Cao L, Dong H, Tan Z, Liu Q, Zhang W, Zhao P, Li Y, Liu Y, Dong Y (2019) Sensitive amperometric immunosensor with improved electrocatalytic Au@Pd urchin-shaped nanostructures for human epididymis specific protein 4 antigen detection. Anal Chim Acta 1069:117–125

    Article  CAS  PubMed  Google Scholar 

  126. Yan Q, Cao L, Dong H, Tan Z, Hu Y, Liu Q, Liu H, Zhao P, Chen L, Liu Y, Li Y, Dong Y (2019) Label-free immunosensors based on a novel multi-amplification signal strategy of TiO2-NGO/Au@Pd hetero-nanostructures. Biosens Bioelectron 127:174–180

    Article  CAS  PubMed  Google Scholar 

  127. Zhang Z, Xu Y, Ma B, Ma Z, Han H (2021) A novel electrochemical sensor based on process-formed laccase-like catalyst to degrade polyhydroquinone for tumor marker. Talanta 235:122736

    Article  CAS  PubMed  Google Scholar 

  128. Ara MG, Motalleb G, Velasco B, Rahdar A, Taboada P (2023) Antineoplastic effect of paclitaxel-loaded polymeric nanocapsules on malignant human ovarian carcinoma cells (SKOV-3). J Mol Liq 384:122190

    Article  CAS  Google Scholar 

  129. Xia Y, Gao P, Bo Y, Wang W, Huang S (2012) Immunoassay for SKOV-3 human ovarian carcinoma cells using a graphene oxide-modified electrode. Microchim Acta 179:201–207

    Article  CAS  Google Scholar 

  130. Tripathy S, Gangwar R, Supraja P, Rao AN, Vanjari SRK, Singh SG (2018) Graphene Doped Mn2O3 Nanofibers as a Facile Electroanalytical DNA Point Mutation Detection Platform for Early Diagnosis of Breast/Ovarian Cancer. Electroanalysis 30:2110–2120

    Article  CAS  Google Scholar 

  131. Sun Z, Jin H, Sun Y, Jiang X, Gui R (2020) Mn-Doping-induced hierarchical petal growth of a flower-like 3D MOF assembled with black phosphorous nanosheets as an electrochemical aptasensor of human stress-induced phosphoprotein 1. Nanoscale 12:14538–14548

    Article  CAS  PubMed  Google Scholar 

  132. Nagarajan RD, Murugan P, Palaniyandi K, Atchudan R, Sundramoorthy AK (2021) Biocompatible MXene (Ti3C2Tx) immobilized with flavin adenine dinucleotide as an electrochemical transducer for hydrogen peroxide detection in ovarian cancer cell lines. Micromachines. 12:862

    Article  PubMed  PubMed Central  Google Scholar 

  133. Shin H, Choi BH, Shim O, Kim J, Park Y, Cho SK, Kim HK, Choi Y (2023) Single test-based diagnosis of multiple cancer types using Exosome-SERS-AI for early stage cancers. Nat Commun 14:1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Naclerio AE, Kidambi PR (2023) A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications. Adv Mater 35:2207374

    Article  CAS  Google Scholar 

  135. Paton KR, Varrla E, Backes C et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630

    Article  CAS  PubMed  Google Scholar 

  136. Levchenko I, Ostrikov KK, Zheng J, Li X, Keidar M, Teo KBK (2016) Scalable graphene production: perspectives and challenges of plasma applications. Nanoscale 8:10511–10527

    Article  CAS  PubMed  Google Scholar 

  137. Chen JE, Yang ZJ, Koh HU, Shen J, Cai Y, Yamauchi Y, Yeh LH, Tung V, Wu KCW (2022) Current progress and scalable approach toward the synthesis of 2D metal-organic frameworks. Adv Mater Interfaces 9:1–15

    Google Scholar 

  138. Zhang J, Kong N, Uzun S, Levitt A, Seyedin S, Lynch PA, Qin S, Han M, Yang W, Liu J, Wang X, Gogotsi Y, Razal JM (2020) Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater 32:1–9

    Google Scholar 

  139. Shuck CE, Sarycheva A, Anayee M, Levitt A, Zhu Y, Uzun S, Balitskiy V, Zahorodna V, Gogotsi O, Gogotsi Y (2020) scalable synthesis of Ti3C2Tx MXene. Adv Eng Mater 22:1–8

    Article  Google Scholar 

  140. Shuck CE, Gogotsi Y (2020) Taking MXenes from the lab to commercial products. Chem Eng J 401:125786

    Article  CAS  Google Scholar 

  141. Safian MT, Umar K, Mohamad Ibrahim MN (2021) Synthesis and scalability of graphene and its derivatives: a journey towards sustainable and commercial material. J Clean Prod 318:128603

    Article  CAS  Google Scholar 

  142. Zhu C, Du D, Lin Y (2017) Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens Bioelectron 89:43–55

    Article  CAS  PubMed  Google Scholar 

  143. Su S, Sun Q, Gu X, Xu Y, Shen J, Zhu D, Chao J, Fan C, Wang L (2019) Two-dimensional nanomaterials for biosensing applications. TrAC Trends Anal Chem 119:115610

    Article  CAS  Google Scholar 

  144. Noreen S, Tahir MB, Hussain A, Nawaz T, Rehman JU, Dahshan A, Alzaid M, Alrobei H (2022) Emerging 2D-nanostructured materials for electrochemical and sensing application-a review. Int J Hydrogen Energy 47:1371–1389

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank R. Srinivasan for technical assistance. The corresponding author (ARS) thanks Vellore Institute of Technology, Chennai Campus, for the financial assistance to the first author for her post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Lavanya J contributed to conceptualization, methodology, writing—original draft. Ravi Sankar A contributed to conceptualization, methodology, resources, supervision, writing—review & editing. Sindhuja M contributed to initial drafting of other biomarkers section. Arulmani S contributed to initial drafting of 2D nanomaterials section.

Corresponding author

Correspondence to A. Ravi Sankar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling Editor: David Ju.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavanya, J., Sankar, A.R., Sindhuja, M. et al. Recent advances in ovarian cancer diagnosis using 2D nanomaterials-based electrochemical biosensors: a review. J Mater Sci 59, 15992–16019 (2024). https://doi.org/10.1007/s10853-024-10125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-10125-5

Navigation