Skip to main content

Advertisement

Log in

Ductility dip cracking mechanisms and characterization: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ductility dip cracking (DDC) is a solid-state failure occurring during multi-pass solidification processes (e.g., welding, additive manufacturing) for FCC alloys that exhibit a distinct dip in their ductility at intermediate temperatures. While the phenomenon has been studied for over a century, the majority of current research focuses on a subset of DDC-susceptible FCC alloys (Ni–Cr–Fe). The review paper herein presents an analysis of published data to evaluate the current state of understanding regarding the materials mechanisms at work. Recent advances in test methods have permitted highly controlled approaches for testing and quantifying DDC, but the wide range of unique tests often provide conflicting results regarding the fundamental materials behaviors and underlying mechanisms. At present, three mechanisms have been proposed for DDC: grain boundary sliding, precipitate-induced strain, and impurity element segregation. While the majority of published studies support grain boundary sliding as the primary mechanism of DDC, an examination of the aggregate data available across multiple studies suggests combinatorial impact of simultaneous (and competing) mechanisms for DDC. Further, the long-held assumptions regarding the negative impact of key alloying elements become less convincing when comparing results across studies. There are considerable future opportunities for research on DDC behaviors in other alloy systems, and there are a lacunae of data when considering the effect of welding process parameters on DDC and the use of modeling and simulation approaches to understand the DDC behavior in the highly susceptible FCC alloy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Copyright 2004, Elsevier. b Schematic of typical DDC morphologies (I) wedge cracking (II) perforated grain boundaries, and (III) recrystallization at crack tip.

Figure 8

Copyright 2003, American Welding Society. b Same image with positions and orientations indicated for tortuosity measurements shown in (d). c Method for measuring tortuosity (after [47]). d Tortuosity ratio for the cracks as well as grain boundaries without cracks that are oriented along the same axis as cracks A and orthogonal to cracks B. e Relationship between critical strain and tortuosity ratio for data from Kadoi et al. [47, 86].

Figure 9

Copyright 1961, ASM International.

Figure 10

Copyright 2015, Elsevier. b Intergranular brittle fracture. c Cleavage brittle fracture. Reproduced with permission from [42]. Copyright 2015, Elsevier. d Smearing at intergranular surfaces. Reproduced with permission from [82]. Copyright 2011, Elsevier. e Thermal faceting in intergranular surfaces. Reproduced with permission from [59]. Copyright 2021, American Welding Society.

Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All primary data reported herein are available in the papers cited.

References

  1. Kou S (2021) Ch 14—Ductility-Dip Cracking. Welding Metallurgy, 3rd edn. Cambridge University Press, Cambridge, pp 379–397

    Google Scholar 

  2. Haddrill DM, Baker RG (1965) Microcracking in austenitic weld metal. Br Weld J 12:411–419

    CAS  Google Scholar 

  3. Lippold JC (2015) Welding Metallurgy and Weldability, 1st edn. Wiley, Hoboken

    Book  Google Scholar 

  4. Liu H, Lu S, Zhang Y et al (2022) Migration of solidification grain boundaries and prediction. Nat Commun 13:5910. https://doi.org/10.1038/s41467-022-33482-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qian D, Xue J, Zhang A et al (2017) Statistical study of ductility dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy. Sci Rep 7:2859. https://doi.org/10.1038/s41598-017-03051-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Chen H, Xu L et al (2019) Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy. Mater Des 183:108105. https://doi.org/10.1016/j.matdes.2019.108105

    Article  CAS  Google Scholar 

  7. Bengough GD (1912) A study of the properties of alloys at high temperatures. J Inst Met 7:123–190

    Google Scholar 

  8. Rhines FN, Wray PJ (1961) Investigation of the intermediate temperature ductility minimum in metals. ASM Trans Q 54:117–128

    Google Scholar 

  9. Sadek AA (1995) Effect of new tungsten electrodes on hot cracking susceptibility. Mater Lett 25:229–234

    Article  CAS  Google Scholar 

  10. Cola MJ, Teter DF (1998) Optical and analytical electron microscopy of ductility-dip cracking in Ni-Base filler metal 52—Initial Studies. In: 5th International conference on trends in welding research. Pine Mountain

  11. Ramirez AJ, Lippold JC (2004) High temperature behavior of Ni-base weld metal Part II—Insight into the mechanism for ductility dip cracking. Mater Sci Eng A 380:245–258. https://doi.org/10.1016/j.msea.2004.03.075

    Article  CAS  Google Scholar 

  12. Herold H, Zinke M, Hübner A (2005) Investigations on the use of nitrogen shielding gas in welding and its influence on the hot crack behaviour of high-temperature resistant fully austenitic Ni- and Fe-base alloys. Weld World 49:50–63. https://doi.org/10.1007/BF03263410

    Article  CAS  Google Scholar 

  13. Capobianco T, Hanson M (2005) Auger spectroscopy results from ductility dip cracks opened under ultra-high vacuum, Lockheed Martin Report, LM-05K074. Retrieved from https://www.osti.gov/servlets/purl/850547

  14. Nishimoto K, Saida K, Okauchi H (2006) Microcracking in multipass weld metal of alloy 690 Part 1—Microcracking susceptibility in reheated weld metal. Sci Technol Weld Join 11:455–461. https://doi.org/10.1179/174329306X94291

    Article  CAS  Google Scholar 

  15. Nishimoto K, Saida K, Okauchi H, Ohta K (2006) Microcracking in multipass weld metal of alloy 690 Part 2—Microcracking mechanism in reheated weld metal. Sci Technol Weld Join 11:462–470. https://doi.org/10.1179/174329306X94309

    Article  CAS  Google Scholar 

  16. Ramirez AJ, Sowards JW, Lippold JC (2006) Improving the ductility-dip cracking resistance of Ni-base alloys. J Mater Process Technol 179:212–218. https://doi.org/10.1016/j.jmatprotec.2006.03.095

    Article  CAS  Google Scholar 

  17. Lippold JC, Nissley NE (2007) Further investigations of ductility-dip cracking in high chromium, Ni-based filler metals. Weld World 51:24–30

    Article  CAS  Google Scholar 

  18. Young GA, Capobianco TE, Etien RA et al (2007) Development of a highly weldable and corrosion resistant nickel-chromium filler metal. In: Proceedings of the 13th conference on environmental degradation of materials in nuclear power systems. Whistler

  19. Kiser SD, Zhang R, Baker BA (2008) A new welding material for improved resistance to ductility dip cracking. In: Proceedings of the 8th International conference on trends in welding research. Pine Mountain

  20. Lippold JC, Nissley NE (2008) Ductility-dip cracking in high chromium, Ni-base filler metals. In: Böllinghaus T, Herold H, Cross CE, Lippold JC (eds) Hot cracking phenomena in welds II. Springer, Berlin, pp 409–425

    Chapter  Google Scholar 

  21. Kikel JM, Parker DM (1998) Ductility dip cracking susceptibility of inconel filler metal 52 and inconel alloy 690, Report, MER-98-2. Retrieved from https://www.osti.gov/servlets/purl/661678

  22. Young GA, Capobianco TE, Penik MA et al (2008) The mechanism of ductility dip cracking in nickel-chromium alloys. Weld J 87:31s–43s

    Google Scholar 

  23. Nissley NE, Lippold JC (2008) Ductility-dip cracking susceptibility of nickel-based weld metals part 1: strain-to-fracture testing. Weld J 87:257–264

    Google Scholar 

  24. Nissley NE, Lippold JC (2009) Ductility-dip cracking susceptibility of nickel-based weld metals: Part II—microstructural characterization. Weld J 88:131s–140s

    Google Scholar 

  25. Noecker FF, DuPont JN (2009) Metallurgical investigation into ductility dip cracking in Ni-based alloys: Part I. Weld J 88:7s–20s

    Google Scholar 

  26. Noecker FF, Dupont JN (2009) Metallurgical investigation into ductility dip cracking in Ni-Based alloys: Part II. Weld J 88:62s–77s

    Google Scholar 

  27. Okauchi H, Nomoto Y, Ogiwara H et al (2010) Metallurgical mechanism of ductility-dip cracking in multipass welds of alloy 690. Trans JWRI 39:221–223

    CAS  Google Scholar 

  28. Torres EA, Peternella FG, Caram R, Ramírez AJ (2010) In situ scanning electron microscopy high temperature deformation experiments to study ductility dip cracking of Ni-Cr-Fe alloys. In: Kannengiesser T, Babu SS, Komizo Y, Ramirez AJ (eds) In-situ Studies with Photons, Neutrons and Electrons Scattering. Springer, Berlin, pp 27–39

    Chapter  Google Scholar 

  29. Saida K, Taniguchi A, Okauchi H et al (2011) Prevention of microcracking in dissimilar multipass welds of alloy 690 to type 316L stainless steel by Ce addition to filler metal. Sci Technol Weld Join 16:553–560. https://doi.org/10.1179/1362171811Y.0000000026

    Article  CAS  Google Scholar 

  30. Unfried JS, Torres EA, Ramirez AJ (2011) In-situ observations of ductility-dip cracking mechanism in Ni-Cr-Fe alloys. In: Lippold J, Bollinghaus T, Cross CE (eds) Hot Cracking Phenomena in Welds III. Springer, Berlin, pp 295–315

    Chapter  Google Scholar 

  31. Yushchenko K, Savchenko V, Chervyakov N et al (2011) Comparative hot cracking evaluation of welded joints of alloy 690 using filler metals Inconel® 52 and 52 MSS. Weld World 55:28–35. https://doi.org/10.1007/BF03321317

    Article  CAS  Google Scholar 

  32. Wu W, Tsai CH (1999) Hot cracking susceptibility of Fillers 52 and 82 in alloy 690 welding. Metall Mater Trans A 30A:417–426. https://doi.org/10.1007/s11661-999-0331-2

    Article  CAS  Google Scholar 

  33. Saida K, Nomoto Y, Okauchi H et al (2012) Influences of phosphorus and sulphur on ductility dip cracking susceptibility in multipass weld metal of alloy 690. Sci Technol Weld Join 17:1–8. https://doi.org/10.1179/1362171810Y.0000000004

    Article  CAS  Google Scholar 

  34. Fusner EW (2013) Elemental effects of Fe, Mo, C, and Hf (or Nb) on solidification behavior, microstructure, and weldability of High-Cr, Ni-base filler metals. The Ohio State University

  35. Luskin TC (2013) Investigation of weldability in high-Cr Ni-base filler metals. The Ohio State University

  36. Mo W, Lu S, Li D, Li Y (2013) Effects of filler metal composition on inclusions and inclusion defects for ER NiCrFe-7 weldments. J Mater Sci Technol 29:458–466. https://doi.org/10.1016/j.jmst.2013.03.015

    Article  CAS  Google Scholar 

  37. Chen JQ, Lu H, Cui W et al (2014) Effect of grain boundary behaviour on ductility dip cracking mechanism. Mater Sci Technol 30:1189–1196. https://doi.org/10.1179/1743284713Y.0000000431

    Article  CAS  Google Scholar 

  38. Mo W, Lu S, Li D, Li Y (2014) Effects of M23C6 on the high-temperature performance of Ni-based welding material NiCrFe-7. Metall Mater Trans A 45A:5114–5126. https://doi.org/10.1007/s11661-014-2439-2

    Article  CAS  Google Scholar 

  39. Torres EA, Montoro F, Righetto RD, Ramirez AJ (2014) Development of high-temperature strain instrumentation for in situ SEM evaluation of ductility dip cracking. J Microsc 254:157–165. https://doi.org/10.1111/jmi.12128

    Article  CAS  PubMed  Google Scholar 

  40. Tirand G, Primault C, Robin V (2014) Sensibilité à la fissuration à chaud des alliages base nickel à haute teneur en chrome. Matériaux Tech 102:403

    Article  Google Scholar 

  41. Kreuter VVC (2015) Optimization and application of the strain-to-fracture test for studying ductility-dip cracking in Ni-base alloys. The Ohio State University

  42. Mo W, Hu X, Lu S et al (2015) Effects of boron on the microstructure, ductility-dip-cracking, and tensile properties for NiCrFe-7 weld metal. J Mater Sci Technol 31:1258–1267. https://doi.org/10.1016/j.jmst.2015.08.001

    Article  CAS  Google Scholar 

  43. Nissley NE, Collins MG, Guaytima G, Lippold JC (2002) Development of the strain-to-fracture test for evaluating ductility-dip cracking in austenitic stainless steels and Ni-based alloys. Weld World 46:32–40

    Article  CAS  Google Scholar 

  44. Qin R, Wang H, He G (2015) Investigation on the microstructure and ductility-dip cracking susceptibility of the butt weld Welded with ENiCrFe-7 nickel-base alloy-covered electrodes. Metall Mater Trans A 46A:1227–1236. https://doi.org/10.1007/s11661-014-2699-x

    Article  CAS  Google Scholar 

  45. Fink C (2016) An investigation on ductility-dip cracking in the base metal heat-affected zone of wrought nickel base alloys—part I: metallurgical effects and cracking mechanism. Weld World 60:939–950. https://doi.org/10.1007/s40194-016-0370-4

    Article  CAS  Google Scholar 

  46. Fink C, Zinke M, Jüttner S (2016) An investigation of ductility-dip cracking in the base metal heat-affected zone of wrought nickel base alloys—part II: correlation of PVR and STF results. Weld World 60:951–961. https://doi.org/10.1007/s40194-016-0352-6

    Article  CAS  Google Scholar 

  47. Kadoi K, Uegaki T, Shinozaki K, Yamamoto M (2016) New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds. Mater Sci Eng A 672:59–64. https://doi.org/10.1016/j.msea.2016.06.062

    Article  CAS  Google Scholar 

  48. Wei X, Xu M, Wang Q et al (2016) Effect of local texture and precipitation on the ductility dip cracking of ERNiCrFe-7A Ni-based overlay. Mater Des 110:90–98. https://doi.org/10.1016/j.matdes.2016.07.130

    Article  CAS  Google Scholar 

  49. Zhang X, Li DZ, Li YY, Lu SP (2016) Effect of Nb and Mo on the microstructure, mechanical properties and ductility-dip cracking of Ni-Cr-Fe weld metals. Acta Metall Sin (English Lett) 29:928–939. https://doi.org/10.1007/s40195-016-0469-z

    Article  CAS  Google Scholar 

  50. Kreuter VVC, Lippold JC (2016) Ductility-dip cracking susceptibility of commercially pure Ni and Ni-base alloys utilizing the strain-to-fracture test. In: Boellinghaus T, Lippold JC, Cross CE (eds) Cracking Phenomena in Welds IV. Springer, Berlin, pp 145–159

    Chapter  Google Scholar 

  51. Fink C, Lippold JC, Hope AT, McCracken S (2017) Elevated temperature cracking resistance of Ta-bearing high chromium Ni-base filler metals. In: Proceedings of the ASME 2017 pressure vessels and piping conference (PVP2017). Waikoloa, p 66130

  52. Hope AT, Lippold JC (2017) Development and testing of a high-chromium, Ni-based filler metal resistant to ductility dip cracking and solidification cracking. Weld World 61:325–332. https://doi.org/10.1007/s40194-016-0417-6

    Article  CAS  Google Scholar 

  53. Hua C, Lu H, Yu C et al (2017) Reduction of ductility-dip cracking susceptibility by ultrasonic-assisted GTAW. J Mater Process Technol 239:240–250. https://doi.org/10.1016/j.jmatprotec.2016.08.018

    Article  CAS  Google Scholar 

  54. Collins MG, Lippold JC (2003) An investigation of ductility dip cracking in nickel-based filler materials—Part I. Weld J 82:288s–295s

    Google Scholar 

  55. Rapetti A, Todeschini P, Hendili S, et al (2017) A study of ductility dip cracking of inconel 690 welding filler metal—development of a refusion cracking test. In: Proceedings of the ASME 2017 pressure vessels and piping conference PVP2017. Waikoloa, p 65348

  56. Li Y, Wang J, Han EH et al (2019) Multi-scale study of ductility-dip cracking in nickel-based alloy dissimilar metal weld. J Mater Sci Technol 35:545–559. https://doi.org/10.1016/j.jmst.2018.10.023

    Article  CAS  Google Scholar 

  57. Lippold J, Fink C (2019) Development of high-chromium nickel-based filler metal with improved weldability for nuclear applications. Palo Alto

  58. Rapetti A, Christien F, Tancret F et al (2020) Effect of composition on ductility dip cracking of 690 nickel alloy during multipass welding. Mater Today Commun 24:101163. https://doi.org/10.1016/j.mtcomm.2020.101163

    Article  CAS  Google Scholar 

  59. Luther S, Alexandrov B (2021) Recreating ductility-dip cracking via Gleeble®-based welding simulation. Weld J 100:27s–39s. https://doi.org/10.29391/2021.100.003

    Article  Google Scholar 

  60. Luther SJ, Alexandrov BT, McCracken SL, Tatman JK (2022) Correlation of imposed mechanical energy with ductility-dip cracking in a highly restrained weld of Alloy 52. J Manuf Process 79:767–788. https://doi.org/10.1016/j.jmapro.2022.05.027

    Article  Google Scholar 

  61. Luther SJ, Heczko M, Mazánová V et al (2024) Thermal faceting on the ductility-dip cracking fracture surfaces of nickel-based alloys—occurrence, characterization, and implications for the cracking mechanism. Mater Sci Eng A 890:145994. https://doi.org/10.1016/j.msea.2023.145994

    Article  CAS  Google Scholar 

  62. Ramirez JE (2012) Susceptibility of IN740 to HAZ liquation cracking and ductility-dip cracking. Weld J 91:122s–131s

    Google Scholar 

  63. Fink C, Hope AT, McCracken SL, Lippold JC (2022) The development of a high-chromium, nickel-base consumable-filler metal 52XL-for nuclear applications. Weld World 66:2171–2190. https://doi.org/10.1007/s40194-022-01358-6

    Article  CAS  Google Scholar 

  64. McCracken SL, Tatman JK (2016) Prediction of ductility-dip cracking in narrow groove welds using computer simulation of strain accumulation. In: Boellinghaus T, Lippold JC, Cross CE (eds) Cracking Phenomena in Welds IV. Springer, Berlin, pp 119–141

    Chapter  Google Scholar 

  65. Nissley NE, Lippold JC (2003) Development of the strain-to-fracture test. Weld J 82:355s–364s

    Google Scholar 

  66. Unfried-Silgado J, Ramirez AJ (2014) Modeling and characterization of as-welded microstructure of solid solution strengthened Ni-Cr-Fe alloys resistant to ductility-dip cracking part I: numerical modeling. Met Mater Int 20:297–305. https://doi.org/10.1007/s12540-014-1023-z

    Article  CAS  Google Scholar 

  67. Rapetti A, Christien F, Tancret F et al (2021) Surfactant effect of impurity sulphur in ductility dip cracking of a high-chromium nickel model alloy. Scr Mater 194:113680. https://doi.org/10.1016/j.scriptamat.2020.113680

    Article  CAS  Google Scholar 

  68. Yonezawa T, Hänninen H, Hashimoto A (2024) Weld cracking susceptibility of High-Cr Ni-base Fe alloys and its improvement—development of novel test method for ductility-dip cracking and new alloy. Metall Mater Trans A 55:1878–1893. https://doi.org/10.1007/s11661-024-07363-2

    Article  CAS  Google Scholar 

  69. Collins MG, Ramirez AJ, Lippold JC (2004) An investigation of ductility-dip cracking in nickel-based weld metals—Part III. Weld J 83:39s–49s

    Google Scholar 

  70. Dave VR, Cola MJ, Kumar M et al (2004) Grain boundary character in alloy 690 and ductility-dip cracking susceptibility. Weld J 83:1s–5s

    Google Scholar 

  71. Ramirez AJ, Lippold JC (2004) High temperature behavior of Ni-base weld metal Part I. Ductility and microstructural characterization. Mater Sci Eng A 380:259–271. https://doi.org/10.1016/j.msea.2004.03.074

    Article  CAS  Google Scholar 

  72. Norton SJ (2002) Development of a Gleeble based test for post weld heat treatment cracking in nickel alloys. The Ohio State University

  73. Gallagher ML, Lippold J (2011) Weld cracking susceptibility of alloy C-22 weld-metal. In: Lippold J, Böllinghaus T, Cross CE (eds) Hot cracking phenomena in welds III. Springer, Berlin, pp 367–391

    Chapter  Google Scholar 

  74. Eilers A, Nellesen J, Zielke R, Tillmann W (2017) Analysis of the ductility dip cracking in the nickel-base alloy 617mod. In: 19th Chemnitz Seminar on Materials Engineering. Institute of Physics Publishing, p 012020. https://doi.org/10.1088/1757-899X/181/1/012020

  75. Nippes EF, Savage WF, Grotke G (1957) Further studies of the hot ductility of high-temperature alloys. Weld Res Counc Bull Ser 33:1–32

    Google Scholar 

  76. White CL, Schneibel JH, Padgett RA (1983) High temperature embrittlement of Ni and Ni-Cr alloys by trace elements. Metall Trans A 14A:595–610

    Article  Google Scholar 

  77. Zhang Y-C, Nakagawa H, Matsuda F (1985) Weldability of Fe-36%Ni Alloy. Trans JWRI 14:325–334

    CAS  Google Scholar 

  78. Lee YH, Lee CH, Lundin CD (1988) Hot ductility behavior and hot cracking susceptibility of Type 303 austenitic stainless steel. J Korean Weld Soc 6:35–45

    Google Scholar 

  79. Perrot-Simonetta M, Koblyanski A (1995) Influence of trace elements on hot ductility of an ultra high purity invar alloy. J Phys IV Proc 5:323–334. https://doi.org/10.1051/jp4:1995739

    Article  Google Scholar 

  80. Lee DJ, Byun JC, Sung JH, Lee HW (2009) The dependence of crack properties on the Cr/Ni equivalent ratio in AISI 304L austenitic stainless steel weld metals. Mater Sci Eng A 513–514:154–159. https://doi.org/10.1016/j.msea.2009.01.049

    Article  CAS  Google Scholar 

  81. Saida K, Okabe Y, Hata K et al (2010) Hot cracking behaviour and susceptibility of extra high purity type 310 stainless steels. Sci Technol Weld Join 15:87–96. https://doi.org/10.1179/136217109X12590746472454

    Article  CAS  Google Scholar 

  82. Jang AY, Lee DJ, Lee SH et al (2011) Effect of Cr/Ni equivalent ratio on ductility-dip cracking in AISI 316L weld metals. Mater Des 32:371–376. https://doi.org/10.1016/j.matdes.2010.06.016

    Article  CAS  Google Scholar 

  83. Nishimoto K, Saida K, Kiuchi K, Nakayama J (2011) Influence of minor and impurity elements on hot cracking susceptibility of extra high-purity type 310 stainless steels. In: Lippold J, Bollinghaus T, Cross CE (eds) Hot Cracking Phenomena in Welds III. Springer, Berlin, pp 183–208

    Chapter  Google Scholar 

  84. Saida K, Matsushita H, Nishimoto K et al (2013) Quantitative influence of minor and impurity elements on solidification cracking susceptibility of extra high purity type 310 stainless steel. Sci Technol Weld Join 18:616–623. https://doi.org/10.1179/1362171813Y.0000000149

    Article  CAS  Google Scholar 

  85. Han K, Yoo J, Lee B et al (2014) Effect of Ni on the hot ductility and hot cracking susceptibility of high Mn austenitic cast steel. Mater Sci Eng A 618:295–304. https://doi.org/10.1016/j.msea.2014.09.040

    Article  CAS  Google Scholar 

  86. Kadoi K, Hiraoka M, Shinozaki K, Obana T (2019) Ductility-dip cracking susceptibility in dissimilar weld metals of alloy 690 filler metal and low alloy steel. Mater Sci Eng A 756:92–97. https://doi.org/10.1016/j.msea.2019.04.035

    Article  CAS  Google Scholar 

  87. Christien F (2020) Role of impurity sulphur in the ductility trough of austenitic iron-nickel alloys. Materials (Basel) 13:539. https://doi.org/10.3390/ma13030539

    Article  CAS  PubMed  Google Scholar 

  88. Yu P, Morrow J, Kou S (2021) Resistance of austenitic stainless steels to ductility-dip cracking: mechanisms. Weld J 100:291s–301s. https://doi.org/10.29391/2021.100.026

    Article  Google Scholar 

  89. Ben Mostefa L, Saindrenan G, Barbouth N et al (1990) Intergranular segregation of sulfur in the Fe-Ni 36 alloys. Scr Metall Mater 24:773–777

    Article  Google Scholar 

  90. Ben Mostefa L, Saindrenan G, Solignac MP, Colin JP (1991) Effect of Interfacial Sulfur Segregation on the Hot Ductility Drop of Fe-Ni36 Alloys. Acta Metall et Mater 39:3111

    Article  CAS  Google Scholar 

  91. Matsuda F, Nakagawa H, Minehisa S et al (1984) Weldability of Fe-36% Ni alloy (Report II): effect of chemical composition on reheated hot cracking in weld metal. Trans JWRI 13:241–247. https://doi.org/10.18910/4989

    Article  CAS  Google Scholar 

  92. Matsuda F, Nakagawa H, Ogata S, Katayama S (1978) Fractographic investigation on solidification crack in the varestraint test of fully austenitic stainless steel. Trans JWRI 7:59–70. https://doi.org/10.18910/10586

    Article  CAS  Google Scholar 

  93. Gooch TG, Honeycombe J (1980) Welding variables and microfissuring in austenitic stainless steel weld Metal. Weld J 58:233s–241s

    Google Scholar 

  94. Thomas RD (1984) HAZ cracking in thick sections of austenitic stainless steels—Part II. Weld J 63:355s–367s

    Google Scholar 

  95. Chubb JP, Billingham J (1978) Effect of nickel on hot ductility of binary copper-nickel alloys. Met Technol 5:100–103

    Article  CAS  Google Scholar 

  96. Evans RW, Jones FL (1978) Hot ductility of wrought 70–30 cupronickel alloy. Met Technol 5:1–6

    Article  CAS  Google Scholar 

  97. Gavin SA, Billingham J, Chubb JP, Hancock P (1978) Effect of trace impurities on hot ductility of as-cast cupronickel alloys. Met Technol 5:397–401

    Article  CAS  Google Scholar 

  98. Duncan A (1985) Cracking in the Welding of Cupro-Nickel Alloys. University of Aston, Birmingham

    Google Scholar 

  99. Johansson MM, Stenvall P, Karlsson L, Andersson J (2020) Evaluation of test results and ranking criteria for Varestraint testing of an austenitic high-temperature alloy. Weld World 64:903–912. https://doi.org/10.1007/s40194-020-00891-6

    Article  CAS  Google Scholar 

  100. Statharas D, Atkinson H, Thornton R et al (2019) Getting the strain under control: trans-varestraint tests for hot cracking susceptibility. Metall Mater Trans A Phys Metall Mater Sci 50:1748–1762. https://doi.org/10.1007/s11661-019-05140-0

    Article  CAS  Google Scholar 

  101. Gao J, Tan J, Jiao M et al (2020) Role of welding residual strain and ductility dip cracking on corrosion fatigue behavior of Alloy 52/52M dissimilar metal weld in borated and lithiated high-temperature water. J Mater Sci Technol 42:163–174. https://doi.org/10.1016/j.jmst.2019.10.012

    Article  CAS  Google Scholar 

  102. Kadoi K, Okano S, Yamashita S et al (2019) Investigation of standardizing for evaluation method of transverse-Varestraint test. Weld Int 33:189–199. https://doi.org/10.1080/09507116.2020.1866340

    Article  Google Scholar 

  103. Heo NH, Shin HS, Kim SJ (2014) Role of power ratio on ductility-dip cracking of Ni-Cr-Fe weld. Met Mater Int 20:129–133. https://doi.org/10.1007/s12540-014-1011-3

    Article  CAS  Google Scholar 

  104. Lee SH, Chang YS, Kim SW (2015) Residual stress assessment of nickel-based alloy 690 welding parts. Eng Fail Anal 54:57–73. https://doi.org/10.1016/j.engfailanal.2015.03.022

    Article  CAS  Google Scholar 

  105. Lynch S (2019) A review of underlying reasons for intergranular cracking for a variety of failure modes and materials and examples of case histories. Eng Fail Anal 100:329–350

    Article  CAS  Google Scholar 

  106. Zheng L, Schmitz G, Meng Y et al (2012) Mechanism of intermediate temperature embrittlement of Ni and Ni-based superalloys. Crit Rev Solid State Mater Sci 37:181–214

    Article  CAS  Google Scholar 

  107. Langdon TG (2006) Grain boundary sliding revisited: developments in sliding over four decades. J Mater Sci 41:597–609. https://doi.org/10.1007/s10853-006-6476-0

    Article  CAS  Google Scholar 

  108. Langdon TG (1994) A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall Mater 42:2437–2443. https://doi.org/10.1016/0956-7151(94)90322-0

    Article  CAS  Google Scholar 

  109. Xing Z, Fan H, Xu C, Kang G (2024) Transition from grain boundary migration to grain boundary sliding in magnesium bicrystals. Acta Mech Sin 40:123448. https://doi.org/10.1007/s10409-024-23448-x

    Article  Google Scholar 

  110. Shiga M, Shinoda W (2004) Stress-assisted grain boundary sliding and migration at finite temperature: a molecular dynamics study. Phys Rev B 70:054102. https://doi.org/10.1103/PhysRevB.70.054102

    Article  CAS  Google Scholar 

  111. Scheiber D, Pippan R, Puschnig P, Romaner L (2016) Ab initio calculations of grain boundaries in bcc metals. Model Simul Mater Sci Eng 24:035013. https://doi.org/10.1088/0965-0393/24/3/035013

    Article  CAS  Google Scholar 

  112. Huang Q, Zhao Q, Zhou H, Yang W (2022) Misorientation-dependent transition between grain boundary migration and sliding in FCC metals. Int J Plast 159:103466. https://doi.org/10.1016/j.ijplas.2022.103466

    Article  CAS  Google Scholar 

  113. Li B, Leung J (2021) Lattice transformation in grain boundary migration via shear coupling and transition to sliding in face-centered-cubic copper. Acta Mater 215:117127. https://doi.org/10.1016/j.actamat.2021.117127

    Article  CAS  Google Scholar 

  114. Hua A, Zhao J (2022) Shear direction induced transition mechanism from grain boundary migration to sliding in a cylindrical copper bicrystal. Int J Plast 156:103370. https://doi.org/10.1016/j.ijplas.2022.103370

    Article  CAS  Google Scholar 

  115. Nelson TW, Lippold JC, Mills MJ (2000) Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar metal welds—Part 2: on-cooling transformations. Weld Res 10:267

    Google Scholar 

  116. Li L, Messler RW (1999) Effects of phosphorus and sulfur on susceptibility to weld hot cracking in austenitic stainless steels. Weld J 78:388s–396s

    Google Scholar 

  117. Liu K, Yu P, Kou S (2020) Solidification cracking susceptibility of stainless steels: new test and explanation. Weld J 99:255s–270s. https://doi.org/10.29391/2020.99.024

    Article  Google Scholar 

  118. Matsumoto T, Shinoda T, Miyake H et al (1995) Effect of low-melting-point eutectic on solidification cracking susceptibility of boron-added AISI 304 stainless steel welds. Weld J 74:397s–405s

    Google Scholar 

  119. Cieslak MJ, Savage WF (1985) Hot-cracking studies of alloy CN7M. Weld J 64:119s–126s

    Google Scholar 

  120. Cieslak MJ, Headley TJ, Kollie T, Romig AD (1988) A melting and solidification study of alloy 625. Metall Trans A 19A:2319–2331

    Article  CAS  Google Scholar 

  121. Allart M, Christien F, Le Gall R (2013) Ultra-fast sulphur grain boundary segregation during hot deformation of nickel. Acta Mater 61:7938–7946. https://doi.org/10.1016/j.actamat.2013.09.035

    Article  CAS  Google Scholar 

  122. Briant CL (1990) On the chemistry of grain boundary segregation and grain boundary fracture. Metall Trans A 21A:2339–2354

    Article  CAS  Google Scholar 

  123. Yamaguchi M, Nishiyama Y, Kaburaki H (2007) Decohesion of iron grain boundaries by sulfur or phosphorous segregation: first-principles calculations. Phys Rev B 76:035418. https://doi.org/10.1103/PhysRevB.76.035418

    Article  CAS  Google Scholar 

  124. Yamaguchi M, Shiga M, Kaburaki H (2005) Grain boundary decohesion by impurity segregation in a Nickel-Sulfur system. Science 307:393–397. https://doi.org/10.1126/science.1105122

    Article  CAS  PubMed  Google Scholar 

  125. Srinivasan G, Bhaduri AK, Shankar V (2009) The weldability assessment of modified E316–15 stainless steel welding electrodes. Int J Nucl Energy Sci Technol 4:232–242

    Article  Google Scholar 

  126. Brooks JA, Thompson AW, Williams JC (1983) Variations in weld ferrite content due to P and S. Weld J 62:220s–226s

    Google Scholar 

  127. Weiss B, Grotke GE, Stickler R (1970) Physical metallurgy of hot ductility testing. Weld J 49:471–487

    Google Scholar 

  128. Savage WF, Lundin CD (1965) The Varestraint Test. Weld J 44:433s–442s

    Google Scholar 

  129. Savage WF, Lundin CD (1966) Application of the varestraint technique to the study of weldability. Weld J 45:497s–503s

    CAS  Google Scholar 

  130. Lee CH (1988) Weldability and Microstructural Analysis of Nuclear Grade Austenitic Stainless Steels. The University of Tennessee, Knoxville

    Google Scholar 

  131. Baeslack WA III, Lata WP, West SL (1988) A Study of heat-affected zone and weld metal liquation cracking in alloy 903. Weld J 67:77s–87s

    Google Scholar 

  132. Ogura T, Morikawa Y, Saida K (2016) Evaluation of ductility-dip cracking susceptibility in alloy 690 laser multipass weld metal by Varestraint test. Q J Japan Weld Soc 34:181–188. https://doi.org/10.2207/qjjws.34.181

    Article  CAS  Google Scholar 

  133. Yamaguchi S, Kobayashi H, Matsumiya T, Hayami S (1979) Effect of minor elements on hot workability of nickel-base superalloys. Met Technol 6:170–175

    Article  CAS  Google Scholar 

  134. Lingenfelter AC (1972) Varestraint testing of nickel alloys. Weld J 51:430s–436s

    Google Scholar 

  135. Lessmann GG, Gold RE (1971) The varestraint test for refractory metals modified. Weld J 50:1s–8s

    Google Scholar 

  136. Caron JL, Sowards JW (2014) Weldability of Nickel-Base Alloys. Comprehensive Materials Processing. Elsevier, Amsterdam, pp 151–179

    Chapter  Google Scholar 

  137. Mendes da Silva CL, Scotti A (2004) Performance assessment of the (Trans) Varestraint tests for determining solidification cracking susceptibility when using welding processes with filler metal. Meas Sci Technol 15:2215–2223. https://doi.org/10.1088/0957-0233/15/11/006

    Article  CAS  Google Scholar 

  138. Zhang KJ, Sheeley C, Frame LD (2021) Creep strain behaviors of Ti-6Al-4V using Gleeble 3500. In: Heat Treat 2021: Proceedings 31st ASM Heat Treating Society Conference, pp 220–228

  139. Hunziker O, Dye D, Reed RC (2000) On the formation of a centreline grain boundary during fusion welding. Acta Mater 48:4191–4201. https://doi.org/10.1016/S1359-6454(00)00273-1

    Article  CAS  Google Scholar 

  140. Lundin CD, Lee CH, Menon R (1988) Hot ductility and weldability of free machining austenitic stainless steel. Weld J 67:119s–130s

    Google Scholar 

  141. Lee JK, Aaronson HI (1974) Application of the modified Gibbs-Wulff construction to some problems in the equilibrium shape of crystals at grain boundaries. Scr Metall 8:1451–1460

    Article  Google Scholar 

  142. Hemsworth B, Boniszewski T, Eaton NF (1969) Classification and definition of high temperature welding cracks in alloys. Met Constr Br Weld J 1:5–16

    CAS  Google Scholar 

  143. Pérez-Prado M-T, Kassner ME (2009) Ch. 6—Superplasticity. In: Kassner ME (ed) Fundamentals of Creep in Metals and Alloys, 2nd edn. Elsevier, Amsterdam, pp 137–152

    Google Scholar 

Download references

Acknowledgements

The authors would like to disclose Graduate Student support for Matthew Caruso through a GAANN award from Department of Education (#P200A210093, PI: Bryan Huey, Co-PI: Lesley Frame). We would also like to acknowledge the following researchers for allowed usage of their figures: Dr. John Lippold, Dr. Boian Alexandrov, and Dr. Shanping Lu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley Frame.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The experiments in this review paper did not involve human tissue.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruso, M., Frame, L. Ductility dip cracking mechanisms and characterization: a review. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-10112-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-10112-w

Navigation