INTRODUCTION

It is known that any simple finite non-Abelian group, except the three-dimensional unitary group over a field of nine elements PSU3(9), is generated by three involutions. The proof of this fact was completed by G. Malle, J. Saxl, and T. Weigel in [1]. There, too, the following problem was formulated (see also [2, Question 14.69c]):

(A) For every finite simple non-Abelian group G, find nc(G), the minimum number of generators of conjugate involutions whose product equals 1.

If a group G is simple and non-Abelian, then nc(G) 5 (cf. [3, p. 13] or [4, Lemma 4]). On the other hand, it is obvious that if G is generated by three conjugate involutions, then nc(G) 6. We say that a group is (2, 3)-generated if it is generated by an involution and an element of order 3. Every perfect (2, 3)-generated group is generated by three conjugate involutions [5, p. 221]. (A group is perfect if it coincides with its derived subgroup.) Thus, for a finite simple (2, 3)-generated group G, the number nc(G) equals either 5 or 6, and problem (A) reduces to the following questio n: Is a group G generated by five conjugate involutions whose product is equal to unity? Note that there are simple finite groups G for which nc(G) > 6 (see [4]), for instance nc(PSU3(9)) = 7.

J. M. Ward [3] solved problem (A) for sporadic, alternating, and projective special linear groups PSLn(q) over a field of odd order q, except in the case q = 9 for n ≥ 4 and also in the case q ≡ 3 (mod 4) for n = 6. In 2021 I. Yu. Efimov and Ya. N. Nuzhin [6] lifted the restriction q ≠ 9 for n = 4, 5, 7, 8. In this paper we lift the restriction q ≠ 9 for dimensions n ≥ 9 and for the dimension n = 6. In all of these cases, it turns out that generating quintuples of conjugate involutions whose product equals unity (see [3]), will do also for q = 9.

The main result of the paper is the following:

THEOREM 1. (a) The special linear group SLn(9) of dimension n ≥ 9 over a field of order 9 is generated by three conjugate involutions α, β, γ, and the product αβ is also an involution, which is conjugate to α.

(b) The projective special linear group PSL6(9) of dimension 6 over a field of order 9 is generated by three conjugate involutions α, β, γ, and the product αβ is also an involution, which is conjugate to α.

We fix as a lemma one result useful for solving problem (A) (see also [4, Lemma 6]).

PROPOSITION 1 [3, Lemma 1.2.2]. The following statements are equivalent:

(a) a group G is generated by three conjugate involutions α, β, γ, and the product αβ is also an involution and it is conjugate to α;

(b) a group G is generated by conjugate involutions α, β, γ, δ, ε two of which coincide and αβγδε = 1.

In [3] Proposition 1 was used and triples of generating conjugate involutions α, β, γ were found the first two of which commute and the involutions α, αβ are conjugate. The proof that groups are generated by a given set of involutions in [3] made essential use of a well-known theorem due to L. Dickson, which says that a group generated by two opposite elementary transvections over a finite field of odd order q other than 9 coincides (up to conjugation by a diagonal element) with the group SL2 over some subfield of the base field. In the case of a field of order 9, however, two opposite transvections do not always generate a group isomorphic to SL2(q); in [3], therefore, this case is excluded.

Obviously, if \(\overline{G }\) is a nontrivial homomorphic image of G, then nc(\(\overline{G }\)) ≤ nc(G). In view of Proposition 1 and the fact that nc(G) 5 for a simple group G, Theorem 1 entails

COROLLARY 1. (a) If n ≥ 9, then nc(SLn(9)) = nc(PSLn(9)) = 5.

(b) nc(PSL6(9)) = 5.

Note that dimension 6 stands out as a special case in Theorem 1 and Corollary 1 since the group SL6(q) for odd q is not generated by even an arbitrary quintuple of (not necessarily conjugate) involutions whose product equals unity [7]. However, it is (2, 3)-generated [8,9,10], so the equality nc(SL6(q)) = 6 holds.

Finally, summing up the results obtained in [3, 6] and Theorem 1, we obtain that for groups PSLn(q), q is odd, Question 14.69(c) remains unsettled only for n = 6 with q ≡ 3 (mod 4).

1. PRELIMINARY RESULTS

We fix some elements from the special linear group SLn(F ) over a field F . The elementary transvections

$${t}_{r,s}\left(u\right)={E}_{n}+{ue}_{r,s},r,s=\text{1,2},\dots ,n, r\ne s,u\in F,$$

will be called simply transvections, where En is the identity matrix of degree n, and er,s is the (n × n) matrix with 1 on position (r, s) and 0’s elsewhere. Hereinafter, the following abbreviations are used. For any nonempty subset M of some group, <M> denotes a subgroup generated by the set M; xy = yxy1; [x, y] = xyx−1y−1.

In the proof of Theorem 1(b), the following obvious fact was used. Let ϕ: G\(\overline{G }\) be a surjective homomorphism, and let a group G be generated by a set M. Then the homomorphic image \(\overline{G }\) is generated by the set (M ). Since the natural homomorphism ϕ: SLn(F) → PSLn(F) is surjective, it suffices to show that the group SLn(F) is generated by a set {α, β, γ}, where ϕ(α), ϕ(β), ϕ(γ) are involutions in PSLn(F) having the required properties.

The following is well known:

LEMMA 1.1 [11, p. 26]. The special linear group SLn(F ) over a field F is generated by all its elementary transvections tr,s(u), u F , r, s = 1, 2,... , n.

Throughout what follows, on matrix positions i is an element of the field GF (9) such that i2 = −1. The additive group of a field of order 9 is generated by the elements 1 and i, so the previous lemma implies

LEMMA 1.2. (a) The special linear group SLn(3) over a field of order 3 is generated by transvections tr,s(1), r, s = 1, 2,..., n.

(b) The special linear group SLn(9) over a field of order 9 is generated by transvections tr,s(1), tr,s(i), r, s = 1, 2,..., n.

In proofs on generation of groups SLn(9) by a certain collection of involutions, use is made of the matrices

$$\mu =\left(\begin{array}{ccccc}0& 0& \dots & 0& {\left(-1\right)}^{n+1}\\ 1& 0& \dots & 0& 0\\ 0& 1& \dots & 0& 0\\ \dots & \dots & \dots & \dots & \dots \\ 0& 0& \dots & 1& 0\dots \end{array}\right),$$
figure a

where the plus sign is taken for n = 4m+1, n = 4m+2 and the minus sign is taken for n = 4m+3, n = 4m so that the matrix γ1 be in SLn(9). A group generated by the matrix μ acts transitively by conjugations on a set of transvections given by

$$T=\left\{{t}_{1,n}\left({\left(-1\right)}^{n+1}\right),{t}_{r+1,r}\left(1\right),r=\text{1,2},\dots ,n-1\right\}$$

and on its transpose

$${T}{\prime}=\left\{{t}_{n,1}\left({\left(-1\right)}^{n+1}\right),{t}_{r,r+1}\left(1\right),r=\text{1,2},\dots ,n-1\right\}.$$

Commuting with each other elements from the set T or from T′, we obtain all transvections tr,s(1), r, s = 1,... , n. In view of Lemma 1.2(a), therefore, each of the sets T and T′ generates the group SLn(3). Moreover, the following is valid:

LEMMA 1.3. (a) The group SLn(3) is generated by the matrix μ and one transvection from the set T or from the set T′.

(b) The group SLn(9) is generated by the matrix μ in combination with one transvection from T or from T′ and any transvection tr,s(i).

In proving, we use an isomorphism between the symmetric group Sn and the factor group M/D of a monomial group M in SLn(F ) with respect to D, a subgroup of its diagonal matrices. In correspondence with every monomial matrix ϵ with a nonzero element on position (jk, ik) and zeros elsewhere in this column is a permutation \(\widetilde{\epsilon }\) mapping element ik into element jk, respectively, with k = 1, 2,..., n. And conversely, every permutation on n symbols is in correspondence with monomial matrices from SLn(F). In particular, the matrix μ agrees with a cycle (1, 2,..., n) of length n, and any monomial matrix from SLn(F), which agrees with a cycle of length n, is conjugate to μ in GLn(F ) by monomial and diagonal matrices.

It is easy to see that the following is valid:

LEMMA 1.4. Let η be a monomial (0, 1)-matrix (permutation matrix) which agrees with an element of the symmetric group mapping the symbols l and k into r and s, respectively, with lk, rs, l, k, r, s ∈ {1, 2,..., n}. Then the equality tl,k(u)η = tr,s(u) holds for any element u F.

2. PROOF OF THEOREM 1

The proof is constructive and insists on all generators being given in an explicit form. However, generating involutions are the same as in Ward’s thesis [3].

To prove that the given involutions α, β, γ, αβ are conjugate, we use K. Jordan’s famous theory. Since the characteristic of a field F is not 2, Jordan boxes of involutions, as well as of elements of order 4 in the case of dimension n = 6, are one-dimensional. Consequently, if the corresponding matrices have equal sets of eigenvalues, and all eigenvalues are in F, then they are conjugate in GLn(F) and, hence, in SLn(F).

The case of dimensions n = 4m + 1. Generating involutions have the forms

figure b

(In the matrix γ, the element i is at position (n, 2m), and the element −i is at position (n, 2m+1)). Hereinafter, we use the sign diag not only for diagonal matrices but also for block-diagonal ones. The elements α, β, γ, αβ are involutions and have eigenvalues {12m+1, (−1)2m}, so they are conjugate in SLn(9). We put M = <α, β, γ> and show that the subgroup M coincides with SLn(9). We have

$$\begin{array}{c}\eta ={\left(\beta \gamma \right)}^{4}={t}_{n,2m}\left(4i\right){t}_{n,2m+1}\left(-4i\right)={t}_{n,2m}\left(i\right){t}_{n,2m+1}\left(-i\right),\\ {\gamma }_{1}={t}_{n,2m}\left(i\right){t}_{n,2m+1}\left(-i\right)\gamma .\end{array}$$

Monomial matrices that are contained in the group M comply with the following permutations

$$\begin{array}{c}\widetilde{\alpha }=\left(\text{1,2}m+1\right)\dots \left(m+1\right)\left(2m+\text{2,2}m+3\right)\dots \left(n-1,n\right),\\ {\widetilde{\gamma }}_{1}=\left(1,n-1\right)\dots \left(2m+2m+1\right)\left(n\right),\\ \widetilde{\theta }=\widetilde{\alpha }{\widetilde{\gamma }}_{1}=\left(\text{1,2}m,n-\text{2,3},\dots ,\text{2,2}m+1,n-1,n\right).\end{array}$$

The key step in proof is

LEMMA 2.1. The equality <θ, t2,1(1)> = SLn(3) holds.

Proof. Permutations that comply with the matrices θ and μ are cycles of length n. Since all cycles of length n are conjugate in Sn, there exists a monomial matrix δ lying in GLn(3) and mapping by conjugation θ into μ. Then

$$\widetilde{\delta }=\left(2m,2,n-3,\dots \right)\left(1\right)\left(n-1\right)\left(n\right).$$

Note that t2,1(1)δ = tn−3,1(±1), hence

$${\langle \theta ,{t}_{\text{2,1}}\left(1\right)\rangle }^{\delta }=\langle \mu ,{t}_{n-\text{3,1}}\left(1\right)\rangle .$$

Further, conjugating the transvections by matrix μ and commuting the results of conjugation, we obtain an element of the set T′. Hereinafter, Lemma 1.4 is used. We have

$$\begin{array}{c}{t}_{n-\text{3,1}}{\left(1\right)}^{{\mu }^{4}}={t}_{\text{1,5}}\left(1\right),\\ \left[{t}_{n-\text{3,1}}\left(1\right),{t}_{\text{1,5}}\left(1\right)\right]={t}_{n-\text{3,5}}\left(1\right),\\ \begin{array}{c}{t}_{n-\text{3,5}}{\left(1\right)}^{{\mu }^{4}}={t}_{\text{1,9}}\left(1\right),\\ \dots \\ \begin{array}{c}{t}_{n-\text{3,4}}\left(m-2\right)+1{\left(1\right)}^{{\mu }^{4}}={t}_{\text{1,4}m-3}\left(1\right)={t}_{1,n-4}\left(1\right),\\ \left[{t}_{n-\text{3,1}}\left(1\right),{t}_{1,n-4}\left(1\right)\right]={t}_{n-3,n-4}\left(1\right).\end{array}\end{array}\end{array}$$

In view of Lemma 1.3(a),

$$\langle \mu ,{t}_{n-3,n-4}\left(1\right)\rangle ={SL}_{n}\left(3\right),$$

hence

$$\langle \theta ,{t}_{\text{2,1}}\left(1\right)\rangle ={SL}_{n}{\left(3\right)}^{\delta -1}={SL}_{n}\left(3\right),$$

The lemma is proved.

Our computations show that

$$\begin{array}{c}{\eta }^{\alpha \gamma }={t}_{n-\text{1,1}}\left(i\right){t}_{n-\text{1,2}}\left(-i\right),\\ {\eta }^{\gamma \alpha }={t}_{1,n-2,}\left(i\right){t}_{1,n-1}\left(-i\right),\\ \lambda ={\left({\eta }^{{\left(\alpha \gamma \right)}^{2}}\right)}^{\alpha }.\end{array}$$

The element λ has the following representation:

figure c

Multiplying the last equality from the left by (η1)αγ, we have zeros at positions (n − 1, 1) and (n − 1, 2). Furthermore,

$$\xi ={\left({\left({\eta }^{-1}\right)}^{\alpha \gamma }\lambda \right)}^{2}=diag\left(1,-\text{1,1},\dots ,1,-1\right){t}_{\text{2,1}}\left(1\right){t}_{n-\text{1,2}m-1}\left(1\right).$$

Commuting this matrix with a suitable diagonal element, we obtain a transvection. We have

$$\begin{array}{c}{\beta }^{{\theta }^{3}}=diag\left(1,{\underbrace{-1,\dots ,-1}_{2m-3}},1,{\underbrace{-1,\dots ,-1}_{2m-3}},-\text{1,1},1,-1\right),\\ \left[\xi ,{\beta }^{{\theta }^{3}}\right]={t}_{\text{2,1}}\left(1\right).\end{array}$$

Thus there is a transvection t2,1(1). Since t2,1(1)M , in view of Lemma 2.1, the subgroup M contains the group SLn(3). It remains to show that the subgroup SLn(3), together with the product of transvections tn,2m(i)tn,2m+1(−i), generates the group SLn(9). For that, it suffices to note that the commutator

$$\left[diag{\underbrace{\left(-1,\dots ,-1\right.,}_{2m}}{\underbrace{\left.1,\dots ,1\right)}_{2m+1}},{t}_{n,2m}\left(i\right){t}_{n,2m+1}\left(-i\right)\right]$$

with diagonal matrix from SLn(3) gives a transvection tn,2m(i). Now Lemma 1.3(b) yields the generation of the group SLn(9).

The case of dimensions n = 4m + 2. As generators we can take the involutions

figure d

The elements α, β, γ, αβ are involutions and have eigenvalues {12m+2, (−1)2m}. So they are conjugate in SLn(9). Put M = <α, β, γ>. Then

$$\begin{array}{c}\eta ={\left(\beta \gamma \right)}^{8}={t}_{n,3}\left(-i\right){t}_{n,n-3}\left(i\right){t}_{n,n-2}\left(i\right),\\ {\gamma }_{1}={\eta }^{2}\gamma ,\\ \theta ={\gamma }_{1}\alpha .\end{array}$$

LEMMA 2.2. We have <α, β, γ1, tn,1(1)> = SLn(3).

Proof. In a permutation representation, monomial (0, 1)-matrices α, γ1, and θ have the forms

$$\begin{array}{c}\widetilde{\alpha }=\left(\text{1,2}\right)\dots \left(n-5,n-4\right)\left(n-3\right)\left(n-2\right)\left(n-1,n\right),\\ {\widetilde{\gamma }}_{1}=\left(1,n-1\right)\dots \left(2m,2m+2\right)\left(2m+1\right)\left(n\right),\\ \widetilde{\theta }=\left(1,n-\text{2,2},n-1,n\right)\left(3,n-\text{4,5},n-6,\dots 6,n-\text{5,4},n-3\right).\end{array}$$

Conjugating transvections by the matrix θ and commuting them between each other, we obtain the following equalities:

$$\begin{array}{c}{t}_{n,1}{\left(1\right)}^{\langle \theta \rangle }=\left\{{t}_{n,1}\left(1\right),{t}_{1,n-2}\left(1\right),{t}_{n-\text{2,2}}\left(1\right),{t}_{2,n-1}\left(1\right),{t}_{n-1,n}\left(1\right)\right\},\\ \left[{t}_{n-1,n}\left(1\right),{t}_{n,1}\left(1\right)\right]={t}_{n-\text{1,1}}\left(1\right),\\ {t}_{n,1}{\left(1\right)}^{\langle \theta \rangle }=\left\{{t}_{n,n-2}\left(1\right),{t}_{\text{1,2}}\left(1\right),{t}_{n-2,n-1}\left(1\right),{t}_{2,n}\left(1\right),{t}_{n-\text{1,1}}\left(1\right)\right\},\\ \begin{array}{c}\left[{t}_{1,n-2}\left(1\right),{t}_{n-2,n-1}\left(1\right)\right]={t}_{1,n-1}\left(1\right),\\ \left[{t}_{1,n-1}\left(1\right),{t}_{n-1,n}\left(1\right)\right]={t}_{1,n}\left(1\right),\\ \begin{array}{c}\left[{t}_{n,1}\left(1\right),{t}_{1,j}\left(1\right)\right]={t}_{n,j}\left(1\right),j=2,n-1,n-2,\\ \left[{t}_{n-\text{1,1}}\left(1\right),{t}_{1,j}\left(1\right)\right]={t}_{n-1,j}\left(1\right),j=2,n,n-2,\\ \begin{array}{c}\left[{t}_{2,n}\left(1\right),{t}_{n,1}\left(1\right)\right]={t}_{\text{2,1}}\left(1\right),\\ \left[{t}_{\text{2,1}}\left(1\right),{t}_{1,j}\left(1\right)\right]={t}_{2,j}\left(1\right),j=n-2,n-1,n,\\ \begin{array}{c}\left[{t}_{n-\text{2,2}}\left(1\right),{t}_{\text{2,1}}\left(1\right)\right]={t}_{n-\text{2,1}}\left(1\right),\\ \left[{t}_{n-\text{2,1}}\left(1\right),{t}_{1,j}\left(1\right)\right]={t}_{n-2,j}\left(1\right),j=2,n-1,n.\end{array}\end{array}\end{array}\end{array}\end{array}$$

Thus, there is a set of transvections {ti,j(1), i,j = 1, 2,n − 2,n − 1, n}. Below is a chain of commutators where, for simplicity, computations are done without regard for the sign:

$$\begin{array}{c}\left[{t}_{1,j}{\left(1\right)}^{\beta },{t}_{j,k}\left(1\right)\right]={t}_{4,k}\left(\pm 1\right),j=n-2,n-1,n,k=\text{1,2},n-2,n-1,n,\\ \left[{t}_{2,j}{\left(1\right)}^{\beta },{t}_{j,k}\left(1\right)\right]={t}_{3,k}\left(\pm 1\right),j=n-2,n-1,n,k=\text{1,2},n-2,n-1,n,\\ \begin{array}{c}\left[{t}_{k,j}\left(1\right),{t}_{j,1}{\left(1\right)}^{\beta }\right]={t}_{k,4}\left(\pm 1\right),j=n-2,n-1,n,k=\text{1,2},n-2,n-1,n,\\ \left[{t}_{k,j}\left(1\right),{t}_{j,2}{\left(1\right)}^{\beta }\right]={t}_{k,3}\left(\pm 1\right),j=n-2,n-1,n,k=\text{1,2},n-2,n-1,n.\end{array}\end{array}$$

Conjugating the results of commutation by the matrix θ, we obtain

$$\begin{array}{c}{t}_{j,3}{\left(1\right)}^{\langle \theta \rangle }=\left\{{t}_{k,j}\left(1\right),j=\text{1,2},n-2,n-1,n,k=\text{3,4},\dots ,n-3\right\},\\ {t}_{3,j}{\left(1\right)}^{\langle \theta \rangle }=\left\{{t}_{k,j}\left(1\right),j=\text{1,2},n-2,n-1,n,k=\text{3,4},\dots ,n-3\right\}.\end{array}$$

Commuting the resulting transvections, we have

$$\left[{t}_{{k}_{1},j}\left(1\right),{t}_{j,{k}_{2}}\left(1\right)\right]={t}_{{k}_{1},{k}_{2}}\left(1\right),j=n-2,n-1,n,{k}_{1},{k}_{2}=\text{3,4},\dots ,n-3.$$

It remains to apply Lemma 1.2(a) to conclude that

$$\langle \alpha ,\beta ,{\gamma }_{1},{t}_{n,1}\left(1\right)\rangle =S{L}_{n}\left(3\right).$$

The lemma is proved.

We show that the transvection tn,1(1) lies in the set M. We have the following conjugates of η:

$$\begin{array}{c}{\eta }^{\alpha }={t}_{n-\text{1,1}}\left(-i\right){t}_{n-\text{1,4}}\left(-i\right){t}_{n-1,n-3}\left(i\right){t}_{n-1,n-2}\left(i\right),\\ {\eta }^{\gamma \alpha }={t}_{\text{1,2}}\left(i\right){t}_{\text{1,3}}\left(i\right){t}_{1,n-4}\left(-i\right){t}_{1,n-1}\left(-i\right),\\ \begin{array}{c}{\eta }^{\beta \gamma \alpha }={t}_{\text{4,2}}\left(i\right){t}_{\text{4,3}}\left(i\right){t}_{4,n-4}\left(-i\right){t}_{4,n-1}\left(-i\right),\\ {\eta }^{\alpha \beta \gamma \alpha }={t}_{\text{3,1}}\left(i\right){t}_{\text{3,4}}\left(i\right){t}_{3,n-5}\left(-i\right){t}_{3,n}\left(-i\right),\\ {\eta }^{\gamma \alpha \beta \gamma \alpha }=\tau \left(\begin{array}{ccccccc}1& \dots & 0& 0& 0& 0& 0\\ & \ddots & & & & & \\ 0& \dots & 1& 0& 0& 0& 0\\ 0& \dots & 0& -1& 1& i& i\\ 0& \dots & 0& 0& 1& 0& 0\\ 0& \dots & 0& 0& 0& 1& 0\\ 0& \dots & 0& i& i& -1& 0\end{array}\right),\end{array}\end{array}$$

where

$$\begin{array}{l}\tau ={t}_{n-\text{3,2}}\left(-1\right){t}_{n-\text{3,3}}\left(-1\right){t}_{n-\text{3,5}}\left(-i\right){t}_{n-3,n-4}\left(i\right){t}_{n,2}\left(-i\right){t}_{n,3}\left(-i\right)\\ {t}_{n,5}\left(1\right){t}_{n,n-4}\left(-1\right).\end{array}$$

Let

$$\xi ={\left({\eta \eta }^{\gamma \alpha \beta \gamma \alpha }\right)}^{2}={t}_{n-\text{3,5}}\left(-i\right){t}_{n-3,n-4}\left(i\right){t}_{n-3,n-1}\left(i\right){t}_{n-3,n}\left(i\right).$$

Then

$${\left(\xi \alpha \right)}^{2}={t}_{n-\text{3,5}}\left(-i\right){t}_{n-\text{3,6}}\left(-i\right){t}_{n-3,n-5}\left(i\right){t}_{n-3,n-4}\left(i\right){t}_{n-3,n-1}\left(-i\right){t}_{n-3,n}\left(-i\right).$$

Further, we have two options: n = 10 or n > 10.

Subsequent computations in these two cases are different. For n = 10, the following equalities hold:

$$\begin{array}{c}{\left({\left(\xi \alpha \right)}^{2}\right)}^{{\gamma }_{1}\beta {\gamma }_{1}}={t}_{\text{8,6}}\left(-i\right){t}_{\text{8,10}}\left(i\right),\\ \vartheta ={\left({\left({\left({\left(\xi \alpha \right)}^{2}\right)}^{{\gamma }_{1}\beta {\gamma }_{1}}\beta \right)}^{2}\right)}^{\alpha }={t}_{\text{8,5}}\left(i\right),\\ {\vartheta }^{{\gamma }_{1}\beta {\gamma }_{1}}={t}_{\text{7,5}}\left(i\right)={t}_{n-3,n-5}\left(i\right).\end{array}$$

For n > 10, we have

$$\begin{array}{c}{\left({\left(\xi \alpha \right)}^{2}\right)}^{{\gamma }_{1}\beta {\gamma }_{1}}={t}_{n-\text{2,5}}\left(-i\right){t}_{n-\text{2,6}}\left(-i\right){t}_{n-2,n-5}\left(-i\right){t}_{n-2,n-4}\left(-i\right)\\ {t}_{n-2,n-1}\left(i\right){t}_{n-2,n}\left(i\right),\end{array}$$
$$\begin{array}{c}\vartheta ={\left({\left({\left(\xi \alpha \right)}^{2}\right)}^{{\gamma }_{1}\beta {\gamma }_{1}}\beta \right)}^{2}={t}_{n-2,n-5}\left(-i\right){t}_{n-2,n-4}\left(i\right),\\ {\vartheta }^{{\gamma }_{1}\beta {\gamma }_{1}}={t}_{n-3,n-5}\left(-i\right){t}_{n-3,n-1}\left(i\right),\\ \zeta ={\left({\vartheta }^{{\gamma }_{1}\beta {\gamma }_{1}}\beta \right)}^{2}={t}_{n-3,n-5}\left(i\right).\end{array}$$

In either case, the subgroup M contains a transvection tn−3,n−5(i), and the following equalities hold:

$$\begin{array}{c}{t}_{n-3,n-5}{\left(i\right)}^{\gamma 1\alpha }\upsilon ={t}_{\text{3,4}}\left(i\right),\\ {t}_{\text{3,4}}{\left(i\right)}^{\beta }={t}_{\text{2,1}}\left(i\right),\\ \begin{array}{c}{t}_{\text{2,1}}{\left(i\right)}^{{\left(\gamma 1\alpha \right)}^{2}}={t}_{n,2}\left(i\right),\\ \left[{t}_{n,2}\left(i\right),{t}_{\text{2,1}}\left(-i\right)\right]={t}_{n,1}\left(i\right).\end{array}\end{array}$$

Lemma 2.2 implies that SLn(3) ≤ M, but M also has, for instance, a transvection tn−3,n−5(i).

Now, in view of Lemma 1.3(b), we obtain the equality M = SLn(9).

The case of dimensions n = 4m + 3. We show that a triple of involutions

figure e

generates a group SLn(9). The involutions α, β, γ, αβ have eigenvalues {12m+1, (−1)2m+2}. So they are conjugate in SLn(9). Put M = <α, β, γ>. We have

$$\begin{array}{c}\eta ={\left(\beta \gamma \right)}^{8}={t}_{n,3}\left(i\right){t}_{n,4}\left(i\right){t}_{n,n-4}\left(i\right){t}_{n,n-3}\left(i\right),\\ \begin{array}{c}{\gamma }_{1}={\eta }^{2}\gamma ,\\ \theta ={\gamma }_{1}\alpha .\end{array}\end{array}$$

LEMMA 2.3. The equality <θ, tn,n−1(1)> = SLn(3) holds.

Proof. Matrices α, γ1, and θ comply with the following permutations:

$$\begin{array}{c}\widetilde{\alpha }=\left(1,n-3\right)\dots \left(2m,2m+1\right)\left(n-2\right)\left(n-1,n\right),\\ {\widetilde{\gamma }}_{1}=\left(1,n-1\right)\dots \left(2m+\text{1,2}m+2\right)\left(2\right),\\ \widetilde{\theta }=\left(\text{1,3},5,\dots ,n-\text{2,2},\text{4,6},\dots ,n-1,n\right).\end{array}$$

Since θ is a cycle of length n, there exists an element

$$\widetilde{\delta }=\left(1\right)\left(\text{3,2},\dots ,5\right)\left(n-1\right)\left(n\right)$$

such that

$${\widetilde{\theta }}^{\widetilde{\delta }}=\widetilde{\mu }=\left(\text{1,2},\dots ,n-1,n\right),$$

with

$${t}_{n,n-1}{\left(1\right)}^{\delta }={t}_{n,n-1}\left(\pm 1\right).$$

If we apply Lemma 1.3(a) we obtain

$$\begin{array}{c}\langle \mu ,{t}_{n,n-1}\left(1\right)\rangle ={SL}_{n}\left(3\right)={\langle \mu ,{t}_{n,n-1}\left(1\right)\rangle }^{\delta },\\ \langle \mu ,{t}_{n,n-1}\left(1\right)\rangle ={SL}_{n}{\left(3\right)}^{\delta -1}={SL}_{n}\left(3\right).\end{array}$$

The lemma is proved.

Thus, further proof is reduced to obtaining a transvection tn,n−1(1). Similarly to the case of dimensions 4m + 2, we find the following conjugates of η:

$$\begin{array}{c}{\eta }^{\alpha }={t}_{n-\text{1,1}}\left(i\right){t}_{n-\text{1,2}}\left(i\right){t}_{n-1,n-6}\left(i\right){t}_{n-1,n-5}\left(i\right),\\ {\eta }^{\gamma \alpha }={t}_{\text{1,5}}\left(i\right){t}_{\text{1,6}}\left(i\right){t}_{1,n-2}\left(i\right){t}_{1,n-1}\left(i\right),\\ \begin{array}{c}{\eta }^{\beta \gamma \alpha }={t}_{\text{2,5}}\left(i\right){t}_{\text{2,6}}\left(i\right){t}_{2,n-2}\left(i\right){t}_{2,n-1}\left(-i\right),\\ {\eta }^{\alpha \beta \gamma \alpha }={t}_{n-4,n-8}\left(i\right){t}_{n-4,n-7}\left(i\right){t}_{n-4,n-2}\left(-i\right){t}_{n-4,n}\left(-i\right),\\ {\eta }^{\gamma \alpha \beta \gamma \alpha }=\tau \left(\begin{array}{cccccccc}1& 0& 0& 0& 0& \dots & 0& 0\\ 0& 1& 0& 0& 0& \dots & 0& 0\\ 0& 0& 1& 0& 0& \dots & 0& 0\\ 0& -i& 1& -1& 0& \dots & 0& i\\ & & & & & \ddots & & \\ 0& 0& 0& 0& 0& \dots & 1& 0\\ 0& 1& i& i& 0& \dots & 0& 0\end{array}\right)\end{array}\end{array}$$

where

$$\tau ={t}_{\text{4,7}}\left(i\right){t}_{\text{4,8}}\left(i\right){t}_{4,n-3}\left(1\right){t}_{4,n-4}\left(1\right){t}_{n,7}\left(-1\right){t}_{n,8}\left(-1\right){t}_{n,n-3}\left(i\right){t}_{n,n-4}\left(i\right).$$

Multiplying from the left by η and squaring the result, we arrive at a product of four transvections:

$$\xi ={\left({\eta \eta }^{\gamma \alpha \beta \gamma \alpha }\right)}^{2}={t}_{\text{4,2}}\left(-i\right){t}_{\text{4,7}}\left(i\right){t}_{\text{4,8}}\left(i\right){t}_{4,n}\left(i\right).$$

Next, we will conjugate the element ξ by the monomial matrix θ and commute the results of conjugation. Thus,

$$\begin{array}{c}{\xi }^{{\theta }^{2m}}={t}_{n,3}\left(i\right){t}_{n,6}\left(i\right){t}_{n,n-4}\left(-i\right){t}_{n,n-1}\left(i\right),\\ \left[{\xi ,\xi }^{{\theta }^{2m}}\right]={t}_{\text{4,3}}\left(-1\right){t}_{\text{4,6}}\left(-1\right){t}_{4,n-4}\left(1\right){t}_{4,n-1}\left(-1\right),\\ {\xi }_{1}={\left[{\xi ,\xi }^{{\theta }^{2m}}\right]}^{{\theta }^{2m-1}}={t}_{n-1,n-8}\left(1\right){t}_{n-1,n-7}\left(-1\right){t}_{n-1,n-2}\left(-1\right){t}_{n-1,n}\left(1\right),\end{array}$$
$$\begin{array}{c}{\xi }_{2}={\left[{{\xi }_{1},\xi }^{{\theta }^{2m}}\right]}^{3}\\ =diag\left(1,\dots ,1,-1,-1\right){t}_{n-\text{1,3},}\left(-1\right){t}_{n-\text{1,6}}\left(-1\right)\\ \begin{array}{c}{t}_{n-1,n-4}\left(1\right){t}_{n,n-8}\left(-1\right){t}_{n,n-7}\left(1\right){t}_{n,n-2}\left(1\right)\\ {\vartheta }_{1}={\left({\xi }_{2\gamma }\right)}^{4}\eta ={t}_{n,2}\left(1\right){t}_{n,7}\left(1\right){t}_{n,8}\left(-1\right){t}_{n,n-8}\left(-1\right){t}_{n,n-7}\left(1\right){t}_{n,n-2}\left(1\right).\end{array}\end{array}$$

Note that in the case m = 3 the element ϑ1 is a product of two transvections. Our calculations yield

$$\begin{array}{c}{\vartheta }_{1}^{\beta }={t}_{n,1}\left(-1\right){t}_{n,7}\left(1\right){t}_{n,8}\left(-1\right){t}_{n,n-8}\left(-1\right){t}_{n,n-7}\left(1\right){t}_{n,n-2}\left(-1\right),\\ {\vartheta }_{2}={\vartheta }_{1}^{\beta }{\vartheta }_{1}={t}_{n,1}\left(-1\right){t}_{n,2}\left(1\right){t}_{n,7}\left(-1\right){t}_{n,8}\left(1\right){t}_{n,n-8}\left(1\right){t}_{n,n-7}\left(-1\right),\\ \begin{array}{c}{\vartheta }_{2}^{{\gamma }_{1}}={t}_{n,7}\left(1\right){t}_{n,8}\left(-1\right){t}_{n,n-8}\left(-1\right){t}_{n,n-7}\left(1\right){t}_{n,n-2}\left(-1\right){t}_{n,n-1}\left(1\right),\\ {\left({\vartheta }_{2}^{{\gamma }_{1}}\beta \right)}^{2}={t}_{n,7}\left(-1\right){t}_{n,8}\left(1\right){t}_{n,n-8}\left(1\right){t}_{n,n-7}\left(-1\right){t}_{n,n-1}\left(-1\right),\\ {\left({\left({\vartheta }_{2}^{{\gamma }_{1}}\beta \right)}^{2}\right)}^{{\gamma }_{1}}={t}_{n,1}\left(1\right){t}_{n,7}\left(1\right){t}_{n,8}\left(-1\right){t}_{n,n-8}\left(-1\right){t}_{n,n-7}\left(1\right).\end{array}\end{array}$$

Multiplying the last two equalities gives a product of two transvections:

$${\vartheta }_{3}={\left({\vartheta }_{2}^{{\gamma }_{1}}\beta \right)}^{2}{\left({\left({\vartheta }_{2}^{{\gamma }_{1}}\beta \right)}^{2}\right)}^{{\gamma }_{1}}={t}_{n,1}\left(1\right){t}_{n,n-1}\left(-1\right).$$

Furthermore,

$$\begin{array}{c}{\vartheta }_{3}^{\beta }={t}_{n,2}\left(-1\right){t}_{n,n-1}\left(-1\right),\\ {\vartheta }_{3}^{2}{\vartheta }_{3}^{\beta }={t}_{n,1}\left(-1\right){t}_{n,2}\left(-1\right),\\ \begin{array}{c}{\left({\vartheta }_{3}^{2}{\vartheta }_{3}^{\beta }\right)}^{{\gamma }_{1}}={t}_{n,n-1}\left(1\right){t}_{n,n-2}\left(1\right),\\ {\left({\left({\vartheta }_{3}^{2}{\vartheta }_{3}^{\beta }\right)}^{{\gamma }_{1}}\beta \right)}^{2}={t}_{n,n-1}\left(-1\right).\end{array}\end{array}$$

Consequently, SLn(3) ≤ M in virtue of Lemma 2.3. Matrix d = diag(1, 1, −1, 1,... , 1, −1) lies in SLn(3) and (d(βγ)8)2 = tn,3(−i) ∈ M , Hence, by Lemma 1.3(b), the involutions α, β, γ generate SLn(9).

The case of dimensions n = 4m. The scheme of the proof is analogous to the previous cases.

We have

figure f

The elements α, β, γ, αβ are involutions and have eigenvalues {12m, (−1)2m}. So they are conjugate in SLn(9). As in the previous cases, we obtain in M = <α, β, γ> the monomial matrices

$$\begin{array}{c}\eta ={\left(\beta \gamma \right)}^{8}={t}_{n,2}\left(i\right){t}_{n,3}\left(i\right){t}_{n,n-3}\left(i\right){t}_{n,n-2}\left(i\right),\\ {\gamma }_{1}={\eta }^{2}\gamma \\ \theta =\alpha {\gamma }_{1}.\end{array}$$

LEMMA 2.4. The equality <θ, tn,1(1)> = SLn(3) holds.

Proof. We write the appropriate permutations

$$\begin{array}{c}{\widetilde{\gamma }}_{1}=\left(1,n-1\right)\left(2,n-2\right)\dots \left(2m-\text{1,2}m+1\right)\left(2m\right)\left(n\right),\\ \widetilde{\alpha }=\left(\text{1,2}\right)\left(\text{3,4}\right)\dots \left(n-1,n\right),\\ \widetilde{\theta }=\left(1,n-\text{2,3},n-4,\dots ,2,n-1,n\right).\end{array}$$

The element \(\widetilde{\theta }\) is a cycle of length n. Consequently, there exists an element

$$\widetilde{\delta }=\left(1\right)\left(n-\text{2,2}\right)\left(3\right)\left(n-\text{4,4}\right)\dots \left(n-1\right)\left(n\right)$$

such that

$${\widetilde{\theta }}^{\widetilde{\delta }}=\widetilde{\mu }=\left(\text{1,2},3,\dots ,n-1,n\right),$$

with

$${t}_{n,1}{\left(1\right)}^{\delta }={t}_{n,1}\left(\pm 1\right).$$

Passing to the conjugate subgroup

$${\langle \theta ,{t}_{n,1}\left(1\right)\rangle }^{\delta }=\langle \mu ,{t}_{n,1}\left(1\right)\rangle $$

and applying Lemma 1.3(a), we obtain

$$\langle \theta ,{t}_{n,1}\left(1\right)\rangle ={\langle \mu ,{t}_{n,1}\left(1\right)\rangle }^{\delta -1}={SL}_{n}{\left(3\right)}^{\delta -1}={SL}_{n}\left(3\right).$$

The lemma is proved.

It remains to show that the transvection tn,1(1) lies in the subgroup M. For that, as in the previous two cases, we conjugate the matrix η, thus obtaining

$$\begin{array}{c}{\eta }^{\alpha }={t}_{n-\text{1,1}}\left(i\right){t}_{n-\text{1,4}}\left(i\right){t}_{n-1,n-3}\left(i\right){t}_{n-1,n-2}\left(i\right),\\ {\eta }^{\gamma \alpha }={t}_{\text{1,2}}\left(i\right){t}_{\text{1,3}}\left(i\right){t}_{1,n-4}\left(i\right){t}_{1,n-1}\left(i\right),\\ \begin{array}{c}{\eta }^{\beta \gamma \alpha }={t}_{\text{4,2}}\left(i\right){t}_{\text{4,3}}\left(i\right){t}_{4,n-4}\left(i\right){t}_{4,n-1}\left(-i\right),\\ {\eta }^{\alpha \beta \gamma \alpha }={t}_{\text{3,1}}\left(i\right){t}_{\text{3,4}}\left(i\right){t}_{3,n-5}\left(i\right){t}_{3,n}\left(-i\right).\end{array}\end{array}$$

Let

$$\tau ={t}_{n-\text{3,2}}\left(1\right){t}_{n-\text{3,3}}\left(1\right){t}_{n-\text{3,5}}\left(i\right){t}_{n-3,n-4}\left(i\right){t}_{n,2}\left(i\right){t}_{n,3}\left(i\right){t}_{n,5}\left(-1\right){t}_{n,n-4}\left(-1\right).$$

Then

$$\begin{array}{c}{\eta }^{\alpha \beta \gamma \alpha }=\tau \left(\begin{array}{cccccccc}1& \dots & 0& 0& 0& 0& 0& 0\\ & \ddots & & & & & & \\ 0& \dots & 1& 0& 0& 0& 0& 0\\ 0& \dots & 0& -1& 1& i& i& i\\ 0& \dots & 0& 0& 1& 0& 0& 0\\ 0& \dots & 0& 0& 0& 1& 1& 0\\ 0& \dots & 0& i& i& -1& -1& 0\end{array}\right),\\ \xi ={\left({\eta \eta }^{\gamma \alpha \beta \gamma \alpha }\right)}^{2}={t}_{n-\text{3,5}}\left(i\right){t}_{n-3,n-4}\left(i\right){t}_{n-3,n-1}\left(i\right){t}_{n-3,n}\left(i\right),\\ {\left(\xi \beta \right)}^{2}={t}_{n-3,n-4}\left(-i\right).\end{array}$$

Now, having obtained a transvection, we will use conjugation by monomial matrices and the matrix γ. Our calculations show that

$$\begin{array}{c}{\left({\left(\xi \beta \right)}^{2}\right)}^{\gamma 1}={t}_{\text{3,4}}\left(-i\right),\\ {\left({\left(\xi \beta \right)}^{2}\right)}^{\gamma }={t}_{\text{3,4}}\left(-i\right){t}_{n,4}\left(1\right),\\ \begin{array}{c}{\left({\left(\xi \beta \right)}^{2}\right)}^{\gamma }{\left({\left({\left(\xi \beta \right)}^{2}\right)}^{\gamma }\right)}^{2}={t}_{n,4}\left(1\right),\\ {t}_{n,4}{\left(1\right)}^{{\theta }^{2}}={t}_{\text{2,6}}\left(-1\right).\end{array}\end{array}$$

Again using the elements γ and γ1 for conjugation, we have

$$\begin{array}{c}{\left({t}_{n,4}{\left(1\right)}^{{\theta }^{2}}\right)}^{\gamma }={t}_{n-2,n-6}\left(-1\right){t}_{n,n-6}\left(-i\right)={\left({t}_{n,4}{\left(1\right)}^{{\theta }^{2}}\right)}^{\gamma 1}={t}_{n,n-6}\left(-i\right),\\ {\left({t}_{n,4}{\left(1\right)}^{{\theta }^{2}}\right)}^{\gamma 1}{\left({\left({t}_{n,4}{\left(1\right)}^{{\theta }^{2}}\right)}^{\gamma }\right)}^{2}={t}_{n,n-6}\left(i\right),\\ \begin{array}{c}{t}_{n,n-6}{\left(i\right)}^{\gamma 1}={t}_{n,-6}\left(-i\right),\\ {\left({\left(\xi \beta \right)}^{2}\right)}^{\theta 3}={t}_{6,1}\left(-i\right)\\ \left[{t}_{n,6}\left(-i\right),{t}_{6,1}\left(-i\right)\right]={t}_{n,1}\left(1\right).\end{array}\end{array}$$

Applying Lemmas 2.4 and 1.3(b), we arrive at the equality <θ, tn,1(1), t6,1(i)> = SLn(9).

The case of dimension n = 6. In [3] the following generating involutions for the group PSL6(9) are given:

$$\begin{array}{c}\alpha =\left(\begin{array}{cccccc}0& 1& 0& 0& 0& 0\\ -1& 0& 0& 0& 0& 0\\ 0& 0& 0& 1& 0& 0\\ 0& 0& -1& 0& 0& 0\\ 0& 0& 0& 0& -1& 1\\ 0& 0& 0& 0& 0& 0\end{array}\right),\\ \beta =\left(\begin{array}{cccccc}0& 0& 0& 1& 0& 0\\ 0& 0& 1& 0& 0& 0\\ 0& -1& 0& 0& 0& 0\\ -1& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& i& 1\\ 0& 0& 0& 0& 0& -i\end{array}\right),\\ \gamma =\left(\begin{array}{cccccc}0& 1& 0& 0& 0& 0\\ -1& 0& 0& 0& 0& 0\\ 0& 0& -i& 0& 0& 0\\ 0& 0& 0& 0& 1& 0\\ 0& 0& 0& -1& 0& 0\\ a& ia& 0& a& ia& i\end{array}\right),\end{array}$$

where a is an element of the multiplicative group of the field GF (9) satisfying some restrictions.

The matrices α, β, γ, αβ, when squared, give a scalar matrix −E6; i.e., being elements of the group SL6(9), they have order 4 and eigenvalues {i3, (−i)3} and are therefore conjugate in SL6(9). Consequently, their images are conjugate in the group PSL6(9). The elements (βγ)5 and ((βγ)5)α of a group M = <α, β, γ> are transvections [3], i.e., are conjugate in SL6(9) to elementary transvections. It is known that for any pair of transvections (ξ, η) in SLn(q) there is an element ε in GLn(q) such that ξε and ηε are elementary transvections [12]; see also [3, Lemma 4.1.8; 13, Lemma 1]. Furthermore, we show that α, β, γ generate SL6(9), with the proof for n = 6, as distinct from the previous cases, making essential use of computer calculations. We put a = i and pass to a conjugate subgroup Mτ, in which (βτ γτ )5 and ((βτ γτ )5)ατ are elementary transvections.

Below a pair of indices in elementary transvections will not be separated by a comma since all indices are numbers from 1 to 6. Let

$$\begin{array}{l}\tau =\left(\begin{array}{cccccc}1& 0& 0& 0& 0& 0\\ -i& 1& 0& 0& 0& 0\\ 1& -i& 1& 0& 0& 0\\ i& -1& i& 0& 0& 0\\ 1& i& 1& -i& 1& 0\\ -i& 1& i& 1& 0& 1\end{array}\right)\\ \theta ={\alpha }^{\tau }{\gamma }^{\tau }.\end{array},$$

We show that Mτ = <ατ , βτ , γτ> = SL6(9), whence the equality <α, β, γ> = SL6(9). In subsequent calculations, we show that Mτ contains all elementary transvections. So

$$\left({\beta }^{\tau }{\gamma }^{\tau }\right)={t}_{65}\left(-i-1\right).$$

Conjugation by the matrix θ yields the equality

$${\left({t}_{65}{\left(-i-1\right)}^{{\alpha }^{\tau }}\right)}^{-1}={t}_{65}\left(-i-1\right).$$

Next, we define

$$\begin{array}{c}\xi ={\left({t}_{65}{\left(-i-1\right)}^{\theta -1}{t}_{65}\left(-i-1\right)\right)}^{2},\\ \vartheta ={\left({t}_{56}{\left(-i-1\right)}^{\theta }{t}_{56}\left(-i-1\right)\right)}^{2},\\ \zeta ={\left({\xi }^{3}{\vartheta }^{{\alpha }^{\tau }}\right)}^{2}={t}_{45}\left(-i\right){t}_{61}\left(i\right){t}_{62}\left(i\right){t}_{63}\left(i\right)diag\left(\text{1,1},\text{1,1},-1,-1,\right).\end{array}$$

After obtaining the element ζ, calculations will be more transparent. In the chain of equalities below, we show that the subgroup <θ, ζ> contains a transvection t62(-i). In fact,

$$\begin{array}{c}{\xi }^{\theta }=diag\left(\text{1,1},\text{1,1},-1,-1\right),\\ {\xi }^{\theta }={t}_{36}\left(i\right){t}_{46}\left(-1\right){t}_{51}\left(-1\right){t}_{52}\left(-i-1\right){t}_{53}\left(-1\right){t}_{54}\left(-i\right)diag\left(\text{1,1},\text{1,1},-1,-1\right),\\ \begin{array}{c}{\xi }_{1}={\left(\xi {\xi }^{\theta 2}\right)}^{2}={t}_{31}\left(1\right){t}_{32}\left(1\right){t}_{42}\left(1\right)diag\left(\text{1,1},-1,-1,-1,-1\right),\\ {\xi }_{2}={\left({\left({\xi }^{\theta 3}\right)}^{\theta 2}{\xi }^{\theta }\right)}^{2}={t}_{35}\left(1\right){t}_{62}\left(1-i\right){t}_{64}\left(1\right),\\ \left[{\xi }_{1},{\xi }_{2}\right]={t}_{62}\left(-i\right).\end{array}\end{array}$$

Furthermore,

$$\begin{array}{c}\left[{\beta }^{\tau },{t}_{62}\left(-i\right)\right]={t}_{64}\left(-i\right),\\ {\left({t}_{64}\left(-i\right)\xi \right)}^{2}={t}_{65}\left(-1\right),\\ {\left({t}_{64}\left(-i\right)\right)}^{\alpha \tau }={t}_{56}\left(1\right).\end{array}$$

So the transvections t56(1), t65(1), t56(−i − 1), t65(−i − 1) lie in the set Mτ. Hence the sets t56(GF (9)), t65(GF (9)) also lie in Mτ. Let u be an arbitrary element of the field GF (9). Then

$$\begin{array}{c}\left[{t}_{56}\left(u\right),{t}_{64}\left(-i\right)\right]={t}_{54}\left(-iu\right),\\ \left[{t}_{56}\left(u\right),{t}_{62}\left(-i\right)\right]={t}_{52}\left(-iu\right).\end{array}$$

Obviously, t54(u) and t52(u) also lie in Mτ . The following hold:

$$\begin{array}{c}{{t}_{56}\left(u\right)}^{{\alpha }^{\tau }}={t}_{56}\left(-iu\right),\\ {{t}_{54}\left(u\right)}^{{\alpha }^{\tau }}={t}_{64}\left(-iu\right){t}_{62}\left(-iu\right),\\ \begin{array}{c}\left[{t}_{35}\left(1\right),{t}_{62}\left(1-i\right){t}_{64}\left(1\right),{t}_{54}\left(u\right)\right]={t}_{34}\left(u\right),\\ \left[{t}_{35}\left(1\right),{t}_{62}\left(1-i\right){t}_{64}\left(1\right),{t}_{52}\left(u\right)\right]={t}_{32}\left(u\right).\end{array}\end{array}$$

Thus, we have obtained elements tk2(u) for k = 3, 5, 6. Furthermore,

$$\begin{array}{c}{t}_{35}{\left(u\right)}^{{\gamma }^{\tau }}={t}_{32}\left(u\right){t}_{42}\left(iu\right){t}_{62}\left(-iu\right),\\ \left[{t}_{34}\left(u\right),{\beta }^{\tau }\right]={t}_{14}\left(u\right),\\ {t}_{14}{\left(u\right)}^{{\alpha }^{\tau }}={t}_{34}\left(u\right){t}_{32}\left(-u\right){t}_{14}\left(u\right){t}_{12}\left(-u\right).\end{array}$$

From this chain of equalities, we conclude that, for any k ≠ 2, the set tk2(GF (9)) lies in Mτ. Again subsequent calculations yield the equalities

$$\begin{array}{c}{\beta }_{1}={t}_{34}\left(-i\right){t}_{12}\left(i\right){t}_{32}\left(i\right){t}_{14}\left(-i\right){\beta }^{\tau }=diag\left(-i,-i,i,i,i,-i\right){t}_{13}\left(1\right){t}_{24}\left(1\right),\\ {{t}_{64}\left(-i\right)}^{\gamma \tau }{t}_{62}\left(-i\right){t}_{64}\left(i\right){t}_{65}\left(1\right)={t}_{61}\left(-i\right){t}_{63}\left(i\right),\\ \begin{array}{c}{\left({t}_{61}\left(-i\right){t}_{63}\left(-1\right)\right)}^{\beta \tau }{t}_{62}\left(i\right){t}_{64}\left(-i\right)={t}_{61}\left(-1\right),\\ {{t}_{61}\left(-1\right)}^{\alpha \tau }{t}_{52}\left(-1\right)={t}_{51}\left(i\right),\\ \begin{array}{c}{51\left(-i\right)}^{\gamma \tau }{t}_{52}\left(1\right){t}_{51}\left(i\right){t}_{42}\left(i\right)={t}_{41}\left(1\right),\\ {\left({\beta }_{1}{t}_{41}\left(1\right)\right)}^{2}={t}_{21}\left(1\right){t}_{23}\left(1\right){t}_{43}\left(-1\right),\\ \begin{array}{c}{\left({\left({\beta }_{1}{t}_{41}\left(1\right)\right)}^{2}{t}_{32}\left(-1\right){t}_{42}\left(-1\right){\xi }_{1}\right)}^{2}{t}_{41}\left(-1\right)={t}_{43}\left(1\right),\\ {\xi }_{2}{t}_{43}\left(i-1\right){t}_{64}\left(-1\right)={t}_{35}\left(1\right).\end{array}\end{array}\end{array}\end{array}$$

Previously, we have obtained transvections t14(u) and t12(u). Note that

$$\begin{array}{c}\left[{t}_{14}\left(u\right){t}_{43}\left(1\right)\right]={t}_{13}\left(u\right),\\ \left[{t}_{13}\left(u\right){t}_{35}\left(1\right)\right]={t}_{15}\left(u\right),\\ \left[{t}_{15}\left(u\right){t}_{56}\left(1\right)\right]={t}_{16}\left(u\right).\end{array}$$

Hence Mτ contains sets t1k(GF (9)) for any k ≠ 1. Furthermore,

$$\left[{t}_{41}\left(1\right){t}_{1k}\left(GF\left(9\right)\right)\right]={t}_{4k}\left(GF\left(9\right)\right),k\ne \text{4,1}.$$

Transvection t41(i) can be obtained, for instance, as t41(i) = [t42(i), (β1t41(1))2]t43(−i). In other words, the sets t4k(GF (9)), for any k ≠ 4, lie in Mτ . The following equality holds:

$$\left[{t}_{14}\left(1\right){t}_{4k}\left(GF\left(9\right)\right)\right]={t}_{lk}\left(GF\left(9\right)\right),k\ne l,l=\text{3,5},6.$$

Transvections t34(u), t54(u), t64(u) have been obtained previously. It remains to obtain

2. We have

$$\begin{array}{c}\left[{t}_{21}\left(1\right){t}_{23}\left(1\right){t}_{43}\left(-1\right),{t}_{15}\left(u\right)\right]={t}_{25}\left(u\right),\\ \left[{t}_{25}\left(u\right){t}_{5k}\left(1\right)\right]={t}_{2k}\left(u\right),k\ne \text{2,5}.\end{array}$$

Thus Mτ contains all transvections tlk(u) with kl and uGF (9). Applying Lemma 1.2(b), we complete the proof of the theorem.