1 Introduction

The Morley nonconforming finite element method provides asymptotic lower eigenvalue bounds for the problem \({\varDelta }^2 u = \lambda u\). It is observed in the numerical examples [8, p.39] that the Morley eigenvalue \(\lambda _{\mathrm{M}}\) is a lower bound of \(\lambda \). The possible conjecture that this is always the case, however, is false in general. This motivates the task to compute a guaranteed lower eigenvalue bound for all and even the very coarse triangulations based on the Morley finite element discretisation. This paper provides a guaranteed lower bound

$$\begin{aligned} \lambda _{\mathrm{M}}/(1+\varepsilon ^2 \lambda _{\mathrm{M}}) \le \lambda \end{aligned}$$
(1.1)

for a computable value of \(\varepsilon \) which depends on the maximal mesh-size \(H\) and the type of the lower-order term, e.g., \(\varepsilon = 0.2574\, H^2\) for the eigenvalue problem \({\varDelta }^2 u = \lambda u\).

Let \({\varOmega }\subset \mathbb{R }^2\) be a bounded Lipschitz domain with polygonal boundary \(\partial {\varOmega }\) and outer unit normal \(\nu \). The boundary is decomposed in clamped (\({\varGamma }_C\)), simply supported (\({\varGamma }_S\)), and free (\({\varGamma }_F\)) parts

$$\begin{aligned} \partial {\varOmega } = {\varGamma }_C \cup {\varGamma }_S \cup {\varGamma }_F \end{aligned}$$

such that \({\varGamma }_C\) and \({\varGamma }_C\!\cup \!{\varGamma }_S\) are closed sets. The vector space of admissible functions reads

$$\begin{aligned} V:=\left\{ v\in H^2({\varOmega })\bigm | v|_{{\varGamma }_C\cup {\varGamma }_S}=0\, \text{ and }\,(\partial v/\partial \nu )|_{{\varGamma }_C} = 0 \right\} . \end{aligned}$$

Provided the boundary conditions are imposed in such a way that the only affine function in \(V\) is identically zero, \(V\cap P_1({\varOmega }) = \{0\}\), the space \(V\) equipped with the scalar product

$$\begin{aligned} a(v,w):=\int \limits _{\varOmega } D^2 v:D^2 w\; dx \quad \text{ for } \text{ all }\, v,w\in V \end{aligned}$$

is a Hilbert space (colon denotes the usual scalar product of \(2\times 2\) matrices) with energy norm \(|\!|\!|\cdot |\!|\!|:=a(\cdot ,\cdot )^{1/2}\). Given a scalar product \(b\) on \(V\) with norm \(||\cdot ||:=b(\cdot ,\cdot )^{1/2}\), the weak form of the biharmonic eigenvalue problem seeks eigenpairs \((\lambda ,u)\in \mathbb{R }\times V\) with \(||u ||= 1 \) and

$$\begin{aligned} a(u,v) =\lambda \, b(u,v) \quad \text{ for } \text{ all }\, v\in V. \end{aligned}$$
(1.2)

For a regular triangulation \({{\fancyscript{T}}}\) of \({\varOmega }\) with vertices \({\fancyscript{N}}\) and edges \({{\fancyscript{E}}}\) suppose that the interior of each boundary edge is contained in one of the parts \({\varGamma }_C\), \({\varGamma }_S\), or \({\varGamma }_F\), and let the piecewise action of the operators \(\nabla \) and \(D^2\) be denoted by \(\nabla _\mathrm{NC }\) and \(D^2_\mathrm{NC }\). The space of piecewise polynomials of total (resp. partial) degree \(k\) reads \(P_k({{\fancyscript{T}}})\) (resp. \(Q_k({{\fancyscript{T}}})\)). The Morley finite element space [4] with respect to a regular triangulation \({{\fancyscript{T}}}\) of \({\varOmega }\) equals

$$\begin{aligned} \begin{aligned} V_{\mathrm{M}}&:= \Big \{ v_{\mathrm{M}} \in P_2({{\fancyscript{T}}})\,\Big | v_{\mathrm{M}}\,\text{ is } \text{ continuous } \text{ at } \text{ the } \text{ interior } \text{ vertices }\\&\qquad \qquad \qquad \qquad \qquad \text{ and } \text{ vanishes } \text{ at } \text{ the } \text{ vertices } \text{ of }\, {\varGamma }_C \cup {\varGamma }_S;\\&\qquad \qquad \qquad \qquad \qquad \nabla _\mathrm{NC } v_{\mathrm{M}}\, \text{ is } \text{ continuous } \text{ at } \text{ the } \text{ interior } \text{ edges' } \text{ midpoints }\\&\qquad \qquad \qquad \qquad \qquad \text{ and } \text{ vanishes } \text{ at } \text{ the } \text{ midpoints } \text{ of } \text{ the } \text{ edges } \text{ of }\, {\varGamma }_C \Big \}. \end{aligned} \end{aligned}$$

The finite element formulation of (1.2) is based on the discrete scalar product

$$\begin{aligned} a_\mathrm{NC }(v_{\mathrm{M}},w_{\mathrm{M}}) := \int \limits _{\varOmega } D^2_\mathrm{NC } v_{\mathrm{M}} : D^2_\mathrm{NC } w_{\mathrm{M}}\; dx \quad \text{ for } \text{ all }\, v_{\mathrm{M}},w_{\mathrm{M}}\in V_{\mathrm{M}} \end{aligned}$$

and some extension \(b_\mathrm{NC }\) of \(b\) to the space \(V+V_{\mathrm{M}}\) with norm \(||\cdot ||_\mathrm{NC }:=b_\mathrm{NC }(\cdot ,\cdot )^{1/2}\). It seeks eigenpairs \((\lambda _{\mathrm{M}},u_{\mathrm{M}})\in \mathbb{R }\times V_{\mathrm{M}}\) such that \(||u_{\mathrm{M}} ||_\mathrm{NC }= 1\) and

$$\begin{aligned} a_\mathrm{NC }(u_{\mathrm{M}},v_{\mathrm{M}}) = \lambda _{\mathrm{M}}\,b_\mathrm{NC }(u_{\mathrm{M}}, v_{\mathrm{M}}) \quad \text{ for } \text{ all }\, v_{\mathrm{M}}\in V_{\mathrm{M}}. \end{aligned}$$
(1.3)

The a priori error analysis can be found in [8]. For conforming finite element discretisations, the Rayleigh-Ritz principle [5], e.g., for the first eigenvalue

$$\begin{aligned} \lambda = \min _{v\in V \setminus \{0\}} |\!|\!|v |\!|\!|^2 / ||v ||^2 , \end{aligned}$$

immediately results in upper bounds for the eigenvalue \(\lambda \). In many cases it is observed that nonconforming finite element methods provide lower bounds for \(\lambda \) and the paper [10] proves that the eigenvalues of the Morley FEM converge asymptotically from below in the case \(b(\cdot ,\cdot )=(\cdot ,\cdot )_{L^2({\varOmega })}\). This paper provides a counterexample to the possible conjecture that \(\lambda _{\mathrm{M}}\) is always a lower bound for \(\lambda \) and provides the guaranteed lower bound (1.1) for a known mesh-size function \(\varepsilon \). The main result, Theorem 1, implies (1.1) for any regular triangulation \({{\fancyscript{T}}}\) with maximal mesh-size \(H\) and \(\varepsilon = 0.2574\, H^2\). Theorem 2 provides lower bounds for higher eigenvalues.

The main tool for the explicit determination of \(\varepsilon \) is the \(L^2\) error estimate for the Morley interpolation operator from Theorem 3, which also opens the door to guaranteed error control for the Morley finite element discretisation of the biharmonic problem \({\varDelta }^2 u = f\). In comparison with the profound numerical experiments in [8], the theoretical findings of this paper allow guaranteed lower eigenvalue bounds via some immediate postprocessing on coarse meshes with reasonable accuracy even for mediocre refinements.

The remaining parts of the paper are organised as follows. Section 2 discusses the mentioned counterexample and shows that the Morley eigenvalue \(\lambda _{\mathrm{M}}\) may be larger than \(\lambda \). Section 3 establishes lower bounds for eigenvalues based on abstract assumptions on the Morley interpolation operator \(I_{\mathrm{M}}\). Section 4 provides \(L^2\) error estimates for \(I_{\mathrm{M}}\) with explicit constants that enable the results of Sect. 3 for different fourth-order eigenvalue problems. Section 5 presents applications to vibrations and buckling of plates with numerical results for various boundary conditions in the spirit of [8].

Throughout this paper, standard notation on Lebesgue and Sobolev spaces and their norms and the \(L^2\) scalar product \((\cdot ,\cdot )_{L^2({\varOmega })}\) is employed. The integral mean is denoted by ; the dot (resp. colon) denotes the Euclidean scalar product of vectors (resp. matrices). The measure \(|\cdot |\) is context-sensitive and refers to the number of elements of some finite set or the length \(|E|\) of an edge \(E\) or the area \(|T|\) of some domain \(T\) and not just the modulus of a real number or the Euclidean length of a vector.

2 Counterexample

The following counterexample shows that the possible conjecture that the Morley FEM always provides lower bounds is wrong. On the coarse triangulation of the square domain \({\varOmega }:=(0,1)\times (0,1)\) from Fig. 1a, the discrete eigenvalue for clamped boundary conditions \(\partial {\varOmega } = {\varGamma }_C\) computed by the Morley FEM is \({\lambda _{\mathrm{M}}} = 1.859\times 10^3\). The discrete eigenvalue computed by conforming FEMs is an upper bound for any lower bound of \(\lambda \). A computation with the conforming Bogner-Fox-Schmit bicubic finite element method leads to the first eigenvalue \({\lambda _\mathrm BFS } = 1.367\times 10^3\) on the partition from Figure 1b. Hence, \(\lambda _{\mathrm{M}}\) cannot be a lower bound for \(\lambda \). Table 1 contains the values for finer meshes and shows the convergence behaviour. The results of the subsequent sections lead to the guaranteed lower eigenvalue bounds of Table 1.

Fig. 1
figure 1

Meshes for the counterexample for lower bounds. a Morley b BFS

Table 1 Eigenvalues and number of degrees of freedom for the Morley and Bogner-Fox-Schmit finite element approximations of \({\varDelta }^2 u = \lambda \,u\)

3 Lower eigenvalue bounds

This section establishes lower bounds for eigenvalues. The main tool is the Morley interpolation operator \(I_{\mathrm{M}}:V\rightarrow V_{\mathrm{M}}\), which acts on any \(v\in V\) by

where, for any \(E\in {{\fancyscript{E}}}\), the unit normal vector \(\nu _E\) has some fixed orientation and the midpoint of \(E\) is denoted by \(\mathrm{mid }(E)\). For any triangle \(T\) and \(v\in H^2(T)\), an integration by parts proves the integral mean property for the second derivatives

With the \(L^2\) projection \(\Pi _0 : L^2({\varOmega })\rightarrow P_0({{\fancyscript{T}}})\), this results in the global identity

$$\begin{aligned} D^2_\mathrm{NC } I_{\mathrm{M}} = \Pi _0 D^{2}. \end{aligned}$$
(3.1)

The main assumption for guaranteed lower eigenvalue bounds is the following approximation assumption for some \(\varepsilon > 0\) which depends only on the triangulation and the boundaries \({\varGamma }_C\), \({\varGamma }_S\), \({\varGamma }_F\). Suppose

$$\begin{aligned} ||v-{I_{\mathrm{M}}} v ||_\mathrm{NC } \le \varepsilon |\!|\!|v-{I_{\mathrm{M}}} v |\!|\!|_\mathrm{NC } \quad \text{ for } \text{ all }\, v\in V. \end{aligned}$$
(A)

(The proof of (A) follows in Sect. 4 for various boundary conditions.)

Theorem 1

(Guaranteed lower bound for the first eigenvalue) Under the assumption (A) with parameter \(0<\!\varepsilon \!<\infty \), the first eigenpair \((\lambda ,u)\!\in \!\mathbb{R }\!\times \! V\) of the biharmonic operator and its discrete Morley FEM approximation \(({\lambda _{\mathrm{M}}},{u_{\mathrm{M}}})\in \mathbb{R }\times V_{\mathrm{M}}\) satisfy

$$\begin{aligned} \frac{{\lambda _{\mathrm{M}}}}{1+\varepsilon ^2 \lambda _{\mathrm{M}}}\le \lambda . \end{aligned}$$

Proof

The Rayleigh-Ritz principle on the continuous level and the projection property (3.1) for the Morley interpolation operator yield with the Pythagoras theorem

$$\begin{aligned} \lambda = |\!|\!|u |\!|\!|^2 = |\!|\!|u-I_{\mathrm{M}} u |\!|\!|_\mathrm{NC }^2 + |\!|\!|I_{\mathrm{M}} u |\!|\!|_\mathrm{NC }^2. \end{aligned}$$

The Rayleigh-Ritz principle in the discrete space \(V_{\mathrm{M}}\) implies

$$\begin{aligned} |\!|\!|u-I_{\mathrm{M}} u |\!|\!|_\mathrm{NC }^2 + \lambda _{\mathrm{M}} ||I_{\mathrm{M}} u ||_\mathrm{NC }^2 \le \lambda . \end{aligned}$$
(3.2)

The Cauchy inequality plus \(||u ||=1\) prove

$$\begin{aligned} b_\mathrm{NC }(u-I_{\mathrm{M}} u, u) \le ||u-I_{\mathrm{M}} u ||_\mathrm{NC }. \end{aligned}$$

Hence, the binomial formula and the Young inequality reveal for any \(0<\delta \le 1\)

$$\begin{aligned} ||I_{\mathrm{M}} u ||_\mathrm{NC }^2&\ge 1+||u-I_{\mathrm{M}} u ||_\mathrm{NC }^2 - 2||u-I_{\mathrm{M}} u ||_\mathrm{NC } \\&\ge 1- \delta + (1-\delta ^{-1})||u-I_{\mathrm{M}} u ||_\mathrm{NC }^2 . \end{aligned}$$

Equation (3.2) and (A) lead to

$$\begin{aligned}&\lambda _{\mathrm{M}} \left( 1-\delta + \left( \lambda _{\mathrm{M}}^{-1} + (1-\delta ^{-1}) \varepsilon ^2 \right) |\!|\!|u-I_{\mathrm{M}} u |\!|\!|_\mathrm{NC }^2 \right) \\&\quad \le |\!|\!|u-I_{\mathrm{M}} u |\!|\!|_\mathrm{NC }^2 + \lambda _{\mathrm{M}} ( 1- \delta + (1-\delta ^{-1})||u-I_{\mathrm{M}} u ||_{L^2({\varOmega })}^2 ) \quad \le \lambda . \end{aligned}$$

The choice \(\delta := \varepsilon ^2\lambda _{\mathrm{M}}/(1 + \varepsilon ^2\lambda _{\mathrm{M}})\) concludes the proof. \(\square \)

Theorem 2

(Guaranteed lower bounds for higher eigenvalues) Under the conditions of Theorem 1 and sufficiently fine mesh-size in the sense that

$$\begin{aligned} \varepsilon <\left( \sqrt{1+J^{-1}} -1\right) /\sqrt{\lambda _J} \end{aligned}$$

holds for the \(J\)-th eigenpair \((\lambda _J,u_J)\in \mathbb{R }\times V\) of the biharmonic operator, the discrete Morley FEM approximation \((\lambda _{{\mathrm{M}},J},u_{{\mathrm{M}},J})\in \mathbb{R }\times V_{\mathrm{M}}\) satisfies

$$\begin{aligned} \frac{\lambda _{{\mathrm{M}},J}}{1+\varepsilon ^2 \lambda _{{\mathrm{M}},J}}\le \lambda _J. \end{aligned}$$
(3.3)

Remark

Although the exact eigenvalue \(\lambda _J\) is not known, any upper bound (e.g., by conforming finite element methods) will give a lower bound for the critical mesh-size.

The proof of Theorem 2 employs the following criterion for the linear independence of the Morley interpolants of the first \(J\) eigenfunctions.

Lemma 1

Let \((u_1,\dots ,u_J)\in V^J\) be the \(b\)-orthonormal system of the first \(J\) eigenfunctions and suppose (A) with parameter \(\varepsilon <(\sqrt{1+J^{-1}} -1)/\sqrt{\lambda _J}\), then the Morley interpolants \( I_{\mathrm{M}} u_1,\dots ,I_{\mathrm{M}} u_J\) are linearly independent.

Proof

The assumption (A) plus the projection property (3.1) imply for all \(j=1,\dots ,J\) that

$$\begin{aligned} ||u_j-I_{\mathrm{M}} u_j ||_\mathrm{NC }&\le \varepsilon |\!|\!|u_j-I_{\mathrm{M}} u_j |\!|\!|_\mathrm{NC } \\&\le \varepsilon |\!|\!|u_j |\!|\!|_\mathrm{NC } = \varepsilon \sqrt{\lambda _J}. \end{aligned}$$

This and the orthonormality of the eigenfunctions plus the Cauchy inequality show

$$\begin{aligned}&| b_\mathrm{NC }(I_{\mathrm{M}} u_j,I_{\mathrm{M}} u_k) - b(u_j, u_k) | \\&\quad = \bigl | b_\mathrm{NC }(u_j - I_{\mathrm{M}} u_j,u_k-I_{\mathrm{M}} u_k) - b_\mathrm{NC }(u_j - I_M u_j,u_k) - b_\mathrm{NC }(u_j,u_k - I_{\mathrm{M}} u_k) \bigr | \\&\quad \le ||u_j - I_{\mathrm{M}} u_j ||_\mathrm{NC } \,||u_k - I_{\mathrm{M}} u_k ||_\mathrm{NC } + ||u_j-I_{\mathrm{M}} u_j ||_\mathrm{NC } +||u_k-I_{\mathrm{M}} u_k ||_\mathrm{NC }\\&\quad \le \varepsilon ^2 \lambda _J + 2 \varepsilon \sqrt{\lambda _J}. \end{aligned}$$

The condition \(\varepsilon <(\sqrt{1+J^{-1}} -1)/\sqrt{\lambda _J}\) is equivalent to

$$\begin{aligned} J(\varepsilon ^2 \lambda _J + 2 \varepsilon \sqrt{\lambda _J}) < 1 . \end{aligned}$$

This and the Gershgorin theorem prove that all eigenvalues of the mass matrix

$$\begin{aligned} \Big ( b_\mathrm{NC }(I_{\mathrm{M}} u_j, I_{\mathrm{M}} u_k) \Big )_{j,k=1,\dots ,J} \end{aligned}$$

are positive. \(\square \)

Proof of Theorem 2

The Rayleigh-Ritz principle reads

$$\begin{aligned} \lambda _{{\mathrm{M}},J} = \min _{\mathrm{dim }V_J=J} \max _{v_{\mathrm{M}}\in V_J\setminus \{0\}} \frac{|\!|\!|v_{\mathrm{M}} |\!|\!|_\mathrm{NC }^2}{||v_{\mathrm{M}} ||_\mathrm{NC }^2}, \end{aligned}$$

where the minimum runs over all subspaces \(V_J \subset V_{\mathrm{M}}\) with dimension smaller than or equal to \(J\). Lemma 1 guarantees that the vectors \(I_{\mathrm{M}} u_1,\dots ,I_{\mathrm{M}} u_J\) are linearly independent. Hence, there exist real coefficients \(\xi _1,\dots ,\xi _J\) with \(\sum _{j=1}^J \xi _j^2 = 1\) such that the maximiser of the Rayleigh quotient in \(\mathrm{span }\{I_{\mathrm{M}} u_1,\dots ,I_{\mathrm{M}} u_J\}\) is equal to \(\sum _{j=1}^J \xi _j I_{\mathrm{M}} u_j\). Therefore, \(v:=\sum _{j=1}^J \xi _j u_j\) satisfies

$$\begin{aligned} \lambda _{{\mathrm{M}},J} \le \frac{|\!|\!| I_{\mathrm{M}} v |\!|\!|_\mathrm{NC }^2}{||I_{\mathrm{M}} v ||_\mathrm{NC }^2} . \end{aligned}$$
(3.4)

The projection property (3.1) and the orthogonality of the eigenfunctions prove

$$\begin{aligned} |\!|\!|v-I_{\mathrm{M}} v |\!|\!|_\mathrm{NC }^2 + |\!|\!|I_{\mathrm{M}} v |\!|\!|_\mathrm{NC }^2 = |\!|\!|v |\!|\!|^2 = \sum _{j=1}^J \xi _j^2 \lambda _j \le \lambda _J. \end{aligned}$$

This and (3.4) yield

$$\begin{aligned} |\!|\!|v-I_{\mathrm{M}} v |\!|\!|_\mathrm{NC }^2 + \lambda _{{\mathrm{M}},J} ||I_{\mathrm{M}} v ||_\mathrm{NC }^2 \le \lambda _J. \end{aligned}$$

This estimate replaces (3.2) in the case of the first eigenvalue. The remaining parts of the proof are identical to the proof of Theorem 1 and, hence, omitted here. \(\square \)

4 \(L^{2}\) Error estimate for the Morley interpolation

This section provides error estimates for the Morley interpolation operator with explicit constants to guarantee the approximation assumption (A) of Sect. 3. Let \(j_{1,1} = 3.8317059702\) be the first positive root of the Bessel function of the first kind [6]. The following theorem provides an explicit \(L^2\) interpolation error estimate of the Morley interpolation operator with the constants

$$\begin{aligned} \kappa _\mathrm CR&:= \sqrt{1/48 + j_{1,1}^{-2}} = 0.298234942888 \quad \text{ and }\\ \kappa _{\mathrm{M}}&:= \big (\sqrt{(\kappa _\mathrm CR ^2+\kappa _\mathrm CR )/12} + \kappa _\mathrm CR /j_{1,1} \big ) = 0.257457844658. \end{aligned}$$

Theorem 3

(Error estimate Morley interpolation) On any triangle \(T\) with diameter \(h_T:=\mathrm{diam }(T)\), each \(v\in H^2(T)\) and its Morley interpolation \(I_{\mathrm{M}} v\) satisfy

$$\begin{aligned} ||v-{I_{\mathrm{M}}} v ||_{L^2(T)}&\le \kappa _{\mathrm{M}} h_T^2 ||D^2(v-{I_{\mathrm{M}}} v) ||_{L^2(T)},\\ ||\nabla (v-{I_{\mathrm{M}}} v) ||_{L^2(T)}&\le \kappa _\mathrm CR h_T ||D^2(v-{I_{\mathrm{M}}} v) ||_{L^2(T)}. \end{aligned}$$

The proof of Theorem 3 is based on the following two lemmas.

Lemma 2

(Trace inequality with weights) Any function \(f\in H^1(T)\) on a triangle \(T\) with some edge \(E\in {{\fancyscript{E}}}(T)\) satisfies

$$\begin{aligned} ||f ||^2_{L^2(E)}&\le \frac{|E|}{|T|} ||f ||^2_{L^2(T)} + \frac{h_T|E|}{|T|} \int \limits _T |f|\, |\nabla f|\; dx \\&\le \min _{\alpha >0} \left( \left( 1+\frac{\alpha }{2}\right) \frac{|E|}{|T| } ||f ||^2_{L^2(T)} + \frac{h_T^2|E|}{2\alpha \,|T|} ||\nabla f ||^2_{L^2(T)} \right) . \end{aligned}$$

Proof

Let \(P\) denote the vertex opposite to \(E\), such that \(T=\mathrm{conv }(E\cup \{P\})\). For any \(g\in W^{1,1}(T)\), an integration by parts leads to the trace identity

$$\begin{aligned} \frac{1}{2}\int \limits _T(\bullet -P)\cdot \nabla g\; dx = \frac{|T|}{|E|}\int \limits _E g \; ds - \int \limits _T g \; dx . \end{aligned}$$
(4.1)

The estimate \(|x-P|\le h_T\), for \(x\in T\), yields for \(g=f^2\)

$$\begin{aligned} ||f ||^2_{L^2(E)} \le \frac{|E|}{|T|} ||f ||^2_{L^2(T)} + \frac{h_T|E|}{|T|} \int \limits _T |f|\, |\nabla f|\; dx . \end{aligned}$$

Cauchy and Young inequalities imply, for any \(\alpha > 0\), that

$$\begin{aligned} h_T\int \limits _T |f|\, |\nabla f|\; dx \le \frac{ h_T^2}{2\alpha }||\nabla f ||^2_{L^2(T)} +\frac{\alpha }{2}||f ||^2_{L^2(T)}. \end{aligned}$$

\(\square \)

Lemma 3

(Friedrichs-type inequality) On any real bounded interval \((a,b)\) it holds

$$\begin{aligned} \max _{f\in H^1_0(a,b)} \frac{\left( \int \nolimits _a^b f(x)\; dx \right) ^2}{||f^{\prime } ||^2_{L^2(a,b)}} = \frac{(b-a)^3}{12}. \end{aligned}$$

Proof

The bilinear form

$$\begin{aligned} \left<v,w\right> := \int \limits _a^b v(x)\; dx \int \limits _a^b w(x)\; dx + (b-a)^3 \int \limits _a^b v^{\prime }(x) w^{\prime }(x)\; dx \end{aligned}$$

defines a scalar product on \(H^1_0 (a,b)\) such that \(\left( H^1_0 (a,b), \left<\cdot ,\cdot \right>\right) \) is a Hilbert space. For any \(f\in H^1_0 (a,b)\) and the quadratic polynomial \(p(x) := (x-a)(b-x)\), a straight-forward calculation results in

$$\begin{aligned} \left<f,p\right> = \frac{13}{6} (b-a)^3 \int \limits _a^b f(x)\; dx . \end{aligned}$$
(4.2)

On the other hand, the Cauchy inequality with respect to the scalar product \(\left<\cdot ,\cdot \right>\) reads

$$\begin{aligned} \left<f,p\right>&\le \sqrt{\left<f,f\right>} \sqrt{\left<p,p\right>} \nonumber \\&= \frac{\sqrt{13}}{6} (b-a)^3 \sqrt{\left( \displaystyle \int \limits _a^b f(x)\; dx \right) ^2 + (b-a)^3 \displaystyle \int \limits _a^b f^{\prime }(x)^2\; dx } \end{aligned}$$
(4.3)

The combination of (4.2)–(4.3) leads to

$$\begin{aligned} 12\,\left( \int \limits _a^b f(x) \; dx \right) ^2 \le (b-a)^3 \int \limits _a^b f^{\prime }(x)^2\; dx . \end{aligned}$$

The maximum is attained for \(f=p\). \(\square \)

The proof of Theorem 3 makes use of the Crouzeix-Raviart interpolation operator \(I_\mathrm CR \) [1, 2]. For a triangle \(T\), the Crouzeix-Raviart interpolation \(I_\mathrm CR : H^1(T)\rightarrow P_1(T)\) acts on \(v\in H^1(T)\) through

and enjoys the integral mean property of the gradient

(4.4)

The following refinement of the results from [3] gives an \(L^2\) error estimate with the explicit constant \(\kappa _\mathrm CR \) from the beginning of this section.

Theorem 4

(\(L^2\) error estimate for Crouzeix-Raviart interpolation) For any \(v\in H^1(T)\) on a triangle \(T\) with \(h_T:=\mathrm{diam }(T)\) the Crouzeix-Raviart interpolation operator satisfies

$$\begin{aligned} ||v-{I_\mathrm CR } v ||_{L^2(T)} \le \kappa _\mathrm CR h_T ||\nabla (v-{I_\mathrm CR } v) ||_{L^2(T)}. \end{aligned}$$

Proof

Let \(T=\mathrm{conv }\{P_1,P_2,P_3\}\) with set of edges \(\{E_1,E_2,E_3\} = {{\fancyscript{E}}}(T)\), the barycentre \(M:=\mathrm{mid }(T)\) and the sub-triangles (see Fig. 2)

$$\begin{aligned} T_j := \mathrm{conv }\{M, E_j\} \quad \text{ for }\, j=1,2,3. \end{aligned}$$

The function \(f:=v-I_\mathrm CR v\) satisfies, for any edge \(E\in {{\fancyscript{E}}}(T)\),

$$\begin{aligned} \int \limits _E f \; ds = 0. \end{aligned}$$

Let denote the integral mean on \(T\). The trace identity (4.1) plus the Cauchy inequality reveal for those sub-triangles

$$\begin{aligned} \left| \int \limits _{T} f\; dx \right|&= \left| \sum _{j=1}^3 \int \limits _{T_j} f\; dx \right| =\left| \frac{1}{2} \sum _{j=1}^3 \int \limits _{T_j} (\bullet - M) \cdot \nabla f \; dx \right| \\&\le \frac{1}{2} ||\bullet - M ||_{L^2(T)} ||\nabla f ||_{L^2(T)}. \end{aligned}$$

Let, without loss of generality, \(M=0\) and so \(\sum _{j,k=1}^3 P_j\cdot P_k = 0\). An explicit calculation with the local mass matrix \(|T|/12\,(1+\delta _{jk})_{j,k=1,2,3}\) reveals

$$\begin{aligned} 12|T|^{-1}||\bullet - M ||_{L^2(T)}^2 = \sum _{j=1}^3 |P_j|^2 =\frac{1}{6} \sum _{j,k=1}^3 |P_j-P_k|^2 \le h_T^2. \end{aligned}$$

Hence,

$$\begin{aligned} |f_T| \le \frac{1}{\sqrt{48}\, |T|^{1/2} } h_T ||\nabla f ||_{L^2(T)} \quad \text{ for } \text{ all }\, j=1,2,3. \end{aligned}$$
(4.5)

The Pythagoras theorem yields

$$\begin{aligned} ||f ||_{L^2(T)}^2 = ||f-f_{T} ||_{L^2(T)}^2 + |T| f_{T}^2. \end{aligned}$$

The Poincaré inequality with constant \(j_{1,1}^{-1}\) from [6] plus (4.5) reveal

$$\begin{aligned} ||f ||_{L^2(T)}^2 \le \left( j_{1,1}^{-2} + \frac{1}{48} \right) h_T^2 ||\nabla f ||_{L^2(T_j)}^{2}. \end{aligned}$$

\(\square \)

Fig. 2
figure 2

Subdivision in three subtriangles

Proof of Theorem 3

The triangle inequality reveals for \(g:=v-{I_{\mathrm{M}}} v\) that

$$\begin{aligned} ||g ||_{L^2(T)} \le ||g-{I_\mathrm CR } g ||_{L^2(T)} + ||{I_\mathrm CR } g ||_{L^2(T)}. \end{aligned}$$
(4.6)

For the first term, Theorem 4 provides the estimate

$$\begin{aligned} ||g-{I_\mathrm CR } g ||_{L^2(T)} \le \kappa _\mathrm CR h_T ||\nabla _\mathrm{NC }(g-{I_\mathrm CR } g) ||_{L^2(T)}. \end{aligned}$$
(4.7)

The integral mean property (4.4) of the gradient allows for a Poincaré inequality

$$\begin{aligned} ||{\nabla _\mathrm{NC }}(g-{I_\mathrm CR } g) ||_{L^2(T)}\le h_T/j_{1,1}||D^2 g ||_{L^2(T)} \end{aligned}$$

with the first positive root \(j_{1,1} = 3.8317059702\) of the Bessel function of the first kind [6]. This controls the first term in (4.6) as

$$\begin{aligned} ||g-{I_\mathrm CR } g ||_{L^2(T)} \le \kappa _\mathrm CR h_T^2 /j_{1,1} ||D^2 g ||_{L^2(T)}. \end{aligned}$$
(4.8)

Let \(E\in {{\fancyscript{E}}}(T)\) denote the set of edges of \(T\) and let the function \(\psi _E\in P_1(T)\) be the Crouzeix-Raviart basis function which satisfies

$$\begin{aligned} \psi _E(\mathrm{mid }E) = 1 \quad \text{ and }\quad \psi _E(\mathrm{mid }(F)) = 0 \quad \text{ for }\, F\in {{\fancyscript{E}}}(T)\setminus \{E\}. \end{aligned}$$

The definition of \({I_\mathrm CR }\) and the property \(\int \limits _T\psi _E\psi _F\; dx =0\) for \(E\ne F\) prove for the second term in (4.6) that

Since \(g\in H^1_0(E)\) for all \(E\in {{\fancyscript{E}}}(T)\), Lemma 3 implies

By the trace inequality (Lemma 2), this is bounded by

$$\begin{aligned} \min _{\alpha >0} \left( \left( 1+\frac{\alpha }{2}\right) \frac{|E|^2}{12|T| } ||\nabla g ||^2_{L^2(T)} + \frac{h_T^2|E|^2}{24\alpha \,|T|} ||D^2 g ||^2_{L^2(T)} \right) . \end{aligned}$$

The definition of \(I_{\mathrm{M}}\) implies \(\nabla {I_{\mathrm{M}}} v = {I_\mathrm CR }\nabla v\). Since \(\nabla g = \nabla v - {I_\mathrm CR }\nabla v\), the arguments from (4.7) show

$$\begin{aligned} ||\nabla g ||_{L^2(T)} \le \kappa _\mathrm CR h_T ||D^2 g ||_{L^2(T)}. \end{aligned}$$

The combination of the preceding four displayed estimates leads to

$$\begin{aligned} ||{I_\mathrm CR } g ||^2_{L^2(T)} \le \min _{\alpha >0} \big ((1+\alpha /2)\kappa _\mathrm CR ^2 + 1/(2\alpha )\big ) \frac{h_T^4}{12} \, ||D^2 g ||^2_{L^2(T)}. \end{aligned}$$
(4.9)

The upper bound attains its minimum at \(\alpha = 1 /\kappa _\mathrm CR \). Altogether, (4.6), (4.8) and (4.9) lead to

$$\begin{aligned} ||g ||_{L^2(T)} \le \big (12^{-1/2}\sqrt{\kappa _\mathrm CR ^2+\kappa _\mathrm CR } + \kappa _\mathrm CR /j_{1,1} \big )\; h_T^2 ||D^2 g ||_{L^2(T)}. \end{aligned}$$

\(\square \)

5 Numerical results

This section provides numerical experiments for the eigenvalue problems

$$\begin{aligned} {\varDelta }^2 u = \lambda u \quad \text{ and }\,\quad {\varDelta }^2 u = \mu {\varDelta } u \end{aligned}$$
(5.1)

on convex and nonconvex domains under various boundary conditions.

5.1 Mathematical models

5.1.1 Vibrations of plates

The weak form of the problem \({\varDelta }^2 u = \lambda u\) seeks eigenvalues \(\lambda \) and the deflection \(u\in V\) such that

$$\begin{aligned} a(u,v) =\lambda \, b(u,v) \quad \text{ for } \text{ all }\, v\in V \end{aligned}$$

for the bilinear form \(b(\cdot ,\cdot ) := (\cdot ,\cdot )_{L^2({\varOmega })}\). Its Morley finite element discretisation seeks \((\lambda _{\mathrm{M}},u_{\mathrm{M}})\in \mathbb{R }\times V_{\mathrm{M}}\) such that

$$\begin{aligned} a_\mathrm{NC }(u_{\mathrm{M}},v_{\mathrm{M}}) = \lambda _{\mathrm{M}} \, b(u_{\mathrm{M}},v_{\mathrm{M}}) \quad \text{ for } \text{ all }\, v_{\mathrm{M}}\in V_{\mathrm{M}}. \end{aligned}$$

Theorems 1–3 establish the lower bound \(J\)-th eigenvalue

$$\begin{aligned} \frac{{\lambda _{{\mathrm{M}},J}}}{1+\kappa _{\mathrm{M}}^2{\lambda _{{\mathrm{M}},J}} H^4} \le \lambda _J \end{aligned}$$

for maximal mesh-size \(H^2<\left( \sqrt{1+J^{-1}} -1\right) /(\kappa _{\mathrm{M}}\sqrt{\lambda _J})\) in case of \(J\ge 2\).

5.1.2 Buckling

The weak form of the buckling problem \({\varDelta }^2 u = \mu {\varDelta } u\) seeks a parameter \(\mu \) and the deflection \(u\in V\) such that

$$\begin{aligned} a(u,v) =\mu \, b(u,v) \quad \text{ for } \text{ all }\, v\in V \end{aligned}$$

for the bilinear form \(b(\cdot ,\cdot ) := (\nabla \cdot ,\nabla \cdot )_{L^2({\varOmega })}\). This model describes the critical parameter \(\mu \) in a stability analysis of a buckling plate loaded with a load in the plate’s midsurface times \(\mu \) [9]. Its Morley finite element discretisation seeks \((\mu _{\mathrm{M}},u_{\mathrm{M}})\in \mathbb{R }\times V_{\mathrm{M}}\) such that

$$\begin{aligned} a_\mathrm{NC }(u_{\mathrm{M}},v_{\mathrm{M}}) = \mu _{\mathrm{M}} \, b_\mathrm{NC }(u_{\mathrm{M}},v_{\mathrm{M}}) \quad \text{ for } \text{ all }\, v_{\mathrm{M}}\in V_{\mathrm{M}} \end{aligned}$$

with the piecewise version \(b_\mathrm{NC }(\cdot ,\cdot ) := (\nabla _\mathrm{NC }\cdot ,\nabla _\mathrm{NC }\cdot )_{L^2({\varOmega })}\).

Theorems 1–3 establish the lower bound \(J\)-th eigenvalue

$$\begin{aligned} \frac{\mu _{{\mathrm{M}},J}}{1+\kappa _\mathrm CR ^2{\mu _{{\mathrm{M}},J}} H^2} \le \mu _J \end{aligned}$$

for maximal mesh-size \(H<\left( \sqrt{1+J^{-1}} -1\right) /(\kappa _\mathrm CR \sqrt{\mu _J})\) in case of \(J\ge 2\).

5.2 Domains and boundary conditions

The a priori error analysis of the Morley finite element method in [8] has been accompanied by various numerical examples which are easily recast into guaranteed lower bounds via the theoretical findings of this paper. The benchmark examples of this section also consider higher eigenvalues and nonconvex domains.

The domains under consideration are the unit square \({\varOmega }=(0,1)^2\) and the plate with hole \((0,1)^2\setminus ([0.35,0.65]^2)\). Figure 3 describes the boundary conditions for the unit square, while Fig. 4 shows the boundary conditions for the plate with hole. The different parts of the boundary \(\partial {\varOmega }\) are indicated by the following symbols.

Fig. 3
figure 3

Boundary conditions for the unit square

Fig. 4
figure 4

Boundary conditions for the square with hole

5.3 Further remarks on numerical experiments

5.3.1 Numerical realisation

The first eigenvalues of (5.1) are approximated by the Morley FEM (Fig. 5a) on a sequence of successively red-refined triangulations (i.e., each triangle is split into four congruent sub-triangles) based on the initial triangulations of Fig. 6a.

For comparison, the discrete eigenvalues of the conforming Bogner-Fox-Schmit FEM (Fig. 5b) are computed as upper bounds. The conforming finite element space reads \(V_\mathrm BFS := V\cap Q_3({{\fancyscript{T}}})\) with the values of the function, its gradient and its mixed second derivative at the free vertices as degrees of freedom as displayed in Fig. 5b. The computations are based on the initial partitions of Fig. 6b.

Fig. 5
figure 5

Morley and Bogner-Fox-Schmit \(Q_3\) finite elements. a Morley b BFS

Fig. 6
figure 6

Initial partitions for the Morley and BFS FEM. a Morley b BFS

5.3.2 Higher eigenvalues

To illustrate the result for higher eigenvalues, the tables in 5.4.3 display the approximations for the 20th eigenvalue on the unit square under the boundary conditions 3a and 3e. The required minimal mesh-size for the lower bound according to Theorem 2 leads to \(h<0.016\) (resp. \(0.017\)) for example 3a (resp. 3e), where the upper bounds \(\lambda _\mathrm{BFS ,20}\ge \lambda \) are used to guarantee a sufficiently fine mesh. This separation condition is satisfied for the last three values of GLB and, therefore, those are valid bounds. (The values in brackets are not necessarily reliable bounds.)

5.3.3 Inexact solve

The estimates from Section 3 are derived under the unrealistic assumption that the discrete algebraic eigenvalue problems are solved exactly. However, since the term \(\lambda _{\mathrm{M}}/(1+\varepsilon ^2)\lambda _{\mathrm{M}}\) is monotone in \(\lambda _{\mathrm{M}}\), any lower bound for the discrete eigenvalue \(\lambda _{\mathrm{M}}\) yields a lower bound for \(\lambda \). In this sense, this paper reduces the task of guaranteed lower bounds of the eigenvalue problem on the continuous level via the Morley discretisation and sharp interpolation error estimates to the task of guaranteed lower eigenvalue bounds of the algebraic eigenvalue problem in numerical linear algebra. There are many results available for the localisation of eigenvalues in the finite-dimensional algebraic eigenvalue problems in the literature, e.g., in [7]. Throughout this paper and the numerical examples of this section, all numbers provided are computed with the ARPACK and the default parameters.

5.4 Results

The tables display the eigenvalue of the Morley FEM and the guaranteed lower bound (GLB). The eigenvalue of the conforming Bogner-Fox-Schmit FEM is given as an upper bound for comparison. The dash indicates out of memory (8 million degrees of freedom).

5.4.1 First eigenvalue for \({\varDelta }^2 u = \lambda u\) on the unit square

\(\lambda _{\mathrm{M}}\)

GLB

\(\lambda _\mathrm{BFS }\)

(Boundary condition 3a)

288.36704

222.04958

1,367.8580

637.14901

611.91175

1,300.1260

1,008.8296

1,004.7288

1,295.3400

1,205.7698

1,205.4022

1,294.9632

1,271.0486

1,271.0230

1,294.9359

1,288.8461

1,288.8444

1,294.9341

1,293.4041

1,293.4039

1,294.9340

1,294.5510

1,294.5509

1,294.9340

1,294.8381

1,294.8380

1,294.9336

(Boundary condition 3b)

9.4115855

9.3207312

12.480192

11.429097

11.420647

12.374319

12.109523

12.108929

12.363172

12.297560

12.297521

12.362415

12.346044

12.346041

12.362367

12.358275

12.358274

12.362364

12.361341

12.361340

12.362363

12.362103

12.362102

12.362362

12.362252

12.362251

12.362339

(Boundary condition 3c)

118.46317

105.51708

516.92308

269.41278

264.79492

501.89357

409.86191

409.18341

500.64841

474.00642

473.94961

500.56920

493.62006

493.61620

500.56423

498.80737

498.80712

500.56392

500.12344

500.12342

500.56390

500.45370

500.45369

500.56388

500.53630

500.53629

500.56352

(Boundary condition 3d)

270.01217

211.00461

870.28523

486.48522

471.63317

840.23446

693.94950

692.00668

838.28577

794.82321

794.66350

838.16022

826.71488

826.70407

838.15227

835.25025

835.24956

838.15177

837.42356

837.42351

838.15174

837.96950

837.96949

838.15171

838.10612

838.10611

838.15136

(Boundary condition 3e)

239.60730

191.96836

440.00000

323.40541

316.77395

391.31816

368.87652

368.32684

389.74036

384.07793

384.04063

389.64282

388.22057

388.21818

389.63677

389.28068

389.28053

389.63639

389.54733

389.54732

389.63637

389.61409

389.61408

389.63636

389.63075

389.63074

389.63634

5.4.2 First eigenvalue for \({\varDelta }^2 u = \lambda u\) on the square with hole

\(\lambda _{\mathrm{M}}\)

GLB

\(\lambda _\mathrm BFS \)

(Boundary condition 4a)

6,605.7795

242.12417

31,270.769

7,555.1473

2,624.4604

28,314.668

15,294.185

12,356.931

27,458.216

21,971.980

21,512.833

27,138.816

25,144.874

25,106.547

27,005.952

26,279.553

26,276.932

26,947.608

26,665.404

26,665.235

26,921.219

26,803.927

26,803.916

26,909.085

26,857.825

26,857.824

(Boundary condition 4b)

741.11343

187.68590

1,862.4481

1,246.1046

951.31959

1,855.3809

1,626.2648

1,586.1738

1,851.9814

1,784.0893

1,781.0028

1,850.9178

1,832.2899

1,832.0860

1,850.6129

1,845.5824

1,845.5694

1,850.5473

1,849.1916

1,849.1907

1,850.5479

1,850.1867

1,850.1866

1,850.5609

1,850.4690

1,850.4689

1,850.5712

5.4.3 Higher eigenvalues for \({\varDelta }^2 u = \lambda u\) on the square domain

(Boundary condition 3a)

\(H{\times }10^{-1}\)

(Boundary condition 3e)

\(\lambda _{{\mathrm{M}},20}\)

GLB

\(\lambda _\mathrm{BFS ,20}\)

 

\(\lambda _{{\mathrm{M}},20}\)

GLB

\(\lambda _\mathrm{BFS ,20}\)

33,194.719

(938.24364)

180,927.73

35.35

16,884.905

(913.30834)

112,640.00

56,445.852

(12,128.990)

139,642.27

17.67

53,924.215

(12,008.327)

100,177.45

102,198.50

(72,303.616)

138,018.79

8.838

83,810.508

(62,588.541)

99,773.533

125,411.88

(121,557.17)

137,905.04

4.419

94,755.581

(92,538.410)

99,748.561

134,423.04

(134,138.08)

137,897.32

2.209

98,415.381

(98,262.552)

99,747.012

137,002.79

136,984.25

137,896.82

1.104

99,408.352

99,398.592

99,746.916

137,671.63

137,670.45

137,896.79

0.552

99,661.908

99,661.294

99,746.910

137,840.39

137,840.31

137,896.79

0.276

99,725.636

99,725.597

99,746.909

5.4.4 First eigenvalue for \({\varDelta }^2 u = \mu {\varDelta } u\) on the unit square

\(\mu _{\mathrm{M}}\)

GLB

\(\lambda _\mathrm BFS \)

(Boundary condition 3a)

30.430781

22.737880

52.923077

46.100761

40.864499

52.576696

50.603228

48.884311

52.362578

51.874002

51.410714

52.345894

52.223278

52.105101

52.344768

52.314035

52.284337

52.344696

52.337005

52.329570

52.344691

52.342768

52.340908

52.344690

52.344208

52.343743

52.344676

(Boundary condition 3b)

2.4064529

2.3437460

2.4859617

2.4518157

2.4352200

2.4686648

2.4634618

2.4592520

2.4674819

2.4664122

2.4653558

2.4674062

2.4671535

2.4668891

2.4674014

2.4673392

2.4672731

2.4674011

2.4673857

2.4673691

2.4674011

2.4673963

2.4673921

2.4674008

2.4673914

2.4673903

2.4673965

(Boundary condition 3c)

13.403557

11.665198

33.066754

22.926106

21.552699

32.417350

29.338870

28.752692

32.293439

31.461504

31.290487

32.275273

32.056325

32.011758

32.272463

32.215866

32.204601

32.272026

32.257575

32.254750

32.271958

32.268298

32.267591

32.271947

32.271024

32.270847

32.271931

(Boundary condition 3d)

24.000000

18.944891

38.176592

32.093424

29.465032

37.880015

36.168341

35.281625

37.805108

37.377276

37.136145

37.799957

37.692922

37.631319

37.799628

37.772852

37.757367

37.799607

37.792911

37.789034

37.799606

37.797931

37.796961

37.799604

37.799185

37.798942

37.799589

(Boundary condition 3e)

18.334369

15.229883

22.000000

19.443160

18.446280

19.817243

19.667256

19.402101

19.744335

19.721247

19.653913

19.739533

19.734714

19.717814

19.739229

19.738084

19.733854

19.739210

19.738928

19.737870

19.739209

19.739138

19.738873

19.739209

19.739189

19.739122

19.739208

5.4.5 First eigenvalue of \({\varDelta }^2 u = \mu {\varDelta } u\) on the square with hole

\(\mu _{\mathrm{M}}\)

GLB

\(\mu _\mathrm BFS \)

(Boundary condition 4a)

65.836950

27.041396

277.04748

140.00805

79.426405

265.59236

210.08856

163.34921

260.75573

239.26986

221.24527

258.83912

250.18631

244.96933

257.99165

254.32732

252.95825

257.60556

255.99152

255.64335

257.42742

256.69732

256.60970

257.34466

257.00896

256.98699

(Boundary condition 4b)

31.637668

18.726875

43.732101

38.366123

31.733452

42.623655

40.936657

38.774808

42.387116

41.849116

41.261178

42.326353

42.155629

42.004899

42.311264

42.257614

42.219647

42.308505

42.292109

42.282595

42.308707

42.304027

42.301646

42.309345

42.308224

42.307628

42.309833