1 Introduction

The important problem of harmonic analysis is to characterize weighted norm inequalities for the Hilbert transform. This problem has been studied since 1970s starting from the paper by Hunt–Muckenhoupt–Wheeden [2]. They proved that the Hilbert transform is bounded on weighted Lebesgue space \(L^p_w\), \(1<p<\infty \) (see definitions below), if and only if the weight w is from the Muckenhoupt \(A_p\) class. Attempts to extend this result on the case of different weights and parameters of summation turned out to be difficult (see [3, 5, 6] for the case \(p=2\) and different weights). However, some progress has been made for several restricted problems (see, for instance [8, 15]).

In this paper we study the mapping properties of Hilbert transform

$$\begin{aligned} Hf(x)= \,p.\,v.\,\int _0^\infty \frac{f(t)}{x-t}\, dt, \,\,x>0 \end{aligned}$$

between weighted Sobolev spaces of the first order and weighted Lebesgue spaces on the semi-axis.

Let \(I:=(0,\infty )\), and let \({\mathfrak {M}}(I)\) be the set of all Lebesgue measurable functions on I\({\mathfrak {M}}^+(I)\subset {\mathfrak {M}}(I)\) be the subset of all non-negative functions, \({\mathfrak {M}}^\uparrow (I)\subset {\mathfrak {M}}^+(I)\) and \({\mathfrak {M}}^\downarrow (I)\subset {\mathfrak {M}}^+(I)\) be subsets of all non-negative, non-decreasing and non-increasing functions, respectively.

For \(p\in (1,\infty )\) and \(w\in {\mathfrak {M}}^+(I)\) we define

$$\begin{aligned} L^p_{w}(I):=\left\{ f\in {\mathfrak {M}}(I):\Vert f\Vert _{L^p_{w}}:=\left( \int _0^\infty |f|^pw^p\right) ^{1/p}<\infty \right\} . \end{aligned}$$

Let \(v_0,v_1\in {\mathfrak {M}}^+(I)\), \(v_1<\infty \) almost everywhere (a.e.) on I, \(\frac{1}{v_1}\in L^{p'}_\text { loc}(I)\), \(v_0\in L^p_\text { loc}(I)\), \(\Vert v_0\Vert _{L^1(I)}>0\). Weighted Sobolev space is defined by

$$\begin{aligned} W^1_{p}(I):=\{u\in W^1_{1,\text { loc}}(I):\Vert u\Vert _{W^1_{p}}<\infty \}, \end{aligned}$$

where

$$\begin{aligned} \Vert u\Vert _{W^1_{p}}:=\Vert u\Vert _{L^{p}_{v_0}}+\Vert Du\Vert _{L^{p}_{v_1 }}. \end{aligned}$$

By AC(I) we denote the space of all functions absolutely continuous on every finite interval of I [7, Definition 3.1]. We also need subspaces where the second one is a completion in \(W^1_p(I)\) of , which is the subspace of AC(I) such that

These Sobolev spaces were recently investigated in [9, 11,12,13,14]. In particular, a criteria for is given [9, Lemma 1.6], [12, (3.4)].

We study the problem of sufficient conditions for the boundedness of while \(1<p,q<\infty \) and \(v_0, v_1, w\in {\mathfrak {M}}^+(I).\) The weights \(v_0\) and \(v_1\) are chosen so that \(\Vert f\Vert _{W^1_{p}}\approx \Vert Df\Vert _{L^p_{v_1}}.\)

Section 2 contains some preliminaries.

The main results are in Sects. 3 and  4.

We use signs \(:=\) and \(=:\) for determining new objects, iff:= if and only if. We write \(A\lesssim B,\) if \(A\le cB\) with some positive constant c, which depends mainly on parameters of summation only. \(A\approx B\) is equivalent to \(A\lesssim B \lesssim A\). \(\chi _E\) denotes the characteristic function (indicator) of a set E\({\mathbb {Z}}\) stands for the set of all integers. Uncertainties of the form \(0\cdot \infty , \frac{\infty }{\infty }\) and \(\frac{0}{0}\) are taken to be zero. \(\Box \) stands for the end of a proof. If \(1<p<\infty ,\) then \(p':=\frac{p}{p-1}.\)

2 Preliminaries

We suppose that weight functions \(v_0\) and \(v_1\) are such that

(2.1)

By [4, Remark 1.4] (2.1) is fulfilled iff

$$\begin{aligned} {{\mathbf {A}}}_0:=\sup _{(s,t)\subset (0,\infty )}\left( \int _s^t v_0^p\right) ^{1/p}\left( \min \left\{ \int _0^s v_1^{-p'}, \int _t^\infty v_1^{-p'}\right\} \right) ^{1/p'}<\infty . \end{aligned}$$

In this case

$$\begin{aligned} \Vert f\Vert _{W_{p}^1}\approx \Vert f'\Vert _{L^{p}_{v_1}}, \end{aligned}$$
(2.2)

that is the norm in two-weight Sobolev space \(W_{p}^1(I)\) is equivalent to the norm \(\Vert f'\Vert _{L^{p}_{v_1}}\) of “one-weight Sobolev space”. However, the first space is strictly smaller than the second, in general.

Lemma 2.1

Let \(1<p<\infty \) and let the weights \(v_0\) and \(v_1\) be such that

$$\begin{aligned} {{\mathbf {A}}}_1:=\sup _{0<t<\infty }\left( \int _0^t v_0^p\right) ^{1/p}\left( \int _t^\infty v_1^{-p'}\right) ^{1/p'}<\infty . \end{aligned}$$
(2.3)

Then

(2.4)

where

$$\begin{aligned} Lg(x)&=\int _0^{x}\log \frac{x}{x-s}g(s)ds+\int _x^{2x}\log \frac{x}{s-x}g(s)ds\\&\quad +\int _{2x}^\infty \log \frac{x}{s-x}g(s)ds=:L_1g(x)+L_2g(x)-L_3g(x). \end{aligned}$$

Proof

Fix Since \({{\mathbf {A}}}_0\le {{\mathbf {A}}}_1,\) then (2.2) holds and, in particular,

$$\begin{aligned} \int _t^\infty |f'|\le \Vert f'\Vert _{L^{p}_{v_1}}\left( \int _t^\infty v_1^{-p'}\right) ^{1/p'},\,\,t>0. \end{aligned}$$
(2.5)

Then

$$\begin{aligned} Hf(x)= \,p.\,v.\,\int _0^\infty \frac{f(t)}{x-t}dt=\lim _{0<\varepsilon <x,\varepsilon \downarrow 0}\int _0^\infty \frac{\chi _{\varepsilon ,x}(t)f(t)}{x-t}dt, \end{aligned}$$

where

$$\begin{aligned} \chi _{\varepsilon ,x}(t):=\chi _{(0,x-\varepsilon )}(t)+\chi _{(x+\varepsilon ,\infty )}(t). \end{aligned}$$

Using (2.5) we write by Fubini’s theorem

$$\begin{aligned}&Hf(x)= \lim _{0<\varepsilon<x,\varepsilon \downarrow 0}\int _0^\infty \frac{\chi _{\varepsilon ,x}(t)\int _t^\infty f'(s)ds}{x-t}dt\\&=\lim _{0<\varepsilon<x,\varepsilon \downarrow 0}\int _0^\infty f'(s)\left( \int _0^s\frac{\chi _{\varepsilon ,x}(t)}{x-t}dt\right) ds=:\lim _{0<\varepsilon <x,\varepsilon \downarrow 0}\int _0^\infty k_{\varepsilon }(x,s)f'(s)ds. \end{aligned}$$

We see that \(|k_{\varepsilon }(x,s)|\) is increasing with respect to \(\varepsilon \) and

$$\begin{aligned} \lim _{0<\varepsilon <x,\varepsilon \downarrow 0} |k_{\varepsilon }(x,s)|=|k(x,s)|, \end{aligned}$$

where, \(x\not = s,\)

$$\begin{aligned} k(x,s)=\int _0^s\frac{dt}{x-t}={\left\{ \begin{array}{ll} \log \frac{x}{x-s}, &{}0<s<x,\\ \log \frac{x}{s-x}, &{}x<s<2x,\\ \log \frac{x}{s-x}, &{}s\ge 2x\end{array}\right. } \end{aligned}$$
(2.6)

and by the Lebesgue dominated theorem (2.4) follows. \(\square \)

Thus, by (2.2), (2.4), (2.6) and density of we have

and

(2.7)

where H is extended on by continuity.

In the next section we give sharp two-sided estimates for the norms \(\Vert L_i\Vert _{L_{v_1}^p(I)\rightarrow L^q_{w}(I)}, i=1,2,3,\) which are of independent interest.

3 Auxiliary Results

The boundedness \(\Vert L_1g\Vert _{L^q_w}\lesssim \Vert g\Vert _{L^p_{v_1}}\) is characterized in [1] under the condition \(v_1\in {\mathfrak {M}}^\uparrow (I)\).

Theorem 3.1

[1] Let \(1<p<\infty \), \(0<q<\infty ,\) \(1/r=(1/q-1/p)_+\), \(v_1\in {\mathfrak {M}}^\uparrow (I).\) Then the inequality

$$\begin{aligned} \left( \int _0^\infty w^q(x)\left( \int _0^x \log \frac{x}{x-y}g (y)dy\right) ^qdx \right) ^{1/q}\le C\left( \int _0^\infty (gv_1)^p\right) ^{1/p},\,\,\,\,g\in {\mathfrak {M}}^+(I) \end{aligned}$$

holds iff

(i) \(1<p\le q<\infty ,\) \(A<\infty \), where

$$\begin{aligned} A:=\sup _{0<t<\infty }\left( \int _t^\infty \frac{w^q(x)dx}{x^q}\right) ^{1/q}\left( \int _0^t \frac{x^{p'}dx}{v_1^{p'}(x)}\right) ^{1/p'} \end{aligned}$$
(3.1)

and \(C=\Vert L_1\Vert _{L_{v_1}^p(I)\rightarrow L^q_{w}}\approx A,\)

(ii) \(0<q<p<\infty , p>1,\) \(B<\infty \), where

$$\begin{aligned} B:=\left( \int _0^\infty \left( \int _t^\infty \frac{w^q(x)dx}{x^q}\right) ^{r/q}\left( \int _0^t \frac{x^{p'}dx}{v_1^{p'}(x)}\right) ^{r/q'}\frac{t^{p'}}{v_1^{p'}(t)}dt\right) ^{1/r} \end{aligned}$$
(3.2)

and \(C=\Vert L_1\Vert _{L_{v_1}^p(I)\rightarrow L^q_{w}}\approx B.\)

The next theorem is devoted to the estimation of \(L_2.\)

Theorem 3.2

Let \(1<p<\infty \), \(1<q<\infty ,\) \(1/r=(1/q-1/p)_+\), \(v_1\in {\mathfrak {M}}^\uparrow (I)\) and there exists \(\gamma >0\) such that \(x^{-\gamma }v_1(x)\in {\mathfrak {M}}^\downarrow (I).\) Then the inequality

$$\begin{aligned} \left( \int _0^\infty w^q(x)\left( \int _x^{2x} \log \frac{x}{y-x}g (y)dy\right) ^qdx \right) ^{1/q}\le C\left( \int _0^\infty (gv_1)^p\right) ^{1/p},\,\,\,\,g\in {\mathfrak {M}}^+(I) \end{aligned}$$
(3.3)

is valid iff the inequality

$$\begin{aligned} \left( \int _0^\infty \frac{w^q(x)}{x^q}\left( \int _{\frac{3x}{2}}^{2x} (2x-y)g(y)dy\right) ^qdx \right) ^{1/q}\le D\left( \int _0^\infty (gv_1)^p\right) ^{1/p},\,\,\,\,g\in {\mathfrak {M}}^+(I) \end{aligned}$$
(3.4)

holds and \({\mathbb {A}}<\infty ,\) where

$$\begin{aligned} {\mathbb {A}}:={\left\{ \begin{array}{ll}\displaystyle \sup _{k\in {\mathbb {Z}}}\sup _{t\in [a^k,a^{k+1}]} \left( \int _{a^{k}}^t\omega ^q\right) ^{1/q}\left( \int _t^{a^{k+2}} u^{p'}\right) ^{1/p^\prime }, &{} p\le q,\\ \displaystyle \left( \sum _{k\in {\mathbb {Z}}}\int _{a^k}^{a^{k+1}}\omega ^q(x) \left( \int _{a^{k}}^x\omega ^q\right) ^{r/p}\left( \int _x^{a^{k+2}} u^{p'}\right) ^{r/p^\prime }dx\right) ^{1/r}, &{} q<p,\end{array}\right. } \end{aligned}$$
(3.5)

where \(a\in (1,\sqrt{2}),\) \(\omega (x):=\frac{w(x)}{x^{\gamma }},\) \(u(y):=\frac{y^{\gamma }}{v_1(y)}.\) Moreover, \(C=\Vert L_2\Vert _{L_{v_1}^p(I)\rightarrow L^q_{w}}\approx D+{\mathbb {A}}\).

Proof

The inequality (3.3) is equivalent to two inequalities

$$\begin{aligned} \left( \int _0^\infty w^q(x)\left( \int _x^{\frac{3x}{2}} \log \frac{x}{y-x}g (y)dy\right) ^qdx\right) ^{1/q}\le C_1\left( \int _0^\infty (gv_1)^p\right) ^{1/p},\,\,\,\,g\in {\mathfrak {M}}^+(I) \end{aligned}$$
(3.6)

and

$$\begin{aligned} \left( \int _0^\infty w^q(x)\left( \int _{\frac{3x}{2}}^{2x} \log \frac{x}{y-x}g (y)dy\right) ^qdx \right) ^{1/q}\le C_2\left( \int _0^\infty (gv_1)^p\right) ^{1/p},\,\,\,\,g\in {\mathfrak {M}}^+(I). \end{aligned}$$
(3.7)

Moreover,

$$\begin{aligned} C\approx C_1+C_2. \end{aligned}$$

If \(y\in (3x/2,2x),\) then

$$\begin{aligned} \log \frac{x}{y-x}\approx \frac{2x-y}{x}. \end{aligned}$$

Therefore, (3.7) is equivalent to (3.4) and \(C_2\approx D.\) Put \(u(y):=\frac{y^{\gamma }}{v_1(y)},\) \(\omega (x):=\frac{w(x)}{x^{\gamma }}.\) Then \(u\in {\mathfrak {M}}^\uparrow (I)\) and (3.6) is equivalent to

$$\begin{aligned} \left( \int _0^\infty \omega ^q(x)\left( \int _x^{\frac{3x}{2}} \log \frac{x}{y-x}g (y)u(y)dy\right) ^qdx\right) ^{1/q}\le C_1\left( \int _0^\infty g^p\right) ^{1/p},\,\,\,\,g\in {\mathfrak {M}}^+(I). \end{aligned}$$

Let \(a\in (1,\sqrt{2})\) and

$$\begin{aligned} T_{k,1}g(x):= & {} \omega (x)\chi _{[a^k,a^{k+1}]}(x)\int _x^{a^{k+1}}\log \frac{x}{s-x}g(s)u(s)ds,\\ T_{k,2}g(x):= & {} \omega (x)\chi _{[a^k,a^{k+1}]}(x)\int _{a^{k+1}}^{a^{k+2}}\log \frac{x}{s-x}g(s)u(s)ds,\\ T_k:= & {} T_{k,1}+T_{k,2},\,\,\,T_1:=\sum _{k\in {\mathbb {Z}}}T_{k,1},\,\,\, T_{2}:=\sum _{k\in {\mathbb {Z}}}T_{k,2},\,\,\,T:=T_{1}+T_{2}. \end{aligned}$$

The operators \(T_1\) and \(T_2\) are block-diagonal. Denote \(\Vert S\Vert :=\Vert S\Vert _{L^p\rightarrow L^q}.\) Then by [16, Lemma 1]

$$\begin{aligned} \Vert T_1\Vert&=\sup _{k\in {\mathbb {Z}}}\Vert T_{k,1}\Vert , \,\,\Vert T_2\Vert =\sup _{k\in {\mathbb {Z}}}\Vert T_{k,2}\Vert , \, \, p\le q,\\&\Vert T_1\Vert =\left( \sum _{k\in {\mathbb {Z}}}\Vert T_{k,1}\Vert ^r\right) ^{1/r}, \,\, \Vert T_2\Vert =\left( \sum _{k\in {\mathbb {Z}}}\Vert T_{k,2}\Vert ^r\right) ^{1/r} \, \, q<p. \end{aligned}$$

If \(p\le q,\) then

$$\begin{aligned} \Vert T\Vert \le \Vert T_1\Vert +\Vert T_2\Vert \le 2\sup _{k\in {\mathbb {Z}}}\Vert T_k\Vert \end{aligned}$$

and

$$\begin{aligned} 2\Vert T\Vert \ge \Vert T_1\Vert +\Vert T_2\Vert \ge \sup _{k\in {\mathbb {Z}}}(\Vert T_{k,1}\Vert +\Vert T_{k,2}\Vert )\ge \sup _{k\in {\mathbb {Z}}}\Vert T_k\Vert . \end{aligned}$$

If \(q<p,\) then

$$\begin{aligned} \Vert T\Vert \le \Vert T_1\Vert +\Vert T_2\Vert \le 2\left( \sum _{k\in {\mathbb {Z}}}\Vert T_k\Vert ^r\right) ^{1/r} \end{aligned}$$

and

$$\begin{aligned} 2\Vert T\Vert \ge \Vert T_1\Vert +\Vert T_2\Vert \ge \left( \sum _{k\in {\mathbb {Z}}}\Vert T_{k,1}\Vert ^r\right) ^{1/r}+\left( \sum _{k\in {\mathbb {Z}}}\Vert T_{k,2}\Vert ^r\right) ^{1/r} > rsim \left( \sum _{k\in {\mathbb {Z}}}\Vert T_k\Vert ^r\right) ^{1/r}. \end{aligned}$$

For \(x\in [a^k,a^{k+1}]\), \(s\in [x,a^{k+2}]\)

$$\begin{aligned} \frac{x}{s-x}\ge \frac{1}{a^2-1}>1. \end{aligned}$$

Hence, it follows from

$$\begin{aligned} \Vert T_kg\Vert _{L^q}\le \Vert T_k\Vert \Vert g\Vert _{L^p} \end{aligned}$$

that

$$\begin{aligned} \left( \int _{a^k}^{a^{k+1}}\omega ^q(x)\left( \int _x^{a^{k+2}}gu\right) ^qdx\right) ^{1/q}\lesssim \Vert T_k\Vert \Vert g\chi _{[a^k,a^{k+2}]}\Vert _{L^p}. \end{aligned}$$
(3.8)

Let \(A_k\) be a constant characterising Hardy’s inequality (3.8), i.e.

$$\begin{aligned} A_k:={\left\{ \begin{array}{ll}\displaystyle \sup _{t\in [a^k,a^{k+1}]} \left( \int _{a^{k}}^t\omega _k^q\right) ^{1/q}\left( \int _t^{a^{k+2}} u^{p'}\right) ^{1/p^\prime }, &{} p\le q,\\ \displaystyle \left( \int _{a^k}^{a^{k+1}}\omega _k^q(x) \left( \int _{a^{k}}^x\omega _k^q\right) ^{r/p}\left( \int _x^{a^{k+2}} u^{p'}\right) ^{r/p^\prime }dx\right) ^{1/r}, &{} q<p,\end{array}\right. } \end{aligned}$$

where \(\omega _k:=\omega \chi _{[a^k,a^{k+1}]}.\) Then \(A_k\lesssim \Vert T_k\Vert \) and

$$\begin{aligned}&\left( \int _0^\infty \omega ^q(x)\left( \int _x^{\frac{3}{2}x}\ln \frac{x}{s-x}g(s)u(s)ds\right) ^qdx \right) ^{1/q}\le \Vert Tg\Vert _{L^q_\omega }\\&\le \left( \int _0^\infty \omega ^q(x)\left( \int _x^{2x}\ln \frac{x}{s-x}g(s)u(s)ds\right) ^qdx \right) ^{1/q}. \end{aligned}$$

Hence,

$$\begin{aligned} {\mathbb {A}}\lesssim \Vert T\Vert \lesssim C. \end{aligned}$$

Thus,

$$\begin{aligned} C_2+{\mathbb {A}}\lesssim C\lesssim C_2+\Vert T\Vert \end{aligned}$$

and it is sufficient to prove that

$$\begin{aligned} \Vert T\Vert \lesssim {\mathbb {A}}. \end{aligned}$$

Let \(p\le q\). For \(x\in [a^k,a^{k+1}]\) we show that

$$\begin{aligned}&I:=\int _x^{a^{k+2}}\log \frac{x}{y-x}g(y)u(y)dy\nonumber \\&\lesssim \left( \int _x^{a^{k+2}}g^p(y)\left[ \int _y^{a^{k+2}}u^{p^\prime }\right] ^{\frac{1}{p^\prime }}dy\right) ^{\frac{1}{p}}\left( \int _x^{a^{k+2}}u^{p^\prime }\right) ^{\frac{1}{{p^{\prime }}^2}}. \end{aligned}$$
(3.9)

First by Hölder’s inequality

$$\begin{aligned} I=&\int _x^{a^{k+2}}\left\{ g(y)\left[ \int _y^{a^{k+2}}u^{p^\prime }(t)\left[ \log \frac{x}{t-x}\right] ^{p'}dt\right] ^{\frac{1}{pp^\prime }}\right\} \\&\times \left\{ u(y)\log \frac{x}{y-x}\left( \int _y^{a^{k+2}}u^{p^\prime }(t)\left[ \log \frac{x}{t-x}\right] ^{p'}dt\right) ^{-\frac{1}{pp^\prime }}\right\} dy\le I_2\cdot I_1, \end{aligned}$$

where

$$\begin{aligned} I_2:=\left( \int _x^{a^{k+2}}g^p(y)\left( \int _y^{a^{k+2}}u^{p^\prime }(t)\left[ \log \frac{x}{t-x}\right] ^{p'}dt\right) ^{\frac{1}{p^\prime }}dy\right) ^{\frac{1}{p}} \end{aligned}$$

and

$$\begin{aligned} I_1:=&\left( \int _x^{a^{k+2}}u^{p^\prime }(y)\left[ \log \frac{x}{y-x}\right] ^{p^\prime } \left( \int _y^{a^{k+2}}u^{p^\prime }(t)\left[ \log \frac{x}{t-x}\right] ^{p^\prime }dt\right) ^{-\frac{1}{p}}dy \right) ^{\frac{1}{p^\prime }}\\&\approx \left( \int _x^{a^{k+2}}u^{p^\prime }(t)\left[ \log \frac{x}{t-x}\right] ^{p^\prime }dt \right) ^{\frac{1}{{p^\prime }^2}}=:I_3^{\frac{1}{{p^\prime }^2}}(x). \end{aligned}$$

Observe that for \(x\ge 1\), \(\sigma >0\)

$$\begin{aligned} \log x=\int _1^x\frac{dt}{t}\le \int _1^x\frac{t^\sigma dt}{t}=\frac{1}{\sigma }x^\sigma , \end{aligned}$$

therefore, \(\log \frac{x}{x-s}\le \frac{1}{\sigma }\left( \frac{x}{x-s}\right) ^\sigma .\) Applying the Chebyshev inequality: if \(F\in {\mathfrak {M}}^\uparrow (a,b),\) \(G\in {\mathfrak {M}}^\downarrow (a,b),\) then

$$\begin{aligned} \int _a^bFG\le \frac{1}{b-a}\left( \int _a^bF\right) \left( \int _a^bG\right) , \end{aligned}$$

for \(u\in {\mathfrak {M}}^\uparrow (I)\) and \(\log \frac{x}{\cdot -x}\in {\mathfrak {M}}^\downarrow (I)\) and taking \(\sigma \in (0,1/p')\) we find

$$\begin{aligned} I_3(x,y):=&\int _y^{a^{k+2}} u^{p^\prime }(t)\left[ \log \frac{x}{t-x}\right] ^{p^\prime } dt \le \frac{1}{a^{k+2}-y}\int _y^{a^{k+2}}u^{p^\prime }\int _y^{a^{k+2}}\left[ \log \frac{x}{t-x}\right] ^{p^\prime }dt\\&\lesssim \frac{x^{\sigma p'}}{a^{k+2}-y} \int _y^{a^{k+2}}u^{p^\prime }\int _y^{a^{k+2}}\frac{dt}{(t-x)^{\sigma p'}}. \end{aligned}$$

By elementary inequality [10, p. 139]: if \(b>a>0, \tau >0,\) then

$$\begin{aligned} b^\tau -a^\tau \approx (b-a)b^{\tau -1} \end{aligned}$$

we find

$$\begin{aligned} \int _y^{a^{k+2}}\frac{dt}{(t-x)^{\sigma p'}}\approx \left( a^{k+2}-x\right) ^{1-\sigma p'} -\left( y-x\right) ^{1-\sigma p'}\approx (a^{k+2}-y)\left( a^{k+2}-x\right) ^{-\sigma p'} \end{aligned}$$

and

$$\begin{aligned} \frac{x}{a^{k+2}-x}\le \frac{a^{k+1}}{a^{k+2}-a^k}=\frac{a}{a^2-1}\in (0,\infty ). \end{aligned}$$

Hence,

$$\begin{aligned} I_3(x,y)\lesssim \int _y^{a^{k+2}}u^{p^\prime }=I_3(y). \end{aligned}$$

Thus,

$$\begin{aligned}&I_1\lesssim \left( \int _y^{a^{k+2}}u^{p^\prime }\right) ^{\frac{1}{{p^\prime }^2}},\\&I_2\lesssim \left( \int _x^{a^{k+2}}g^p(y)\left( \int _y^{a^{k+2}}u^{p^\prime }\right) ^{\frac{1}{p^\prime }}dy\right) ^{\frac{1}{p}} \end{aligned}$$

and (3.9) follows. Now we write by (3.9) and Minkowskii’s inequality

$$\begin{aligned}&\Vert T_kg\Vert _{L^q}^q=\int _{a^k}^{a^{k+1}}\omega ^q(x)\left( \int _x^{a^{k+2}}\log \frac{x}{y-x}g(y)u(y)dy\right) ^qdx\\&\lesssim \int _{a^k}^{a^{k+1}}\omega _k^q(x)\left( \int _x^{a^{k+2}}g^p(y)\left( \int _y^{a^{k+2}}u^{p^\prime }\right) ^{\frac{1}{p^\prime }}dy\right) ^{\frac{q}{p}}\left( \int _x^{a^{k+2}}u^{p^\prime }\right) ^{\frac{q}{{p^\prime }^2}}dx\\&\le \left( \int _{a^k}^{a^{k+2}}g^p(y)\left( \int _y^{a^{k+2}}u^{p^\prime }\right) ^{\frac{1}{p^\prime }} \left( \int _{a^k}^y\omega _k^q(x)\left( \int _x^{a^{k+2}}u^{p^\prime }\right) ^ {\frac{q}{{p^\prime }^2}} dx\right) ^{\frac{p}{q}}dy\right) ^{\frac{q}{p}}. \end{aligned}$$

Since

$$\begin{aligned} \left( \int _x^{a^{k+2}}u^{p^\prime }\right) ^{\frac{1}{p^\prime }}\le A_k\left( \int _{a^k}^{\min \{x,a^{k+1}\}} \omega _k^q\right) ^{-\frac{1}{q}},\,\,x\in (a^k,a^{k+2}) \end{aligned}$$

then for \(a^k<x<y<a^{k+2}\)

$$\begin{aligned} \int _{a^k}^y\omega _k^q(x)\left( \int _x^{a^{k+2}}u^{p^\prime }\right) ^{\frac{q}{{p^\prime }^2}}&\le A_k^{\frac{q}{p'}}\int _{a^k}^y\omega _k^q(x)\left( \int _{a^k}^{\min \{x,a^{k+1}\}} \omega _k^q\right) ^{-\frac{1}{p^\prime }}dx\\&\approx A_k^{\frac{q}{p'}}\left( \int _{a^k}^{\min \{y,a^{k+1}\}} \omega _k^q\right) ^{\frac{1}{p}}. \end{aligned}$$

Hence,

$$\begin{aligned} \Vert T_kg\Vert _{L^q}^q&\lesssim A_k^{\frac{q}{p'}} \left( \int _{a^k}^{a^{k+2}}g^p(y)\left( \int _y^{a^{k+2}}u^{p^\prime }\right) ^{\frac{1}{p^\prime }}\left( \int _{a^k}^y\omega _k^q\right) ^{\frac{1}{q}}dy\right) ^{\frac{q}{p}}\\&\lesssim A_k^q\Vert g\chi _{[a^k,a^{k+2}]}\Vert _{L^p} \end{aligned}$$

and \(\Vert T\Vert \lesssim {\mathbb {A}}\) for \(p\le q\) follows by Jensen’s inequality.

Now let \(q<p.\) Put

$$\begin{aligned} h(x):=\chi _{[a^{k},a^{k+2}]}(x)\left( \int _x^{a^{k+2}}\left[ \int _s^{a^{k+2}}u^{p^\prime }\right] ^{\frac{r}{q^\prime }}\left[ \int {a^k}^s \omega ^q_k\right] ^{\frac{r}{p}}u(s)^{p^\prime }ds\right) ^{\frac{q}{r}}. \end{aligned}$$

We have by Hölder’s inequality with exponents p/q and r/q

$$\begin{aligned}&\left( \int _{a^{k}}^{a^{k+1}}\omega _k^q(x)\left( \int _x^{a^{k+2}}\ln \frac{x}{y-x}f(y)u(y)dy\right) ^qdx\right) ^{\frac{1}{q}} \\&\le \left( \int _{a_{k}}^{a^{k+1}}\omega _k(x)^q[h(x)]^{\frac{r}{q}}dx\right) ^{\frac{1}{r}}\times \\&\left( \int _{a^{k}}^{a^{k+1}}\omega _k^q(x)[h(x)]^{-\frac{p}{q}} \left( \int _x^{a^{k+2}}\log \frac{x}{y-x}f(y)u(y)dy\right) ^p dx\right) ^{\frac{1}{p}}. \end{aligned}$$

Integrating by parts we have

$$\begin{aligned}&[h(x)]^{\frac{r}{q}}= \int _x^{a^{k+2}} \left( \int _{a^{k}}^s \omega _k^q\right) ^{\frac{r}{p}} d\left( -\left( \int _s^{a^{k+2}}u^{p^\prime }\right) \right) ^{\frac{r}{p^\prime }}\\&\approx \left( \int _{a^{k}}^x\omega _k^q\right) ^{\frac{r}{p}} \left( \int _x^{a^{k+2}}u^{p^\prime }\right) ^{\frac{r}{p^\prime }} +\int _x^{a^{k+1}}\left( \int _s^{a^{k+2}}u^{p^\prime }\right) ^{\frac{r}{p^\prime }} \left( \int _{a^{k}}^s\omega _k^q\right) ^{\frac{r}{p}-1} \omega _k^q(s)ds. \end{aligned}$$

It implies

$$\begin{aligned} \left( \int _{a^k}^{a^{k+1}}\omega _k^qh^{\frac{r}{q}}\right) ^{1/r}\lesssim \left( \int _{a^k}^{a^{k+1}}\left( \int _s^{a^{k+2}}u^{p^\prime }\right) ^{\frac{r}{p^\prime }} \left( \int _{a^{k}}^s\omega _k^q\right) ^{\frac{r}{p}} \omega _k^q(s)ds\right) ^{1/r}:=B_k. \end{aligned}$$

Further we show that

$$\begin{aligned} \sup _{t\in [a^k,a^{k+1}]}\left( \int _{a^{k}}^t\omega _k^qh^{-\frac{p}{q}}\right) ^{\frac{1}{p}} \left( \int _t^{a^{k+2}}u^{p^\prime }\right) ^{\frac{1}{p^\prime }}\lesssim 1. \end{aligned}$$
(3.10)

To this end we write for \(t\in [a^k,a^{k+1}]\)

$$\begin{aligned}&\int _{a^{k}}^t\omega _k^qh^{-\frac{p}{q}}= \int _{a^{k}}^t\frac{\omega _k^q(x)dx}{\displaystyle \left( \int _x^{a^{k+2}}\left( \int _s^{a^{k+2}}u^{p^\prime }\right) ^{\frac{r}{q^\prime }} \left( \int _{a^{k}}^s\omega _k^q\right) ^{\frac{r}{p}}u^{p^\prime }(s)ds\right) ^{\frac{q}{r}}}\\&\le \left( \int _{a^{k}}^t\omega _k^q\right) \left( \int _t^{a^{k+2}}\left( \int _s^{a^{k+2}}u^{p^\prime }\right) ^{\frac{r}{q^\prime }}\left( \int _{a^{k}}^s\omega _k^q\right) ^{\frac{r}{p}}u^{p^\prime }(s)ds\right) ^{-\frac{p}{r}}\\&\le \left( \int _t^{a^{k+2}}\left( \int _s^{a^{k+2}}u^{p^\prime }\right) ^{\frac{r}{q^\prime }}u^{p^\prime }(s)ds\right) ^{-\frac{p}{r}} \approx \left( \int _t^{a^{k+2}}u^{p^\prime }\right) ^{-\frac{p}{p^\prime }}. \end{aligned}$$

By Hölder’s inequality

$$\begin{aligned}&\Vert T_kf\Vert _{L^q}^q=\int _{a^k}^{a^{k+1}}\omega _k^q(x)\left( \int _x^{a^{k+2}}\log \frac{y-x}{y}f(y)u(y)dy\right) ^qdx\\&\le \left( \int _{a^k}^{a^{k+1}}\omega _k^qh^{r/q}\right) ^{q/r} \left( \int _{a^k}^{a^{k+1}}\omega _k^q(x)h(x)^{-\frac{p}{q}} \left( \int _x^{a^{k+2}}\log \frac{x}{x-y}f(y)u(y)dy\right) ^p dx\right) ^{\frac{q}{p}}\\&\le B^q_k \left( \int _{a^k}^{a^{k+1}}\omega _k^qh^{-\frac{p}{q}} \left( \int _x^{a^{k+2}}\log \frac{x}{y-x}f(y)u(y)dy\right) ^p dx\right) \lesssim B_k^q \Vert f\chi _{[a^k,a^{k+1}]}\Vert _p^q \end{aligned}$$

because of (3.10) and the case \(p=q\). Thus, \(\Vert T_k\Vert \lesssim B_k\) and

$$\begin{aligned} \Vert T\Vert \lesssim \left( \sum _{k\in {\mathbb {Z}}}\Vert T_k\Vert ^r\right) ^{1/r}\lesssim \left( \sum _{k\in {\mathbb {Z}}}B_k^r\right) ^{1/r}={\mathbb {A}}. \end{aligned}$$

\(\square \)

Now we estimate the operator \(L_3\).

Theorem 3.3

Inequality

$$\begin{aligned} \left( \int _0^\infty w^q(x)\left( \int _{2x}^\infty \log \left( \frac{s-x}{x}\right) \frac{h(s)}{v_1(s)}ds\right) ^qdx \right) ^{1/q}\le C\left( \int _0^\infty h^p\right) ^{1/p},\,\,\,\,h\in {\mathfrak {M}}^+(I) \end{aligned}$$
(3.11)

is equivalent to

$$\begin{aligned} \left( \int _0^\infty \frac{w^q(x)}{x^q}\left( \int _{2x}^{3x}(s-2x) \frac{h(s)}{v_1(s)}ds\right) ^qdx \right) ^{1/q}\le D_1\left( \int _0^\infty h^p\right) ^{1/p} \end{aligned}$$
(3.12)

and

$$\begin{aligned} \left( \int _0^\infty w^q(x)\left( \int _{3x}^\infty \log \left( \frac{s}{x}\right) \frac{h(s)}{v_1(s)}ds\right) ^qdx \right) ^{1/q}\le D_2\left( \int _0^\infty h^p\right) ^{1/p}, \end{aligned}$$
(3.13)

and \(C=\Vert L_3\Vert _{L_{v_1}^p(I)\rightarrow L^q_{w}}\approx D_1+D_2\).

Proof

Dividing the interval \((2x,\infty )\) as \((2x,3x]\cup (3x,\infty )\) we decompose (3.11) into two inequalities. Since

$$\begin{aligned} \frac{s-x}{x}=1+\frac{s-2x}{x} \end{aligned}$$

and \(\frac{s-2x}{x}<1\), therefore

$$\begin{aligned} \log \frac{s-x}{x}\approx \frac{s-2x}{x}, \,\,s\in [2x,3x] \end{aligned}$$

and the first inequality becomes equivalent to (3.12). For the second inequality we observe that

$$\begin{aligned} \frac{\log 2}{\log 3}\log \left( \frac{s}{x}\right) \le \log \frac{s-x}{x}\le \log \left( \frac{s}{x}\right) , \,\,s\in [3x,\infty ) \end{aligned}$$

and we can replace it equivalently by (3.13). Characterization of (3.12) and (3.13) as well as (3.4) is given in the next Remark. \(\square \)

Remark 3.4

1. Let \(a(x)=3x, k(y,x)=\log \left( \frac{y}{x}\right) .\) Then

$$\begin{aligned} k(y,x)\approx k(y,z)+k(a(z),x),\,\,0<x\le z\le a^{-1}(y)<\infty . \end{aligned}$$

It means that kernel \(k(y,x)=\log \left( \frac{y}{x}\right) \) belongs to Oinarov’s class \({\mathbb {O}}_a\) (see [17, Definition 2.3]) and by [17, Corollary 2.2]

$$\begin{aligned} D_2\approx A_0+A_1,\,\,p\le q \end{aligned}$$

and

$$\begin{aligned} D_2\approx B_0+B_1,\,\,q<p, \end{aligned}$$

where

$$\begin{aligned} A_0:=\sup _{0<t<\infty }\left( \int _0^t\log ^q\left( \frac{3t}{x}\right) w^q(x)dx\right) ^{1/q}\left( \int _{3t}^\infty v_1^{-p'}\right) ^{1/p'}, \end{aligned}$$
$$\begin{aligned} A_1:=\sup _{0<t<\infty }\left( \int _0^t w^q\right) ^{1/q}\left( \int _{3t}^\infty \log ^{p'}\left( \frac{y}{t}\right) v_1^{-p'}(y)dy\right) ^{1/p'}, \end{aligned}$$
$$\begin{aligned} B_0:=\left( \left( \int _0^{t/3}\log ^q\left( \frac{t}{x}\right) w^q(x)dx\right) ^{r/q}\left( \int _{t}^\infty v_1^{-p'}\right) ^{r/q'}v_1^{-p'}(t)dt\right) ^{1/r}, \end{aligned}$$
$$\begin{aligned} B_1:=\left( \left( \int _0^{t}w^q\right) ^{r/p}\left( \int _{3t}^\infty \log ^{p'}\left( \frac{y}{t}\right) v_1^{-p'}(y)dy\right) ^{r/p'}w^q(t)dt\right) ^{1/r}. \end{aligned}$$

2. Inequalities (3.4) and (3.12) are characterized by [17, Theorem 3.2] and [17, Theorem 3.1], respectively. We formulate the results for the case \(p\le q.\) The case \(q<p\) is also characterized, but in discrete form and we omit details.

Applying [17, Theorem 3.2] for the best constant D in (3.4) we find

$$\begin{aligned} D\approx {{\mathcal {A}}}_0+{{\mathcal {A}}}_1,\,\,p\le q, \end{aligned}$$

where

$$\begin{aligned} {{\mathcal {A}}}_0:=\sup _{0<t<\infty }\sup _{\frac{3t}{2}<s<t}\left( \int _s^t(x-s)^q w^q(x)dx\right) ^{1/q}\left( \int _{\frac{3t}{2}}^{2s} v_1^{-p'}\right) ^{1/p'},\\ {{\mathcal {A}}}_1:=\sup _{0<t<\infty }\sup _{\frac{3t}{2}<s<t}\left( \int _s^t w^q\right) ^{1/q}\left( \int _{\frac{3t}{2}}^{2s}(2s-y)^{p'}v_1^{-p'}(y)dy\right) ^{1/p'}. \end{aligned}$$

Analogously, applying [17, Theorem 3.1] for the best constant \(D_1\) in (3.12) we obtain

$$\begin{aligned} D_1\approx {{\mathcal {A}}}^*_0+{{\mathcal {A}}}^*_1,\,\,p\le q, \end{aligned}$$

where

$$\begin{aligned} {{\mathcal {A}}}^*_0:=\sup _{0<t<\infty }\sup _{s<t<\frac{3s}{2}}\left( \int _s^t(t-x)^q w^q(x)dx\right) ^{1/q}\left( \int _{2t}^{3s} v_1^{-p'}\right) ^{1/p'},\\ {{\mathcal {A}}}^*_1:=\sup _{0<t<\infty }\sup _{s<t<\frac{3s}{2}}\left( \int _s^t w^q\right) ^{1/q}\left( \int _{2t}^{3s}(y-2t)^{p'}v_1^{-p'}(y)dy\right) ^{1/p'}. \end{aligned}$$

Example 3.5

Let \(1/p'<\alpha <1+1/p',\)

$$\begin{aligned} W^1_{p,\alpha }(I):=\{f\in AC(I):\Vert f\Vert _{W^1_{p,\alpha }}:=\Vert f\Vert _{L^p_{x^{\alpha -1}}}+\Vert f^\prime \Vert _{L^p_{x^{\alpha }}}<\infty \}. \end{aligned}$$

Then

$$\begin{aligned} \Vert Hf\Vert _{L^p_{x^{\alpha }}}\lesssim \Vert f\Vert _{W^1_{p,\alpha }}. \end{aligned}$$
(3.14)

We have

$$\begin{aligned} \Vert f\Vert _{W^1_{p,\alpha }}\approx \Vert f^\prime \Vert _{L^p_{x^{\alpha }}} \end{aligned}$$

and by the upper bound similar to (2.7) we write

$$\begin{aligned} \Vert H\Vert _{W^1_{p,\alpha }(I)\rightarrow L^p_{x^{\alpha }}(I)}\lesssim \sum _{i=1}^3 \Vert L_i\Vert _{L^p_{x^{\alpha }}(I)\rightarrow L^p_{x^{\alpha }}(I)}. \end{aligned}$$
(3.15)

Observe that

$$\begin{aligned} L_1g(x)+L_2g(x)=\int _0^{2x}\log \left( \frac{x}{|s-x|}\right) g(s)ds \end{aligned}$$

and

$$\begin{aligned} \Vert L_1g+L_2g\Vert _{L^p_{x^{\alpha }}}\lesssim \Vert g\Vert _{L^p_{x^{\alpha }}} \end{aligned}$$

is equivalent to

$$\begin{aligned} J:=\left( \int _0^\infty \left( \int _0^{2x}\log \left( \frac{x}{|s-x|}\right) \frac{h(s)}{s^\alpha }ds\right) ^p x^{\alpha p}dx \right) ^{1/p}\lesssim \left( \int _0^\infty h^p\right) ^{1/p} \end{aligned}$$
(3.16)

for all \(h\in {\mathfrak {M}}^+(I).\) By change of variables and applying Minkowskii’s inequality we obtain

$$\begin{aligned} J&=\left( \int _0^\infty \left( \int _0^{2}\log \left( \frac{1}{|t-1|}\right) \frac{h(tx)}{t^\alpha }dt\right) ^p x^pdx \right) ^{1/p}\\&\le \int _0^{2}t^{-\alpha }\log \left( \frac{1}{|t-1|}\right) \left( \int _0^\infty h^p(tx)x^pdx\right) ^{1/p}\\&=\int _0^{2}t^{-\alpha -1/p}\log \left( \frac{1}{|t-1|}\right) dt\Vert h\Vert _{L^p}=:\Lambda \Vert h\Vert _{L^p}. \end{aligned}$$

Let \(\Lambda =\Lambda _1+\Lambda _2,\) where

$$\begin{aligned} \Lambda _2\approx \int _1^2\log \left( \frac{1}{|t-1|}\right) dt=-\int _0^1\log tdt<\infty \end{aligned}$$

and

$$\begin{aligned} \Lambda _1=-\int _0^1 t^{-\alpha -1/p}\log (1-t)dt. \end{aligned}$$

Since

$$\begin{aligned} -\log (1-t)\approx t\chi _{(0,1/2)}(t)-\chi _{(1/2,1)}(t)\log (1-t), \end{aligned}$$

then

$$\begin{aligned} \Lambda _1\approx \int _0^{1/2}t^{\frac{1}{p'}-\alpha }dt-\int _{1/2}^1\log (1-t)dt<\infty \end{aligned}$$

provided \(\alpha <1+\frac{1}{p'}\) and (3.16) follows.

The proof of \(\Vert L_3g\Vert _{L^p_{x^{\alpha }}}\lesssim \Vert g\Vert _{L^p_{x^{\alpha }}}\) is similar.

4 Main Result

Theorem 4.1

Let \(1<p, q<\infty .\) Suppose that \({{\mathbf {A}}}_1<\infty \) (see (2.3)), \(v_1\in {\mathfrak {M}}^\uparrow (I)\) and there is \(\gamma >0\) such that \(x^{-\gamma }v_1(x)\in {\mathfrak {M}}^\downarrow (I).\) Then

(4.1)

where \({{\mathbb {D}}}=A\) (see (3.1)) if \(p\le q\) and \({{\mathbb {D}}}=B\) (see (3.2)) if \(q<p\) and the constants \({{\mathbb {A}}}, D, D_1, D_2\) are determined by (3.5), (3.4), (3.12), (3.13), respectively. Explicit values of \(D, D_1, D_2\) are described in Remark 3.4.

Proof

It follows from (2.7) and Theorems 3.13.23.3. \(\square \)