1 Introduction

We recall the definition of the (inhomogeneous) Haar system in \({\mathbb R^d}\). Consider the 1-variable functions

$$\begin{aligned} h^{(0)}={\mathbb 1}_{[0,1)}{\quad \text{ and }\quad }h^{(1)}={\mathbb 1}_{[0,1/2)}-\;{\mathbb 1}_{[1/2,1)}. \end{aligned}$$

For every \({\varvec{{\varepsilon }}}=({\varepsilon }_1,\ldots ,{\varepsilon }_d)\in \{0,1\}^d\) one defines

$$\begin{aligned} h^{({\varvec{{\varepsilon }}})}(x_1,\ldots ,x_d)\,=\,h^{({\varepsilon }_1)}(x_1)\cdots h^{({\varepsilon }_d)}(x_d). \end{aligned}$$

Finally, one sets

$$\begin{aligned} h^{({\varvec{{\varepsilon }}})}_{k,\ell }(x)= h^{({\varvec{{\varepsilon }}})}(2^kx-\ell ),\quad k\in {\mathbb {\mathbb N}_0},\;\ell \in {\mathbb Z^d}, \end{aligned}$$

Denoting \(\Upsilon =\{0,1\}^d\setminus \{\vec {0}\}\), the Haar system is then given by

$$\begin{aligned} {\mathscr {H}}_d=\Big \{h^{(\vec {0})}_{0,\ell }\Big \}_{\ell \in {\mathbb Z^d}}\cup \Big \{h^{({\varvec{{\varepsilon }}})}_{k,\ell }\mid k\in {\mathbb {\mathbb N}_0},\;\ell \in {\mathbb Z^d},\;{\varvec{{\varepsilon }}}\in \Upsilon \Big \}. \end{aligned}$$

Observe that \({\mathrm{supp}}\ h^{({\varvec{{\varepsilon }}})}_{k,\ell }\) is the dyadic cube \(I_{k,\ell }:=2^{-k}(\ell +[0,1]^d)\).

In this paper we consider basis properties of \({\mathscr {H}}_d\) in Besov spaces \(B^s_{p,q}\), and Triebel–Lizorkin spaces \(F^s_{p,q}\) in \({\mathbb R^d}\). We refer to [9, 10] for definitions and properties of these spaces, and to [1] for terminology and general facts about bases in Banach spaces.

In the 1970s, Triebel [7, 8] proved that the Haar system \({\mathscr {H}}_d\) is a Schauder basis on \(B^s_{p,q}({\mathbb R^d})\) if

$$\begin{aligned} \tfrac{d}{d+1}<p<\infty ,\quad 0<q<\infty ,\quad \max \big \{d(\tfrac{1}{p}-1),\tfrac{1}{p}-1\big \}<s< \min \big \{1,\tfrac{1}{p}\big \}, \end{aligned}$$
(1)

and that this range is maximal, except perhaps at the endpoints. Moreover, the basis is unconditional when (1) holds; see [11, Theorem 2.21]. Concerning \(F^s_{p,q}\) spaces, however, in [11] it is only shown that \({\mathscr {H}}_d\) is an unconditional basis for \(F^s_{p,q}({\mathbb R^d})\) when, besides (1), the additional assumption

$$\begin{aligned} \max \big \{d(\tfrac{1}{q}-1),\tfrac{1}{q}-1\big \}<s<\tfrac{1}{q} \end{aligned}$$
(2)

is satisfied. Recently, two of the authors showed in [5, 6] that the additional restriction (2) is in fact necessary, at least when \(d=1\). It was left open whether suitable enumerations of the Haar system can form a Schauder basis in \(F^s_{p,q}\) in the larger range (1). We shall answer this question affirmatively.

Given an enumeration \(\{u_1,u_2,\ldots \}\) of the system \({\mathscr {H}}_d\), we let \(P_N\) be the orthogonal projection onto the subspace spanned by \(u_1,\dots , u_N\), i.e.

$$\begin{aligned} P_N f= \sum _{n=1}^N \Vert u_n\Vert _2^{-2} \langle f,u_n\rangle u_n \,. \end{aligned}$$
(3)

The sequence \(\{u_n\}_{n=1}^\infty \) is a Schauder basis on \(F^s_{p,q}\) if

$$\begin{aligned} \lim _{N\rightarrow \infty } \Vert P_Nf-f\Vert _{F^s_{p,q}} =0,\quad \text{ for } \text{ all } f\in F^s_{p,q}. \end{aligned}$$
(4)

In view of the uniform boundedness principle, density theorems and the result for Besov spaces, (4) follows if we can show that the operators \(P_N\) have uniform \(F^s_{p,q}\rightarrow F^s_{p,q}\) operator norms. Note, that the condition \(s<1/p\) is necessary since the Haar functions need to belong to \(F^s_{p,q}\). By duality, if \(1<p<\infty \), the condition \(s>1/p-1\) becomes also necessary, so the range in (1) is optimal in this case. If \(p\le 1\), then an interpolation argument shows that (1) is also a maximal range, except perhaps at the end-points; see Sect. 4 below.

Definition An enumeration \({\mathcal {U}}=\{u_1, u_2, ...\}\) of the Haar system \({\mathscr {H}}_d\) is admissible if the following condition holds for each cube \(I_{\nu } = \nu +[0,1]^d, \nu \in {\mathbb {Z}}^d\). If \(u_n\) and \(u_{n'}\) are both supported in \(I_\nu \) and \(|{\mathrm{supp}}(u_n)|>|{\mathrm{supp}}(u_{n'})|\), then necessarily \(n<n'\) .

Fig. 1
figure 1

An admissible enumeration of \({\mathscr {H}}_d\)

The table in Fig. 1 shows how to obtain an admissible (natural) enumeration of \({\mathscr {H}}_d\) via a diagonalization of the intervals \(I_{\nu }\) versus the levels k. We first label the set \({\mathbb Z^d}=\{\nu _1,\nu _2,\ldots \}\). Then, we follow the order indicated by the table, where being at position \((\nu _i,k)\) means to pick all the Haar functions with support contained in \(I_{\nu _i}\) and size \(2^{-kd}\), arbitrarily enumerated, before going to the subsequent table entry.

Our main result reads as follows.

Theorem 1.1

Let \({\mathcal {U}}=\{u_n\}_{n=1}^\infty \) be an admissible enumeration of the Haar system \({\mathscr {H}}_d\). Assume that

  1. (i)

    \(\frac{d}{d+1}<p<\infty \),

  2. (ii)

    \(0<q <\infty \),

  3. (iii)

    \(\max \{d(\frac{1}{p}-1),\frac{1}{p}-1\}<s< \min \{1,\frac{1}{p}\}\).

Then \({\mathcal {U}}\) is a Schauder basis in \(F^s_{p,q}({\mathbb R^d})\).

Fig. 2
figure 2

Unconditionality of the Haar system in Hardy–Sobolev spaces in \({\mathbb R}\) and \({\mathbb R^d}\)

In the left part of Fig. 2, the trapezoid is the parameter domain for which the Haar system is a Schauder basis in the Hardy–Sobolev space \(H^s_p(\mathbb {R})\) (\(= F^s_{p,2} ({\mathbb {R}})\)) while the shaded part represents the parameter domain for which the Haar system is an unconditional basis in \(H^s_p(\mathbb {R})\). The right figure shows the respective parameter domain for \(H^s_p(\mathbb {R}^d)\).

The heart of the matter is a boundedness result for the dyadic averaging operators \({\mathbb {E}}_N\) given by

$$\begin{aligned} {\mathbb {E}}_N f(x)= \sum _{\mu \in {\mathbb {Z}}^d} {\mathbb 1}_{I_{N,\mu }} (x) \, 2^N \int _{I_{N,\mu }} f(t) dt\, \end{aligned}$$
(5)

with

$$\begin{aligned} I_{N,\mu }=2^{-N}(\mu +[0,1)^d),\quad \mu \in {\mathbb Z^d},\;N=0,1,2,\ldots \end{aligned}$$

Note that \({\mathbb {E}}_N f\) is just the conditional expectation of f with respect to the \(\sigma \)-algebra generated by the set \({\mathscr {D}}_N\) of all dyadic cubes of side length \(2^{-N}\). There is a well known relation between the Haar system and the dyadic averaging operators, namely for \(N=0,1,2,\dots \),

$$\begin{aligned} {\mathbb {E}}_{N+1} f-{\mathbb {E}}_Nf = \sum _{{\varvec{{\varepsilon }}}\in \Upsilon }\sum _{\mu \in {\mathbb {Z}}^d} 2^{Nd} \langle f, h^{({\varvec{{\varepsilon }}})}_{N,\mu } \rangle h^{({\varvec{{\varepsilon }}})}_{N,\mu }, \end{aligned}$$
(6)

i.e. \({\mathbb {E}}_{N+1} -{\mathbb {E}}_N \) is the orthogonal projection onto the space generated by the Haar functions with Haar frequency \(2^N\).

Now let \(\eta _0\) be a Schwartz function on \({\mathbb {R}}^d\), supported in \(\{|\xi |<3/8\} \) and so that \(\eta _0(\xi )=1\) for \(|\xi |\le 1/4\). Let \(\varPi _N\) be defined by

$$\begin{aligned} \widehat{ \varPi _N f}(\xi )= \eta _0(2^{-N}\xi )\widehat{f}(\xi ). \end{aligned}$$
(7)

There is a basic standard inequality (almost immediate from the definition of Triebel–Lizorkin spaces)

$$\begin{aligned} \sup _N\Vert \varPi _N f\Vert _{F^s_{p,q}}\le C(p,q,s)\Vert f\Vert _{F^s_{p,q}} \end{aligned}$$
(8)

which is valid for all \(s\in {\mathbb {R}}\) and for \(0<p<\infty \), \(0<q\le \infty \). Moreover, (8) and the fact that \(\Vert \varPi _Ng-g\Vert _{F^s_{p,q}}\rightarrow 0\) for Schwartz functions g gives

$$\begin{aligned} \lim _{N\rightarrow \infty } \Vert \varPi _Nf-f\Vert _{F^s_{p,q}} = 0 \end{aligned}$$
(9)

if \(f\in F^s_{p,q}\) and \(0<p,q<\infty \). The main tool in proving Theorem 1.1 is a similar bound for the operators \({\mathbb {E}}_N\) which of course follows from the corresponding bound for \({\mathbb {E}}_N-\varPi _N\). It turns out that the operators \({\mathbb {E}}_N-\varPi _N\) enjoy better mapping properties in Besov spaces.

Similar bounds are also satisfied by projection operators into sets of Haar functions with fixed Haar frequency. Namely, for \(N\in {\mathbb {N}}\) and functions \(a\in \ell ^\infty ({\mathbb {Z}}^d\times \Upsilon )\), we define

$$\begin{aligned} T_{N}[f,a] = \sum _{{\varvec{{\varepsilon }}}\in \Upsilon }\sum _{\mu \in {\mathbb {Z}}^d} a_{\mu ,{\varvec{{\varepsilon }}}} 2^{Nd}\langle f,h^{({\varvec{{\varepsilon }}})}_{N,\mu }\rangle h^{({\varvec{{\varepsilon }}})}_{N,\mu }. \end{aligned}$$
(10)

Observe that the choice \(a_{\mu ,{\varvec{{\varepsilon }}}}\equiv 1\) recovers the operator \({\mathbb {E}}_{N+1}-{\mathbb {E}}_N\). Then, we shall prove the following.

Theorem 1.2

Let \({d}/{(d+1)}<p\le \infty \), \(0<r\le \infty \), and

$$\begin{aligned} \max \{d(1/p-1),1/p-1\}<s< \min \{1,1/p\}. \end{aligned}$$
(11)

Then there is a constant \(C:=C(p,r,s)>0\) such that for all \(f\in B^s_{p,\infty }\)

$$\begin{aligned} \sup _N \Vert {\mathbb {E}}_Nf -\varPi _Nf \Vert _{B^s_{p,r}} \le C\Vert f\Vert _{B^s_{p,\infty }}. \end{aligned}$$
(12)

Moreover,

$$\begin{aligned} \sup _N \Vert T_N[f,a]\Vert _{B^s_{p,r}}\lesssim \Vert a\Vert _\infty \Vert f\Vert _{B^s_{p,\infty }}\,. \end{aligned}$$
(13)

We have the embedding \(F^s_{p,q}\subset F^s_{p,\infty }\subset B^s_{p,\infty }\) which we use on the function side. For \(r\le p\) we have the embedding \(B^s_{p,r}\subset F^s_{p,r}\) (by Minkowski’s inequality in \(L^{p/r}\)) and if also \(r<q\) we have \(F^s_{p,r}\subset F^s_{p,q}\); these two are used for \({\mathbb {E}}_N f-\varPi _N f\), or \(T_N[f,a]\). In particular we conclude from Theorem 1.2 that \({\mathbb {E}}_N-\varPi _N\) is bounded on \(F^s_{p,q}\), uniformly in N. Hence

Corollary 1.3

Let ps be as in (11) and \(0<q\le \infty \). Then

$$\begin{aligned} \sup _N \Vert {\mathbb {E}}_Nf \Vert _{F^s_{p,q}}+ \sup _N\sup _{\Vert a\Vert _{\ell ^\infty }\le 1} \Vert T_N[f,a]\Vert _{F^s_{p,q}} \lesssim \Vert f\Vert _{F^s_{p,q}}. \end{aligned}$$
(14)

The proofs in this paper use basic principles in the theory of function spaces, such as \(L^p\) inequalities for the Peetre maximal functions. A different approach to Corollary 1.3 via wavelet theory is presented in the subsequent paper [2]. The main arguments and the proof of Theorem 1.2 are contained in Sect. 2. In Sect. 3 we show how estimates in the proof of Theorem 1.2 are used to deduce Theorem 1.1. Finally, in Sect. 4 we discuss the optimality of the results.

2 Proof of Theorem 1.2

We start with some preliminaries on convolution kernels which are used in Littlewood-Paley type decompositions. Let \(\beta _0, \beta \) be Schwartz functions on \({\mathbb R^d}\), compactly supported in \((-1/2,1/2)^d\) such that \(|\widehat{\beta }_0(\xi )|>0\) when \(|\xi |\le 1\) and \(|\widehat{\beta }(\xi )|>0\) when \(1/8\le |\xi |\le 1\). Moreover assume \(\beta \) has vanishing moments up to a large order

$$\begin{aligned} M> \frac{d}{p} +|s|, \end{aligned}$$
(15)

that is,

$$\begin{aligned} \int _{{\mathbb R^d}} \beta (x)\,x_1^{m_1}\cdots x_d^{m_d}\,dx = 0\quad \text{ when }\quad m_1+\ldots +m_d < M\,. \end{aligned}$$
(16)

For \(k=1,2,\dots \) let \(\beta _k:=2^{kd}\beta (2^k\cdot )\) and \(L_k f=\beta _k*f\). We shall use the inequality

$$\begin{aligned} \Vert g\Vert _{B^s_{p,r}}\lesssim \Big (\sum _{k=0}^\infty 2^{ksr}\Vert L_k g\Vert _p^r\Big )^{1/r} \end{aligned}$$
(17)

and apply it to \(g={\mathbb {E}}_Nf-\varPi _N f\). Inequality (17) is of course just one part of a characterization of \(B^s_{p,r}\) spaces by sequences of compactly supported kernels (or ‘local means’), with sufficient cancellation assumptions, see for example [10, Sect. 2.5.3].

Let \(\eta _0\in C^\infty _c({\mathbb R^d})\) be as in (7), that is, supported on \(\{|\xi |<3/8\}\) and such that \(\eta _0(\xi )=1\) when \(|\xi |\le 1/4\). Define \(\Lambda _0\), and \(\Lambda _k\) for \(k\ge 1\) by

$$\begin{aligned} \widehat{\Lambda _0 f}(\xi )&=\frac{\eta _0(\xi )}{\widehat{\beta }_0(\xi )}\widehat{f}(\xi ) \\ \widehat{\Lambda _k f}(\xi )&=\frac{\eta _0(2^{-k}\xi ) -\eta _0(2^{-k+1}\xi )}{\widehat{\beta }(2^{-k}\xi )}\widehat{f}(\xi ), \quad k\ge 1. \end{aligned}$$

Then \(\sum _{j=0}^\infty L_j \Lambda _j=\text { Id}\) with convergence in \({\mathcal {S}}'\), and

$$\begin{aligned} \sup _{j\ge 0}2^{js}\Vert \Lambda _j f\Vert _p\lesssim \Vert f\Vert _{B^s_{p,\infty }}\,. \end{aligned}$$

Moreover \(\varPi _N = \sum _{j=0}^N L_j\Lambda _j\), and therefore

$$\begin{aligned} {{\mathbb {E}}}_{N} f-\varPi _{N} f= \sum _{j=0}^N( {{\mathbb {E}}}_{N} L_{j}\Lambda _{j} f - L_{j}\Lambda _{j} f) +\sum _{j={N+1}}^\infty {\mathbb {E}}_N L_j\Lambda _j f. \end{aligned}$$
(18)

If we use the convenient notation

$$\begin{aligned} {{\mathbb {E}}_N^\perp }:= I-{\mathbb {E}}_N, \end{aligned}$$

then the asserted estimate (12) will follow from

$$\begin{aligned} \Big (\sum _{k=0}^\infty 2^{ksr} \Big \Vert \sum _{j=N+1}^\infty L_k {\mathbb {E}}_N L_j\Lambda _j f \Big \Vert _p^r\Big )^{1/r} \lesssim \sup _j 2^{js}\Vert \Lambda _j f\Vert _p\,. \end{aligned}$$
(19)

and

$$\begin{aligned} \Big (\sum _{k=0}^\infty 2^{ksr} \Big \Vert \sum _{j=0}^N L_k {{\mathbb {E}}_N^\perp }L_j\Lambda _j f \Big \Vert _p^r\Big )^{1/r} \lesssim \sup _j 2^{js}\Vert \Lambda _j f\Vert _p\,. \end{aligned}$$
(20)

Below we shall use variants of the Peetre maximal functions, which are a standard tool in the study of Besov and Triebel–izorkin spaces. We define

$$\begin{aligned} {\mathfrak {M}}_j g(x)&= \sup _{|h|_\infty \le 2^{-j+1}} |g(x+h)|\,, \end{aligned}$$
(21a)
$$\begin{aligned} {\mathfrak {M}}_j^* g(x)&= \sup _{|h|_\infty \le 2^{-j+5}} |g(x+h)|\,, \end{aligned}$$
(21b)
$$\begin{aligned} {\mathfrak {M}}_{A,j}^{**} g(x)&= \sup _{h\in {\mathbb R^d}}\frac{ |g(x+h)|}{(1+2^j|h|)^A}\,, \end{aligned}$$
(21c)

where \(|h|_\infty =\max \{|h_1|,\ldots ,|h_d|\}\), \(h=(h_1,\ldots ,h_d)\in {\mathbb R^d}\). These different versions are introduced for technical purposes in the proofs. They satisfy obvious pointwise inequalities,

$$\begin{aligned} {\mathfrak {M}}_j g(x)\le {\mathfrak {M}}_j^* g(x) \le C_A {\mathfrak {M}}_{A,j}^{**} g(x), \end{aligned}$$

and

$$\begin{aligned}&{\mathfrak {M}}_j g(x) \le \inf _{|h|_\infty \le 2^{-j+4}} {\mathfrak {M}}_j^* g(x+h) \nonumber \\&\le \Big (2^{(j-4)d} \int _{|h|_\infty \le 2^{-j+4}} [{\mathfrak {M}}_j ^*g(x+h)]^r dh\Big )^{1/r},\quad 0<r\le \infty . \end{aligned}$$
(22)

Below we shall use Peetre’s inequality ([3], see also [9, Sect. 1.3.1])

$$\begin{aligned} \Vert {\mathfrak {M}}_{A,j}^{**} f\Vert _p\le C_{p,A} \Vert f\Vert _p , {\quad 0<p\le \infty , \quad A>d/p, } \end{aligned}$$
(23)

for \(f\in {\mathcal {S}}'({\mathbb {R}}^d)\) satisfying

$$\begin{aligned} {\mathrm{supp}}(\widehat{f}) \subset \{\xi : |\xi |\le 2^{j+1}\} . \end{aligned}$$
(24)

Throughout we shall assume that \(M\gg A\); we require specifically

$$\begin{aligned} d/p<A< M-|s| \,. \end{aligned}$$

The main estimates needed in the proof of (19) and (20) are summarized in

Proposition 2.1

Let \(0<p\le \infty \) and

$$\begin{aligned} B(j,k,N)= {\left\{ \begin{array}{ll} 2^{N-j}\,2^{\frac{j-k}{p}}\, 2^{(j-N)(d-1)(\frac{1}{p}-1)_+} &{}\text { if } j,k\ge N+1, \\ 2^{\frac{N-k}{p}} 2^{j-N} &{}\text { if } j\le N, \,\, k\ge N+1, \\ 2^{k-N} 2^{j-N}2^{(N-k)d(\frac{1}{p}-1)_+} &{}\text { if } 0\le j,k\le N, \\ 2^{k-j+\frac{j-N}{p}+[N-k+(j-k)(d-1)](\frac{1}{p}-1)_+} &{}\text { if } j\ge N+1, \,\, k\le N. \end{array}\right. } \end{aligned}$$
(25)

Then the following inequalities hold for all \(f\in {\mathcal {S}}'({\mathbb {R}}^d)\) whose Fourier transform is supported in \(\{|\xi |\le 2^{j+1}\}\).

  1. (i)

    For \(j\ge N+1\),

    $$\begin{aligned} \Vert L_k{\mathbb {E}}_N[L_j f]\Vert _p \lesssim \left\{ \begin{array}{ll} B(j,k,N) \Vert f\Vert _p &{}\text { if } k\ge N+1, \\ \,[B(j,k,N)+ 2^{-|j-k|(M-A)}]\Vert f\Vert _p &{}\text { if } 0\le k\le N. \end{array}\right. \end{aligned}$$
    (26)
  2. (ii)

    For \(0\le j\le N\),

    $$\begin{aligned} \Vert L_k{{\mathbb {E}}_N^\perp }[L_j f]\Vert _p \lesssim \left\{ \begin{array}{ll} \big [B(j,k,N)+ 2^{-|j-k|(M-A)}\big ] \Vert f\Vert _p &{}\text { if } k\ge N+1, \\ B(j,k,N) \Vert f\Vert _p &{}\text { if } 0\le k\le N. \end{array}\right. \end{aligned}$$
    (27)
  3. (iii)

    The same bounds hold if the operators \({\mathbb {E}}_N\) in (i) and \({\mathbb {E}}_N^\perp \) in (ii) are replaced by \(T_N[\cdot ,a]\), uniformly in \(\Vert a\Vert _\infty \le 1\).

We begin with two preliminary lemmata, the first a straightforward estimate for \(L_kL_j\).

Lemma 2.2

Let \(k,j\ge 0\) and suppose that f is locally integrable. Let M be as in (16) with \(M>A>d/p\). Then

$$\begin{aligned} |L_k L_j f(x) |\lesssim 2^{-|k-j|(M-A)} {\mathfrak {M}}_{A,\max \{j,k\}}^{**} f(x). \end{aligned}$$
(28)

If \(f\in {\mathcal {S}}'({\mathbb R^d})\) with \(\widehat{f}(\xi )=0\) for \(|\xi |\ge 2^{j+1}\) then

$$\begin{aligned} \Vert L_kL_j f\Vert _p \lesssim 2^{-|k-j|(M-A)} \Vert f\Vert _p\,. \end{aligned}$$

Proof

The second assertion is an immediate consequence of (28), by (23). We have \(L_kL_jf=\gamma _{j,k}*f\) where \(\gamma _{j,k}=\beta _k*\beta _j\). By symmetry we may assume \(k\le j\). Using the cancellation assumption (16) on the \(\beta _j\) we get

$$\begin{aligned}&|\gamma _{j,k}(x)|= \Big |\int 2^{kd} \Big [ \beta (2^k(x-y) -\sum _{m=0}^{M-1} \frac{1}{m!}\langle -2^ky,\nabla \rangle ^m \!\beta (2^kx)\Big ] 2^{jd} \beta (2^jy) dy\Big | \\&= \Big |\int 2^{kd} \int _0^1 \frac{(1-s)^{M-1}}{(M-1)!} \langle -2^ky,\nabla \rangle ^M\!\beta (2^kx-s2^ky)\, ds\, 2^{jd} \beta (2^jy) dy\Big | \\ {}&\lesssim 2^{(k-j)M}\,2^{kd} \,{\mathbb 1}_{[-2^{-k},2^{-k}]^d}(x), \end{aligned}$$

and thus

$$\begin{aligned}&2^{(j-k)M} |\gamma _{j,k}*f(x) |\lesssim 2^{kd} \int _{|h|_\infty \le 2^{-{k}}}|f(x-h)|\, dh \\&\quad \lesssim 2^{kd}\int _{|h|_\infty \le 2^{-k}} \frac{2^{(j-k)A}|f(x-h)|}{(1+2^j|h|)^A} dh \lesssim 2^{(j-k)A}\,{\mathfrak {M}}_{A,j}^{**} f(x). \end{aligned}$$

Hence (28) holds. \(\square \)

2.1 Some Notation

  1. (i)

    Below, when \(j>N\) we use the notation

    $$\begin{aligned} {\mathcal {U}}_{N,j} =\Big \{(y_1,\ldots ,y_d)\in {\mathbb R^d}\mid \min _{1\le i\le d}{\mathrm{dist}}(y_i, 2^{-N}{\mathbb {Z}})\le 2^{-j-1}\Big \}. \end{aligned}$$

    That is, \({\mathcal {U}}_{N,j}\) is a \(2^{-j-1}\)-neighborhood of the set \(\cup _{I\in {\mathscr {D}}_N}\;\partial I\).

  2. (ii)

    For a dyadic cube I of side length \(2^{-N}\) and \(l>N\) we shall denote by \({\mathscr {D}}_l[\partial I]\) the set of dyadic cubes \(J\in {\mathscr {D}}_{l}\) such that \({\bar{J}}\cap \partial I\not =\emptyset \).

  3. (iii)

    For a dyadic cube I of side length \(2^{-N}\) denote by \({\mathscr {D}}_N(I)\) the neighboring cubes of I, that is, the cubes \(I'\in {\mathscr {D}}_N\) with \({\bar{I}}\cap {\bar{I'}}\not =\emptyset \).

Lemma 2.3

  1. (i)

    Let \(k>N\ge 1\) and g be locally integrable. Then

    $$\begin{aligned} L_k ({\mathbb {E}}_N g)(x)=0, \quad \text { for all } x\in {\mathcal {U}}_{N,k}^\complement ={\mathbb {R}}^d\setminus {\mathcal {U}}_{N,k}\,. \end{aligned}$$
    (29)
  2. (ii)

    Let \(j>N\ge 1\), and f locally integrable. Then

    $$\begin{aligned} {\mathbb {E}}_N [L_jf]={\mathbb {E}}_N[L_j({\mathbb 1}_{{\mathcal {U}}_{N,j}} f)]. \end{aligned}$$
    (30)

    Moreover,

    $$\begin{aligned} \big |{\mathbb {E}}_N(L_jf)\big |\lesssim 2^{(N-j)d}\sum _{I\in {\mathscr {D}}_N} \sum _{J\in {\mathscr {D}}_{j+1}[\partial I]}\Vert f\Vert _{L^\infty (J)}\,{\mathbb 1}_I. \end{aligned}$$
    (31)

Proof

  1. (i)

    We use the support and cancellation properties of \(\beta _k\). Note that

    $$\begin{aligned} L_k({\mathbb {E}}_N g)(x)=\int \beta _k(x-y)\,{\mathbb {E}}_Ng(y)\,dy, \end{aligned}$$

    and \({\mathrm{supp}}\beta _k(x-\cdot )\subset x+2^{-k}[-1/2,1/2]^d\). So, if \(I\in {\mathscr {D}}_N\) and \(x\in I\cap {\mathcal {U}}_{N,k}^\complement \), then \({\mathrm{supp}}\beta _k(x-\cdot )\subset I\), and hence

    $$\begin{aligned} L_k({\mathbb {E}}_N g)(x)=({\mathbb {E}}_Ng)_{|_I}(x)\,\int _I \beta _k(x-y)\,dy\,=\,0. \end{aligned}$$
  2. (ii)

    One argues similarly. First note that, changing the order of integration,

    $$\begin{aligned} {\mathbb {E}}_N(L_jf)=\sum _{I\in {\mathscr {D}}_N}\int _{{\mathbb R^d}}f(y)\Big [\int _I\beta _j(x-y)\,dx\Big ]\;dy\;\frac{{\mathbb 1}_I}{|I|}. \end{aligned}$$
    (32)

    Now if \(J\in {\mathscr {D}}_N\) and \(y\in J\cap {\mathcal {U}}_{N,k}^\complement \) then \({\mathrm{supp}}\beta _j(\cdot -y) \subset J\), and hence \(\int _I\beta _j(x-y)\,dx=0\). Thus \({\mathbb {E}}_N[L_j({\mathbb 1}_{{\mathcal {U}}_{N,j}^\complement }f)]=0\). Finally, to prove (31) note that, if \(I\in {\mathscr {D}}_N\) and \(x\in I\), then from (32) it follows

    $$\begin{aligned} \big |{\mathbb {E}}_N(L_jf)(x)\big |= & {} |I|^{-1}\;\Big |\sum _{J\in {\mathscr {D}}_{j+1}[\partial I]} \int _{J}f(y)\Big [\int _I\beta _j(x-y)\,dx\Big ]\;dy\Big |\;\\\le & {} 2^{Nd}\sum _{J\in {\mathscr {D}}_{j+1}[\partial I]}\Vert f\Vert _{L^\infty (J)} 2^{-(j+1)d}\Vert \beta _j\Vert _1, \end{aligned}$$

    which gives the asserted (31).

\(\square \)

2.2 Proof of Proposition 2.1

2.2.1 Proof of (26) in the Case \(j,k\ge N+1\)

By Lemma 2.3. i, \(L_k{\mathbb {E}}_N[L_j f](x)=0\) if \(x\in {\mathcal {U}}_{N,K}^\complement \), so we assume that \(x\in {\mathcal {U}}_{N,k}\cap I\), for some \(I\in {\mathscr {D}}_N\). Recall that \({\mathscr {D}}_N(I)\) consists of the neighboring cubes of I. Then (31) and the support property of \(\beta _k\) give

$$\begin{aligned} |L_k{\mathbb {E}}_N[L_j f](x)|\le & {} \int |\beta _k(x-y)|\,\big |{\mathbb {E}}_N(L_jf)(y)\big |\,dy\\\lesssim & {} 2^{(N-j)d} \sum _{I'\in {\mathscr {D}}_N(I)}\sum _{J\in {\mathscr {D}}_{j+1}[\partial I']} \Vert f\Vert _{L^\infty (J)}\,\Vert \beta _k\Vert _{1}. \end{aligned}$$

Hence

$$\begin{aligned} \Vert L_k{\mathbb {E}}_N[L_j f]\Vert _p= & {} \Big [\sum _{I\in {\mathscr {D}}_N}\int _{I\cap {\mathcal {U}}_{N,k}}|L_k({\mathbb {E}}_N L_jf)|^p\,dx\Big ]^{\frac{1}{p}}\nonumber \\\lesssim & {} 2^{(N-j)d}\Big [\sum _{I\in {\mathscr {D}}_N} \Big (\sum _{J\in {\mathscr {D}}_{j+1}[\partial I]}\Vert f\Vert _{L^\infty (J)}\Big )^p \,|I\cap {\mathcal {U}}_{N,k}|\Big ]^\frac{1}{p}. \end{aligned}$$
(33)

Now, \(|I\cap {\mathcal {U}}_{N,k}|\approx 2^{-k}2^{-N(d-1)}\), and \(\mathrm{card}\,{\mathscr {D}}_{j+1}[\partial I]\approx 2^{(j-N)(d-1)}\). Also, if we write \(J=2^{-j-1}(\ell _J+[0,1]^d)\), then

$$\begin{aligned} \Vert f\Vert _{L^\infty (J)}\le \inf _{|h|_\infty \le 2^{-j-1}}{\mathfrak {M}}^*_jf(\ell _J+h) \le \Big [2^{jd}\int _{|h|_\infty \le 2^{-j-1}}{\mathfrak {M}}^*_jf(\ell _J+h)^p\,dh\Big ]^{\frac{1}{p}}. \end{aligned}$$

Therefore, using either Hölder’s inequality (if \(p>1\)), or the embedding \(\ell ^p\hookrightarrow \ell ^1\) (if \(p\le 1\)), we have

$$\begin{aligned}&\Big [\sum _{I\in {\mathscr {D}}_N} \Big (\!\!\!\sum _{J\in {\mathscr {D}}_{j+1}[\partial I]}\Vert f\Vert _{L^\infty (J)}\Big )^p \Big ]^\frac{1}{p} \nonumber \\&\lesssim 2^{(j-N)(d-1)(1-\frac{1}{p})_+}\Big [\sum _{I\in {\mathscr {D}}_N}\sum _{J\in {\mathscr {D}}_{j+1}[\partial I]} \Vert f\Vert _{L^\infty (J)}^p\Big ]^\frac{1}{p}\nonumber \\&\lesssim 2^{(j-N)(d-1)(1-\frac{1}{p})_+}\,\Big [\sum _{J\in {\mathscr {D}}_{j+1}} 2^{jd}\int _{|h|_\infty \le 2^{-j-1}}{\mathfrak {M}}^*_jf(\ell _J+h)^p\,dh\Big ]^\frac{1}{p}\nonumber \\&\lesssim 2^{(j-N)(d-1)(1-\frac{1}{p})_+}\, 2^{\frac{jd}{p}}\,\big \Vert {\mathfrak {M}}^*_jf\big \Vert _{L^p({\mathbb R^d})}\,. \end{aligned}$$
(34)

Finally, inserting (34) into (33), and using (23), yields

$$\begin{aligned} \Vert L_k{\mathbb {E}}_N[L_j f]\Vert _p\lesssim & {} 2^{(N-j)d} 2^{(j-N)(d-1)(1-\frac{1}{p})_+}\, 2^{\frac{jd}{p}}\,\Vert f\Vert _p\, 2^{-\frac{k}{p}}2^{-\frac{N(d-1)}{p}}\\= & {} 2^{N-j}\,2^{\frac{j-k}{p}}\, 2^{(j-N)(d-1)(\frac{1}{p}-1)_+}\,\Vert f\Vert _p\,, \end{aligned}$$

using in the last step the trivial identity \((1-\frac{1}{p})_+=(\frac{1}{p}-1)_+-(\frac{1}{p}-1)\). This establishes (26) for \(j,k\ge N+1\). \(\square \)

2.2.2 Proof of (27) in the Case \(j\le N\), \(k\ge N+1\)

For \(w\in I\) with \(I\in {\mathscr {D}}_N\) we have

$$\begin{aligned}&\big |{\mathbb {E}}_N^\perp (L_jf)(w)\big |=\big |{\mathbb {E}}_N[L_j f](w)-L_jf(w)\big |\\&\quad =2^{Nd}\Big |\int _{I} \int _{{\mathbb R^d}} 2^{jd}\big [\beta (2^j(v-y))-\beta (2^j(w-y))\big ] f(y) dy\, dv\Big | \\&\quad = 2^{(N+j)d} \Big | \int _{I} \int _{{\mathbb R^d}} \int _0^1 \nabla \beta (2^j[(1-t)w+tv-y])\cdot 2^j(v-w)\,dt\,f(y)\, dy \, dv \Big | \\&\quad \le 2^{(N+j)d} 2^{j-N} \,\int _I\,\int _0^1\,\int _{{\mathbb R^d}}|f(y)|\, |\nabla \beta (2^j[(1-t)w+tv-y])|\,dy\,dt\,dv \\&\quad \lesssim 2^{j-N} \,{\mathfrak {M}}_jf(w) , \end{aligned}$$

since for fixed wvt the expression involving \(\nabla \beta \) is supported in the set \(\{y\mid |y-w|_\infty \le 2^{-j-1}+2^{-N}\}\). Moreover, since \(k>N\), when \(w\in I_{N,\mu }\) and \(|z|_\infty \le 2^{-k-1}\) we have

$$\begin{aligned} \big |{\mathbb {E}}_N^\perp [L_jf](w-z)\big | \lesssim 2^{j-N} \inf _{|h|_\infty \le 2^{-j}} {\mathfrak {M}}_j^* f(2^{-N}\mu +h)\,, \end{aligned}$$
(35)

and therefore,

(36)

Now Lemma 2.3. i gives

$$\begin{aligned}&\big \Vert L_k\big ({\mathbb {E}}_N^\perp [L_jf]\big )\big \Vert _p\nonumber \\&\lesssim \Vert L_kL_jf\Vert _{L^p({\mathcal {U}}_{N,k}^\complement )}+ \Big [\sum _{\mu \in {\mathbb Z^d}} \Vert L_k\big ({\mathbb {E}}_N^\perp [L_jf]\big )\big \Vert _{L^p({\mathcal {U}}_{N,k}\cap I_{N,\mu })}^p \Big ]^{\frac{1}{p}}. \end{aligned}$$
(37)

Using (36), the last term is controlled by

Finally, the first term in (37) is controlled by Lemma 2.2, so overall one obtains

$$\begin{aligned} \big \Vert L_k\big ({\mathbb {E}}_N^\perp [L_jf]\big )\big \Vert _p\lesssim \left[ 2^{-(M-A)|k-j|}+2^{j-N}\,2^{\frac{N-k}{p}}\right] \,\Vert f\Vert _p, \end{aligned}$$

establishing (27) in the case \(j\le N\), \(k\ge N+1\). \(\square \)

2.2.3 Proof of (27) in the Case \(0\le j,k\le N\)

We use

$$\begin{aligned} \int _{I} {\mathbb {E}}_N^\perp [ L_jf](y) \,dy=0, \quad I\in {\mathscr {D}}_N, \end{aligned}$$

to write

$$\begin{aligned} L_k\big ( {\mathbb {E}}_N^\perp [ L_jf]\big )(x)=\sum _\mu \int _{I_{N,\mu } } \big (\beta _k(x-y) -\beta _k(x-2^{-N}\mu )\big )\, {\mathbb {E}}_N^\perp [ L_jf](y)\, dy\,. \end{aligned}$$

For fixed x, we say that

$$\begin{aligned} \mu \in \Lambda (x) \ \text {if}\ |x-2^{-N}\mu |_\infty \le 2^{-N}+2^{-k-1}. \end{aligned}$$
(38)

Observe that only these \(\mu \)’s contribute to the above sum. Notice also that

$$\begin{aligned} |\beta _k(x-y) -\beta _k(x-2^{-N}\mu )|\lesssim 2^{kd}\,2^{k-N},\quad \text {if}\, y\in I_{N,\mu }, \end{aligned}$$

and since \(j\le N\), the estimate in (35) gives

$$\begin{aligned} \big |{\mathbb {E}}_N^\perp [L_jf](y)\big | \lesssim 2^{j-N} \inf _{|h|_\infty \le 2^{-j}} {\mathfrak {M}}_j^* f(2^{-N}\mu +h)\,,\quad y\in I_{N,\mu }. \end{aligned}$$

Combining all these bounds we obtain

using in the last step Hölder’s inequality (or \(\ell ^p\hookrightarrow \ell ^1\) if \(p\le 1\)) and the fact that \(\mathrm{card}\,\Lambda (x)\approx 2^{(N-k)d}\). Observe also that the \(L^p\)-quasinorm of the last bracketed expression satisfies

Thus, overall we obtain

$$\begin{aligned} \big \Vert L_k{\mathbb {E}}_N^\perp [ L_jf]\big \Vert _p\lesssim & {} 2^{(k-N)(d+1)} 2^{j-N}2^{(N-k)d(1-\frac{1}{p})_+}\,2^{(N-k)d/p}\,\Vert f\Vert _p\\= & {} 2^{k-N} 2^{j-N}2^{(N-k)d(\frac{1}{p}-1)_+}\,\Vert f\Vert _p, \end{aligned}$$

after simplifying the indices in the last step. This establishes (27) in the case \(0\le j,k\le N\). \(\square \)

2.2.4 Proof of (26) in the Case \(j\ge N+1\), \(k\le N\)

This condition and (30) in Lemma 2.3 imply that \({\mathbb {E}}_N[L_jf]={\mathbb {E}}_N[L_j(f{\mathbb 1}_{{\mathcal {U}}_{N,j}})]\). For simplicity, we denote \({\widetilde{f}}= f{\mathbb 1}_{{\mathcal {U}}_{N,j}}\), and write

$$\begin{aligned} L_k{\mathbb {E}}_N[L_j f] = L_k({\mathbb {E}}_N[L_j {\widetilde{f}}] -L_j {\widetilde{f}}) + L_kL_j {\widetilde{f}}. \end{aligned}$$
(39)

Observe that, by Lemma 2.2,

$$\begin{aligned} \Vert L_kL_j{\widetilde{f}}\Vert _p\lesssim 2^{-(M-A)|j-k|}\,\big \Vert {\mathfrak {M}}^{**}_{A,j}f(x)\big \Vert _p\lesssim 2^{-(M-A)|j-k|}\,\Vert f\Vert _p. \end{aligned}$$

So, we only need to estimate \(\Vert L_k{\mathbb {E}}_N^\perp [ L_j{\widetilde{f}}]\Vert _p\). Proceeding as in the proof of the case \(j,k\le N\), we write (with \(\Lambda (x)\) as in (38))

$$\begin{aligned}&|L_k\big ( {\mathbb {E}}_N^\perp [ L_j{\widetilde{f}}]\big )(x)| \nonumber \\&\quad \le \sum _{\mu \in \Lambda (x)} \int _{I_{N,\mu } } \big |\beta _k(x-y) -\beta _k(x-2^{-N}\mu )\big |\, \big |{\mathbb {E}}_N^\perp [ L_j{\widetilde{f}}](y)\big |\, dy\,\nonumber \\&\quad \lesssim 2^{kd}2^{k-N}\sum _{\mu \in \Lambda (x)} \int _{I_{N,\mu } }\Big (|{\mathbb {E}}_N[L_j{\widetilde{f}}]|\,+\;|L_j({\widetilde{f}})|\Big )\nonumber \\&\quad = {\mathcal {A}}_1(x)+{\mathcal {A}}_2(x). \end{aligned}$$
(40)

Now, using again (31), we have

$$\begin{aligned} |{\mathcal {A}}_1(x)|\lesssim & {} 2^{(k-N)(d+1)}2^{(N-j)d}\sum _{\mu \in \Lambda (x)} \sum _{J\in {\mathscr {D}}_{j+1}[\partial I_{N,\mu }]}\Vert f\Vert _{L^\infty (J)}\nonumber \\\lesssim & {} 2^{k-N}2^{(k-j)d}\,2^{(N-k)d(1-\frac{1}{p})_+}\,\Big [\sum _{\mu \in \Lambda (x)} \big (\sum _{J\in {\mathscr {D}}_{j+1}[\partial I_{N,\mu }]}\Vert f\Vert _{L^\infty (J)}\big )^p\Big ]^\frac{1}{p},\nonumber \\ \end{aligned}$$
(41)

since \(\mathrm{card}\,\Lambda (x)\approx 2^{(N-k)d}\). Taking the \(L^p\)-quasinorm of the last bracketed expression gives

$$\begin{aligned}&\Big [\int _{x\in {\mathbb R^d}}\sum _{\mu \in \Lambda (x)} \big (\!\!\!\sum _{J\in {\mathscr {D}}_{j+1}[\partial I_{N,\mu }]}\!\!\Vert f\Vert _{L^\infty (J)}\big )^p\,dx\Big ]^\frac{1}{p} \nonumber \\&\quad \quad \lesssim \Big [\sum _{I\in {\mathscr {D}}_N} 2^{-kd}\big (\!\!\sum _{J\in {\mathscr {D}}_{j+1}[\partial I]}\Vert f\Vert _{L^\infty (J)}\big )^p\Big ]^\frac{1}{p} \nonumber \\&\quad \quad \lesssim \; 2^{\frac{(j-k)d}{p}}\,2^{(j-N)(d-1)(1-\frac{1}{p})_+}\, \big \Vert {\mathfrak {M}}^*_jf\big \Vert _{L^p({\mathbb R^d})}\, \quad {\mathrm{by \, (34)}}. \end{aligned}$$
(42)

Therefore, combining exponents in (41) and (42) one obtains

$$\begin{aligned} \Vert {\mathcal {A}}_1\Vert _p\lesssim & {} 2^{k-N}2^{(k-j)d}\,2^{(N-k)d(1-\frac{1}{p})_+}\, 2^{\frac{(j-k)d}{p}}\,2^{(j-N)(d-1)(1-\frac{1}{p})_+}\,\Vert f\Vert _p\nonumber \\= & {} 2^{k-j}\,2^{\frac{j-N}{p}}\,2^{(N-k)(\frac{1}{p}-1)_+}\,2^{(j-k)(d-1)(\frac{1}{p}-1)_+}\,\Vert f\Vert _p. \end{aligned}$$
(43)

Finally, we estimate the term \({\mathcal {A}}_2(x)\) in (40). First notice that

$$\begin{aligned} |L_j({\widetilde{f}})(y)|\le \int _{{\mathcal {U}}_{N,{j}}}|\beta _j(y-z)||f(z)|\,dz=0, \quad \text {if } y\in {\mathcal {U}}_{N,{j-1}}^\complement , \end{aligned}$$

since \({\mathrm{supp}}\beta _j(y-\cdot )\subset y+2^{-j}[-\frac{1}{2},\frac{1}{2}]^d \subset {\mathcal {U}}_{N,{j}}^\complement \). Moreover, if \(I\in {\mathscr {D}}_N\), then for every cube \(J\in {\mathscr {D}}_j\) such that \(J\subset I\cap {\mathcal {U}}_{N,j-1}\) we have

$$\begin{aligned} |L_j({\widetilde{f}})(y)|\le \int |\beta _j(z)||f(y-z)|\,dz\lesssim \Vert f\Vert _{L^\infty (J^*)}, \quad \text {if } y\in J \end{aligned}$$

where \(J^*=J+2^{-j}[-\frac{1}{2},\frac{1}{2}]^d\). Therefore,

$$\begin{aligned} \int _I|L_j({\widetilde{f}})(y)|\lesssim \sum _{J\in {\mathscr {D}}_{j}[\partial I]}\Vert f\Vert _{L^\infty (J^*)}|J|, \end{aligned}$$

and overall we obtain

$$\begin{aligned} |{\mathcal {A}}_2(x)|\lesssim 2^{(k-j)d}2^{k-N}\,\sum _{\mu \in \Lambda (x)} \sum _{J\in {\mathscr {D}}_{j-1}[\partial I_{N,\mu }]}\Vert f\Vert _{L^\infty (J)}. \end{aligned}$$

But this is essentially the same expression we obtained in (41) for the term \(|{\mathcal {A}}_1(x)|\), so the same argument will give an estimate of \(\Vert {\mathcal {A}}_2\Vert _p\) in terms of the quantity in (43). This concludes the proof of (26) in the case \(j\ge N+1\), \(k\le N\).

Finally, concerning (iii) in Proposition 2.1, we remark that the previous proofs can easily be adapted replacing the operators \({\mathbb {E}}_N\) and \({\mathbb {E}}_N^\perp \) by \(T_N[\cdot ,a]\), keeping in mind that \(T_N[g,a]\) is now constant in cubes \(I\in {\mathscr {D}}_{N+1}\), and enjoys an additional cancellation, \(\int _{I_{N,\mu }}T_N[g,a](x) dx=0\), which simplifies some of the previous steps. \(\square \)

2.3 Proof of Theorem 1.2, Conclusion

It remains to prove inequalities (19) and (20). By the embedding properties for the sequence spaces \(\ell ^r\) it suffices to verify both inequalities for very small r, say

$$\begin{aligned} r\le \min \{p,1\}. \end{aligned}$$
(44)

In view of the embedding \(\ell ^r\hookrightarrow \ell ^1\) and Minkowski’s inequality (in \(L^{p/r}\)) it suffices then to prove

$$\begin{aligned} \sup _N\Big (\sum _{k=0}^\infty 2^{ksr} \sum _{j=N+1}^\infty \big \Vert L_k {\mathbb {E}}_N L_j\Lambda _j f \big \Vert _p^r\Big )^{1/r} \lesssim \sup _{j}2^{js} \Vert \Lambda _j f\Vert _p \end{aligned}$$
(45)

and

$$\begin{aligned} \sup _N \Big (\sum _{k=0}^\infty 2^{ksr} \sum _{j=0}^N \big \Vert L_k ({\mathbb {E}}_N^\perp L_j\Lambda _j f )\big \Vert _p^r\Big )^{1/r} \lesssim \sup _{j}2^{js} \Vert \Lambda _j f\Vert _p\,. \end{aligned}$$
(46)

If we apply Proposition 2.1 to each of the functions \(\Lambda _jf\), we reduce matters to observe that

$$\begin{aligned} \sup _N \sum _{k=0}^\infty 2^{ksr} \sum _{j=0}^\infty \big [2^{-js}B(j,k,N)\big ]^r< \infty , \end{aligned}$$
(47)

with B(jkN) as in (25), and that

$$\begin{aligned} \Big (\sum _{j=N+1}^\infty \sum _{k=0}^N + \sum _{k=N+1}^\infty \sum _{j=0}^N\Big ) 2^{-|j-k|(M-A)} <\infty \end{aligned}$$

which is trivial. The verification of (47) under the assumptions in (11) is also elementary, but we carry out some details to clarify how the conditions on p and s are used.

When \(j,k>N\), we have \(B(j,k,N)=2^{N-j}\,2^{\frac{j-k}{p}}\, 2^{(j-N)(d-1)(\frac{1}{p}-1)_+}\) and thus

$$\begin{aligned} \nonumber&\sum _{k>N}2^{ksr} \sum _{j>N}\big [2^{-js}B(j,k,N)\big ]^r \\&\quad = \Big (\sum _{k>N}2^{-kr(\frac{1}{p}-s)}\Big )\Big (\sum _{j>N}2^{-rj[s+1-\frac{1}{p}-(d-1)(\frac{1}{p}-1)_+]}\Big )\,2^{Nr[1-(d-1)(\frac{1}{p}-1)_+]}, \end{aligned}$$
(48)

and the series converge provided \(s<1/p\) and

$$\begin{aligned} s>\tfrac{1}{p}-1 + (d-1)(\tfrac{1}{p}-1)_+\,=\, \max \Big \{d(\tfrac{1}{p}-1),\tfrac{1}{p}-1\Big \}. \end{aligned}$$
(49)

Further, being geometric sums, the final outcome in (48) is bounded uniformly in N.

Next assume \(j\le N<k\), then \(B(j,k,N)=2^{\frac{N-k}{p}} 2^{j-N}\) and hence

$$\begin{aligned} \sum _{k>N}2^{ksr} \sum _{j\le N}\big [2^{-js}B(j,k,N)\big ]^r = \Big (\sum _{k>N}2^{-kr(\frac{1}{p}-s)}\Big )\Big (\sum _{j\le N}2^{rj(1-s)}\Big )\,2^{Nr(\frac{1}{p}-1)}, \end{aligned}$$

which are finite expressions provided \(s<\min \{1,1/p\}\).

Consider \(j,k\le N\), with \(B(j,k,N)=2^{k-N} 2^{j-N}2^{(N-k)d(\frac{1}{p}-1)_+}\). Then

$$\begin{aligned} \sum _{k\le N}2^{ksr} \sum _{j\le N}\big [2^{-js}B(j,k,N)\big ]^r=\end{aligned}$$
$$\begin{aligned} = \Big (\sum _{k\le N}2^{kr[s+1-d(\frac{1}{p}-1)_+]}\Big )\Big (\sum _{j\le N}2^{rj(1-s)}\Big )\,2^{-Nr[2-d(\frac{1}{p}-1)_+]}, \end{aligned}$$

which leads to uniform expressions in N under the assumptions \(s<1\) and

$$\begin{aligned} s>d(\tfrac{1}{p}-1)_+-1, \end{aligned}$$
(50)

the latter being weaker than (49).

When \(k\le N<j\) we have \(B(j,k,N)=2^{k-j+\frac{j-N}{p}+[N-k+(j-k)(d-1)](\frac{1}{p}-1)_+}\) and

$$\begin{aligned} \sum _{k\le N}2^{ksr} \sum _{j> N}\big [2^{-js}B(j,k,N)\big ]^r=\end{aligned}$$
$$\begin{aligned} = \Big (\sum _{k\le N}2^{kr[s+1-d(\frac{1}{p}-1)_+]}\Big )\Big (\sum _{j> N} 2^{-rj[s+1-\frac{1}{p}-(d-1)(\frac{1}{p}-1)_+]}\Big )\,2^{-Nr[\frac{1}{p}-(\frac{1}{p}-1)_+]}, \end{aligned}$$

where in the first series we would use (50) and in the second series (49). We have verified (47) in all cases. This finishes the proof of Theorem 1.2. \(\square \)

3 Schauder Bases

Let \(P_N\) be defined as in (3). For the proof of Theorem 1.1 we need to prove that \(\Vert P_Nf-f\Vert _{F^s_{p,q}}\rightarrow 0\) for every \(f\in F^s_{p,q}\), with (ps) as in (11) and \(0<q<\infty \). We first discuss some preliminaries about localization and pointwise multiplication by characteristic functions of cubes, then prove uniform bounds for the \(F^s_{p,q}\rightarrow F^s_{p,q} \) operator norms of the \(P_N\) and then establish the asserted limiting property.

3.1 Preliminaries

For \(\nu \in {\mathbb {Z}}^d\) let \(\chi _\nu \) be the characteristic function of \(\nu +[0,1)^d\).

Lemma 3.1

Assume that

$$\begin{aligned} \tfrac{d-1}{d}<p<\infty ,\quad 0<q\le \infty ,{\quad \text{ and }\quad }\max \{d(\tfrac{1}{p}-1),\tfrac{1}{p}-1\}<s<\tfrac{1}{p}. \end{aligned}$$
(51)

Then, the following holds for all \(g_\nu \) and \(f\in F^s_{p,q}\):

$$\begin{aligned} \Big \Vert \sum _{\nu \in {\mathbb {Z}}^d} \chi _\nu g_\nu \Big \Vert _{F^s_{p,q}} \lesssim \Big (\sum _{\nu \in {\mathbb {Z}}^d} \big \Vert g_\nu \big \Vert _{F^s_{p,q}}^p\Big )^{1/p} \end{aligned}$$

and

$$\begin{aligned} \Big (\sum _{\nu \in {\mathbb {Z}}^d} \big \Vert f\chi _\nu \big \Vert _{F^s_{p,q}}^p\Big )^{1/p}\lesssim \Vert f\Vert _{F^s_{p,q}}\,. \end{aligned}$$

Proof

Let \(\varsigma \in C^\infty _c({\mathbb {R}}^d)\) so that \({\mathrm{supp}}(\varsigma )\subset (-1,1)^d\) and \(\sum _{\nu \in {\mathbb Z^d}} \varsigma (x-\nu )=1\) for all \(x\in {\mathbb {R}}^d\). Let \(\varsigma _\nu =\varsigma (\cdot -\nu )\). We have, for all \(s\in {\mathbb {R}}\),

$$\begin{aligned} \Vert g\Vert _{F^s_{p,q}} \asymp \Big (\sum _\nu \big \Vert \varsigma _\nu g\big \Vert _{F^s_{p,q}}^p\Big )^{1/p}\,; \end{aligned}$$
(52)

see [10, 2.4.7]. Hence

$$\begin{aligned}&\Big \Vert \sum _{\nu \in {\mathbb Z^d}} \chi _\nu g_\nu \Big \Vert _{F^s_{p,q}} = \Big \Vert \sum _{\nu '}\varsigma _{\nu '} \sum _\nu \chi _\nu g_\nu \Big \Vert _{F^s_{p,q}} \lesssim \Big (\sum _{\nu '} \Big \Vert \varsigma _{\nu '}\!\!\sum _{|\nu -\nu '|_\infty \le 1} \chi _\nu g_\nu \Big \Vert _{F^s_{p,q}}^p \Big )^{1/p} \\&\quad \lesssim \Big (\sum _{\nu '} \sum _{|\nu -\nu '|_\infty \le 1} \Vert g_\nu \Vert _{F^s_{p,q}}^p \Big )^{1/p}\lesssim \Big ( \sum _{\nu } \Vert g_\nu \Vert _{F^s_{p,q}}^p \Big )^{1/p}. \end{aligned}$$

Here we have used that \( \varsigma _{\nu '} \chi _\nu \) are pointwise multipliers of \(F^s_{p,q}\), with uniform bounds in \((\nu , \nu ')\), in the range given by (51); see [4, Thm. 4.6.3/1]. This proves the first inequality.

For the second inequality we first observe that, by (52),

$$\begin{aligned} \Vert f\chi _{\nu }\Vert _{F^s_{p,q}} \lesssim \Big (\sum \limits _{\nu '} \Vert f\chi _{\nu } \varsigma _{\nu '}\Vert ^p_{F^s_{p,q}}\Big )^{1/p}\,,\quad \nu \in {\mathbb {Z}}^d, \end{aligned}$$

which yields

$$\begin{aligned} \Big (\sum \limits _{\nu }\Vert f\chi _{\nu }\Vert _{F^s_{p,q}}^p\Big )^{1/p}\lesssim & {} \Big (\sum \limits _{\nu }\sum \limits _{\nu '} \Vert f\chi _{\nu } \varsigma _{\nu '}\Vert ^p_{F^s_{p,q}}\Big )^{1/p}\\\lesssim & {} \Big (\sum \limits _{\nu '}\sum \limits _{|\nu -\nu '|_\infty \le 1} \Vert f\chi _{\nu } \varsigma _{\nu '}\Vert ^p_{F^s_{p,q}}\Big )^{1/p}\\\lesssim & {} \Big (\sum \limits _{\nu '}\Vert f\varsigma _{\nu '}\Vert ^p_{F^s_{p,q}}\Big )^{1/p}\lesssim \Vert f\Vert _{F^s_{p,q}}\,, \end{aligned}$$

where we have used the pointwise multiplier assertion [4, Thm. 4.6.3/1] and then again (52) in the last step. \(\square \)

3.2 Uniform Boundedness of the \(P_N\)

Observe that by the localization property of the Haar functions we have \(P_Nf = \sum _{\nu \in {\mathbb Z^d}} \chi _\nu P_N f= \sum _{\nu } \chi _\nu P_N [f\chi _\nu ].\) Thus by Lemma 3.1

$$\begin{aligned} \Vert P_N f\Vert _{F^s_{p,q}} \lesssim \Big (\sum _\nu \big \Vert P_N[f\chi _\nu ]\big \Vert _{F^s_{p,q}}^p\Big )^{1/p}\,. \end{aligned}$$

Since the enumeration of the Haar system is assumed to be admissible we have

$$\begin{aligned} P_N[f\chi _\nu ]= {\mathbb {E}}_{N_\nu } [f\chi _\nu ]+ T_{N_\nu }[f\chi _\nu , a^{N,\nu }] \end{aligned}$$
(53)

for some \(N_\nu \in {\mathbb {N}}\), with \(N_\nu \le N\) and appropriate sequences \(a^{N,\nu }\) assuming only the values 1 and 0. We remark that for each \(\nu \), \(N_\nu =N_\nu (N)\) with

$$\begin{aligned} \lim _{N\rightarrow \infty } N_\nu (N)=\infty \,. \end{aligned}$$
(54)

By Theorem 1.2

$$\begin{aligned}&\Big (\sum _\nu \big \Vert P_N[f\chi _\nu ]\big \Vert _{F^s_{p,q}}^p\Big )^{1/p} \\&\quad \lesssim \Big (\sum _\nu \big \Vert {\mathbb {E}}_{N_\nu } [f\chi _\nu ] \big \Vert _{F^s_{p,q}}^p\Big )^{1/p} +\Big (\sum _\nu \big \Vert T_{N_\nu }[f\chi _\nu , a^{N,\nu }] \big \Vert _{F^s_{p,q}}^p\Big )^{1/p}\\&\quad \lesssim \Big (\sum _\nu \big \Vert f\chi _\nu \big \Vert _{F^s_{p,q}}^p\Big )^{1/p} \,\lesssim \, \Vert f\Vert _{F^s_{p,q}}\,, \end{aligned}$$

where for the last inequality we have used Lemma 3.1 again.

Proof (Proof of Theorem 1.1, Conclusion)

[Proof of Theorem 1.1, Conclusion] Let \(f\in F^s_{p,q}\), with (ps) as in (11) and \(0<q<\infty \). Let \(C=\max \{ 1, \sup _N\Vert P_N\Vert _{F^s_{p,q}\rightarrow F^s_{p,q}} \}.\) Since Schwartz functions are dense in \(F^s_{p,q}\) when \(0<p,q<\infty \) there is \({\tilde{f}}\in {\mathcal {S}}({\mathbb {R}})\) such that \(\Vert f-{\tilde{f}}\Vert _{F^s_{p,q}}<(3C)^{-1}\epsilon \) and hence \(\Vert P_N f-P_N {\tilde{f}}\Vert _{F^s_{p,q}}< \epsilon /3\). Choose \(s_1\) so that \(s<s_1<\max \{1/p,1\}\) then \({\tilde{f}} \in B^{s_1}_{p,q} \hookrightarrow F^s_{p,q}\). Since the Haar system is an unconditional basis on \(B^{s_1}_{p,q}\) ([11]) we have \(\lim _{N\rightarrow \infty } \Vert P_N{\tilde{f}}-{\tilde{f}}\Vert _{B^{s_1}_{p,q}}=0\) and therefore \(\lim _{N\rightarrow \infty } \Vert P_N{\tilde{f}}-{\tilde{f}}\Vert _{F^{s}_{p,q}}=0\). Combining these facts we get \(\Vert P_Nf -f\Vert _{F^s_{p,q}}<\epsilon \) for sufficiently large N which shows that \(P_N f\rightarrow f\) in \(F^s_{p,q}\) . \(\square \)

4 Optimality Away from the End-Points

Proposition 4.1

Let \(0<q<\infty \). Then, the Haar system \({\mathscr {H}}_d\) is not a Schauder basis of \(F^s_{p,q}({\mathbb R^d})\) in each of the following cases:

  1. (i)

    if \(1<p<\infty \) and \(s\ge 1/p\) or \(s< 1/p-1\),

  2. (ii)

    if \(d/(d+1)\le p\le 1\) and \(s>1\) or \(s< d(1/p-1)\),

  3. (iii)

    if \(0<p<d/(d+1)\) and \(s\in {\mathbb R}\).

The same result for the spaces \(B^s_{p,q}({\mathbb R^d})\) was proved by Triebel in [8]; see also [11, Proposition 2.24]. Proposition 4.1 can be obtained from this and Theorem 1.1 by suitable interpolation.

Indeed, assertion (i) was already discussed in the paragraph following (4), so we restrict to \(p\le 1\). Assume next that \({\mathscr {H}}_d\) is a basis for \(F^s_{p,q}\) for some \(d/(d+1)<p<1\) and \(s>1\) or \(s<d(1/p-1)\). By Theorem 1.1, \({\mathscr {H}}_d\) is also a basis for \(F^{s_0}_{p,q}\), for any \(d(1/p-1)<s_0<1\). By real interpolation, see e.g. [9, Theorem 2.4.2(ii)], for all \(0<\theta <1\), the system \({\mathscr {H}}_d\) will then be a basis of

$$\begin{aligned} \big (F^{s_0}_{p,q},F^{s}_{p,q}\big )_{\theta ,q}=B^{s_\theta }_{p,q},\quad \text{ with } s_\theta =(1-\theta )s_0+\theta s. \end{aligned}$$

But when \(\theta \) is close to 1 this would contradict Triebel’s result. The remaining cases, \(p=1\) and \(p\ge d/(d+1)\) can be proved similarly using complex interpolation of F-spaces; see [10, 1.6.7].

We remark that, in the paper [8], the failure of the Schauder basis property in the B-spaces is sometimes due to the fact that span\(\,{\mathscr {H}}_d\) fails to be dense in \(B^s_{p,q}\). This is the case, for instance, in the region

$$\begin{aligned} (d-1)/d<p<1{\quad \text{ and }\quad }\max \big \{1,d(1/p-1)\big \}<s<1/p; \end{aligned}$$
(55)

see [8, Corollary 2]. Here we show that also a quantitative bound holds, therefore ruling out the possibility that \({\mathscr {H}}_d\) could be a basic sequence.

Proposition 4.2

Let \(0<q\le \infty \), and (ps) be as in (55). Then,

$$\begin{aligned} \Vert {\mathbb {E}}_N\Vert _{B^s_{p,q} \rightarrow B^s_{p,q}}\gtrsim 2^{(s-1)N}. \end{aligned}$$

Proof

Let \(\eta \in C^\infty _c({\mathbb R}^d)\) such that \(\eta \equiv 1\) on \([-2,2]^d\), and consider the Schwartz function \(f(x)=x_1\,\eta (x)\). It suffices to show that

$$\begin{aligned} \big \Vert {\mathbb {E}}_Nf\big \Vert _{B^s_{p,q}}\gtrsim 2^{(s-1)N}. \end{aligned}$$
(56)

Under (55) we have \(s>\sigma _p:=d(1/p-1)_+\). Assume first that \(s<2\) (which is always the case if \(d>1\)). Then we can use the equivalence of quasi-norms

$$\begin{aligned} \Vert g\Vert _{{B^s_{p,q}(\mathbb {R}^d)}}\approx \Vert g\Vert _p+\sum _{j=1}^d\Big (\int _0^1\frac{\Vert \Delta ^2_{he_j}g\Vert ^q_p}{h^{sq}}\,\frac{dh}{h}\Big )^{1/q}\,, \end{aligned}$$

with the usual modification in the case \(q=\infty \), see [10, 2.6.1]. In particular

$$\begin{aligned} \big \Vert {\mathbb {E}}_Nf\big \Vert _{B^s_{p,q}}\gtrsim \Bigg (\int _0^{2^{-N-1}}\frac{\big \Vert \Delta ^2_{he_1}\big ({\mathbb {E}}_Nf\big )\big \Vert ^q_{L^p([0,1]^d)}}{h^{sq}}\,\frac{dh}{h}\Bigg )^{1/q}. \end{aligned}$$
(57)

Now, it is easily checked that, when \(x\in [0,1)^d\), one has

$$\begin{aligned} {\mathbb {E}}_Nf=\sum _{0\le k<2^N}\tfrac{k+1/2}{2^N}{\mathbb 1}_{[\frac{k}{2^N},\frac{k+1}{2^N})\times [0,1)^{d-1}}, \end{aligned}$$

and likewise, if we additionally assume \(0<h<2^{-N-1}\), then

$$\begin{aligned} \Delta _{he_1}\big ({\mathbb {E}}_Nf\big )=2^{-N-1}\sum _{k=1}^{2^N}{\mathbb 1}_{[\frac{k}{2^N}-h,\frac{k}{2^N})\times [0,1)^{d-1}}. \end{aligned}$$

and

$$\begin{aligned} \Delta ^2_{he_1}\big ({\mathbb {E}}_Nf\big )=2^{-N-1}\sum _{k=1}^{2^N}\Big [{\mathbb 1}_{[\frac{k}{2^N}-2h,\frac{k}{2^N}-h)\times [0,1)^{d-1}}-{\mathbb 1}_{[\frac{k}{2^N}-h,\frac{k}{2^N})\times [0,1)^{d-1}}\Big ]. \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert \Delta ^2_{he_1}{\mathbb {E}}_Nf\Vert _{L^p([0,1]^d)}= 2^{(N+1)(1/p-1)}\,h^{1/p}, \end{aligned}$$

which, inserted into (57), gives (56). If \(d=1\) and \(s\ge 2\), one applies a similar argument to the functions \(\Delta ^L_{he_1}({\mathbb {E}}_Nf)\) with \(L=\lfloor s\rfloor +1\) and \(h<2^{-N}/L\). \(\square \)

By interpolation one obtains as well a quantitative bound for the relevant cases in Proposition 4.1(ii).

Corollary 4.3

Let \(0<q\le \infty \), \(d/(d+1)<p<1\) and \(1<s<1/p\). Then, for all \({\varepsilon }>0\),

$$\begin{aligned} \Vert {\mathbb {E}}_N\Vert _{F^s_{p,q} \rightarrow F^s_{p,q}}\gtrsim c_{\varepsilon }\,2^{(s-1-{\varepsilon })N}. \end{aligned}$$
(58)

Proof

If \(d(1/p-1)<s_0<1\) and \(\theta \in (0,1)\), then the real interpolation inequalities give

$$\begin{aligned} \big \Vert {\mathbb {E}}_N\big \Vert _{F^{s_0}_{p,q} \rightarrow F^{s_0}_{p,q}}^{1-\theta }\,\big \Vert {\mathbb {E}}_N\big \Vert _{F^s_{p,q} \rightarrow F^s_{p,q}}^{\theta }\, \ge \,c_\theta \, \big \Vert {\mathbb {E}}_N\big \Vert _{B^{s_{\theta }}_{p,q} \rightarrow B^{s_{\theta }}_{p,q}}, \end{aligned}$$

with \(s_\theta =(1-\theta )s_0+\theta s\). By Proposition 4.2 the right hand side is larger than a constant times \(2^{N(s_\theta -1)}\), while by Corollary 1.3 we have \(\big \Vert {\mathbb {E}}_N\big \Vert _{F^{s_0}_{p,q} \rightarrow F^{s_0}_{p,q}}\approx 1\). Choosing \(\theta \) sufficiently close to 1 one derives (58). \(\square \)